Hong et al. Journal of Cardiovascular Magnetic Resonance 2014, **16**(Suppl 1):P362 http://www.jcmr-online.com/content/16/S1/P362

POSTER PRESENTATION

Open Access

Synthetic LGE derived from cardiac T₁ mapping for simultaneous assessment of focal and diffuse cardiac fibrosis

Kyungpyo Hong^{1*}, Edward V DiBella¹, Eugene G Kholmovski¹, Ravi Ranjan², Christopher J McGann², Daniel Kim¹

From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

While late gadolinium enhanced (LGE) MRI is the gold standard for detection of focal myocardial scarring [1], it is less effective than cardiac T_1 mapping (ECV) for detection of diffuse fibrosis. LGE, in principle, can be synthesized from cardiac T_1 maps. We sought to derive synthetic LGE images from saturation-recovery based cardiac T_1 maps for simultaneous assessment of focal and diffuse cardiac fibrosis.

Methods

We imaged 6 mongrel dogs with lesions created by RF ablation on a 3T MRI system (Verio, Siemens), using arrhythmia-insensitive-rapid (AIR) cardiac T₁ mapping [2] and standard LGE MRI during equilibrium of Gd-BOPTA (slow infusion at 0.002 mmol/kg/min), in order to compare standard and synthetic LGE images acquired at identical concentration of Gd-BOPTA. Both LGE MRI and cardiac T₁ mapping were acquired with identical spatial resolution = 1.4×1.4×7 mm. After calculating the AIR cardiac T₁ maps, as previously described[2], a synthetic LGE image was subsequently synthesized using the Bloch equation describing an ideal inversion recovery: $M_z = 1 - 2^* exp$ $(-TI/T_1)$, where M_z is the longitudinal magnetization, inversion time (TI) to null the normal myocardium was calculated by rearranging the above equation as $TI = T_{1M}$ \times log(2), where T_{1M} is the mean T₁ of normal myocardium. For quantitative analysis, we calculated the contrast ratio, as defined as the signal difference (e.g., lesion-myocardium) divided by lesion (see Table 1). Same analysis was performed for the blood-myocardium pair. This analysis enabled us to compare standard and synthetic LGE data sets with different intensity scales. Pairwise t-test was used to compare the two groups (standard vs. synthetic LGE).

Results

Our pooled data contained 21 short-axis planes with different RF lesions. Figure 1 shows representative standard and synthetic LGE images with a lesion. The two LGE images showed comparable image quality. As summarized in Table 1, synthetic LGE yielded higher (p < 0.001) contrast ratio of the lesion-myocardium and blood-myocardium pairs than standard LGE, but the magnitude of the differences was less than 10%.

Conclusions

We propose a new approach to simultaneously assess focal and diffuse cardiac fibrosis using cardiac T_1 mapping, with no need for separate acquisition of standard LGE images. This approach is also compatible with inversion-recovery based cardiac T_1 mapping methods. Synthetic LGE derived from T_1 mapping may be particularly useful for infarct size and area at risk calculations, because it is inherently

Table 1 Summary of contrast ratio of lesion-myocardium and blood-myocardium pairs.

Tissue Pair	Standard LGE (%)	Synthetic LGE (%)	p-value	Percent Change (%)
Lesion vs. Myocardium	89.8 ± 4.2	96.1 ± 2.2	< 0.001	7.0
Blood vs. Myocardium	88.1 ± 4.8	95.9 ± 2.4	< 0.001	8.9

¹UCAIR, Radiology, University of Utah, Salt Lake City, Utah, USA

© 2014 Hong et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

insensitive to signal variation due to confounders such as RF excitation and receive inhomogeneities.

Funding

Ben B. and Iris M. Margolis Foundation.

Authors' details

¹UCAIR, Radiology, University of Utah, Salt Lake City, Utah, USA. ²Division of Cardiology, Internal Medicine, University of Utah, Salt Lake City, Utah, USA.

Published: 16 January 2014

References

- 1. Kim RJ, et al: Circulation 1999, **100**:1992-2002.
- 2. Fitts M, et al: MRM 2012, DOI: 10.1002/mrm.24586.

doi:10.1186/1532-429X-16-S1-P362

Cite this article as: Hong *et al.*: **Synthetic LGE derived from cardiac** T₁ **mapping for simultaneous assessment of focal and diffuse cardiac fibrosis.** *Journal of Cardiovascular Magnetic Resonance* 2014 **16**(Suppl 1): P362.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central