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A b s t r a c t - - W e  show that  large positive solutions exist for the following equation 

ZXu + IVul q = p(x)f(u)  (p+) 

in f~ C RN(N >_ 3) in which the domain f2 is either bounded or equal to R N. The nonnegative 
function p is continuous and may vanish on large parts of fL If f~ = R N, then p must satisfy a decay 
condition 

fo °~ r~a(r)dr < where ~(r)  = max p(x) as Ixl -~ ~ .  I~l=r 

Furthermore, we show that  the given conditions on p are nearly optimal for equation (p+). (~ 2005 
Elsevier Ltd. All rights reserved. 

K e y w o r d s - - E n t i r e  large solution, Large solution, Elliptic equation, Existence of solution, Semi- 
linear elliptic equation. 

1. I N T R O D U C T I O N  

We cons ide r  t h e  e x i s t e n c e  of  la rge  so lu t i ons  of  t h e  e q u a t i o n  

V u  + I W l  q = p(z)f(u),  (p+) 

where q is a positive constant, the function f is continuous and nondecreasing on [0, co) with 
f (0 )  = 0 and f(s) > 0 if s > 0 while the function p is nonnegative and continuous on ~, and the 
d o m a i n  f~ is e i t h e r  b o u n d e d  w i t h  s m o o t h  b o u n d a r y  or  e q u a l  t o  R N. A s o l u t i o n  u(x) of ( p + )  is 

ca l led  a l a rge  s o l u t i o n  i f  u -~  co as x -~  0f2. I f  f~ = R N, t h e n  x --* 0f~ impl i e s  Ix] --* c~ a n d  

such  a s o l u t i o n  is ca l led  a n  e n t i r e  l a rge  so lu t ion .  E q u a t i o n  ( p + )  ar ises  f r o m  m a n y  b r a n c h e s  of 

*Author to whom all correspondence should be addressed. 
This work is partially supported by NSFC Grant 10131050, the Educational Ministry of China and Shanghai 
Science and Technology Committee Grant 03QMH1407. 
The authors would like to express their gratitude to the reviewers for their valuable comments, which improves 
the presentation of our manuscript. 

0898-1221/05/$ - see front matter Q 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.camwa.2004.12.010 

Typeset by A~/S-2~(  



1388 Y. PENG AND Y.-C. WANe 

mathematics and physics. Almost all such studies have dealt with the equation of the form 

Vu = g(x, u), (1.1) 

in which the function g takes various forms (see [1-9] and references therein). 
Lazer and McKenna, Diaz and Letelier showed that equation (1.1) has a unique solution 

u C C2(~), such that lu(x) + 21nd(x)l is bounded on ~ provided g(x,u) = e u, and 

Cl[d(x)] 2/(p-1) <_ u(x) < C2[d(x)] 2/(p-1), Vx  6 ~, 

provided g(x,u) = u p (p > 1), where C1, C2 are positive constants and d(x) = dist (x, Oft) 
(see [7-9]). In this case, (1.1) arises in the study of the electric potential in a golwing hollow 
metal body and high speed diffusion, and plays an important role in the theory of the Riemannian 
surfaces of constant negative curvature and in the theory of automorphic function. 

When p satisfies the following condition 

(C) for any z 6 ~ satisfying p(z) = 0, there exists a domain Dz, such that z 6 Dz, / )~  _C ft, 
and p(x) > 0, for all x 60D~.  

Lair [10] showed that a necessary and sufficient condition for the equation 

Vu = p(x)f(u),  (1.2) 

to have a nonnegative large solution on a bounded domain ~ is that the function f satisfies 

//[/0 f ( t )  dt ds < oc. (1.3) 

Moveover, Lair also showed that if p is a nonnegative C(R N) function which satisfies Condi- 
tion (C) with ~ = R g and 

/ ~ re ( r )  < 0% (1.4) dr 

where ¢(r) --- maxl,l=~P(X ). Then (1.2) has a positive entire large solution provided f satisfies 
condition (1.3). Obviously, both of the special nonlinear function f = e ~ and u p with p > 1 
satisfy condition (1.3). 

In [11], Lair and Wood showed that large positive solutions exist for the equation 

Vu + IVul q = p(x)u ~, (1.5) 

in ~ C R N (N >_ 3) for an appropriate choice of 7 > i, q > 0 in which the domain ~ is either 
bounded or equal to R N. Furthermore, they showed that the given conditions on 7 and p are 
nearly optimal for equation (1.5) in the sense that no large solution exist if either 7 -< 1 or the 
function p has compact support in ~. 

In this paper, we study equation (p+). At first, we show that equation (p+) has a large solution 
in a bounded domain ~ and Condition (C) is nearly optimal for (p+). In addition, we obtain the 
existence of entire large solution for equation (p+). This study generalizes the right-hand side of 
(1.5) to be the form of (1.2). 

The main results of this paper are as follows. 

THEOREM i.i. Suppose that ~ is a bounded domain in R g ( N >_ 3), with smooth boundary and 

p is a nonnegative continuous function on ~ satisfying Condition (C). Assume that f satisfies (1.3). 
Then, equation (p+) has a large positive solution in fL 

THEOREM 1.2. Let ~ = R N. If the same assumptions of f and p(x) as in Theorem 1.1, and 
condition (1.4) hold as well, then equation (p+) has a positive entire large solution. 
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2.  T H E  P R O O F  O F  M A I N  R E S U L T S  

Before proving the main results, we need to give some lemmas which will be used later. 

LEMMA 2.1. (See [10, Lemma 1].) Suppose that f satisfies inequality (1.3). Then, 

f l  ~ ds - ~ < 0 0 .  (2.1) 

One point needs to be highlighted. In [10], in order to prove (2.1), Lair first proved the following 

fact: there exist positive numbers 5 and M,  such that  

f (s)  >_ 62 ' for s > M, (2.2) 
s 

which will be used in the proof of Lemma 2.2 below. 

LEMMA 2.2. Let un be a solution of the problem 

w n  + I w ,  I q = p ( x ) f ( ~ , ) ,  x e ft, 
(2.3) 

un(x) = n, x C Oft, 

then 0 < un < n on ft. Furthermore, let BR be a ball of radius R, such that BI~ C_ ft. Then 
there exists a constant M = M(R,q) ,  such tha t  u,~(x) < M on BR for any n, provided that  

0 < mo < p(z) < Mo in ft and (1.3) holds. 

PROOF. To prove tha t  Un > 0 in ft, without  loss of generality, let n -- 1. It  is easy to verify that  
0 _ Ul < 1 by the maximum principle. Furthermore, for any 0 < E < 1, any solution z to the 
problem (which exists by [12, Theorem 8.3, p. 801]) 

V z  + IVzl q = p ( x ) f ( z ) ,  x e f t ,  
(2.4) 

z = e0, x E 0~t, 

satisfies z _< ul  and 0 < z < E0. Thus, if we show that  z > 0 in f~ for some E0 C (0, 1), we will be 
done. To do this, let Xo c R y \ ft. Without  loss of generality, assume tha t  x0 = 0. Let r = Ix] 
and choose R0 > 0 large, such that  ~ C_ B(0, R0). Choose Mo > 0, such that  p(x) < Mo on ft. 
Now, choose 0 < Eo < 1, such that  

Mof  (¢o) R2o 
< ~o. (2.5) 

2N 

Let v(x) = (Mof(Eo) /2g)r  2 for r = Ix] < R0. Define w on the ball B(0, R0) as w(x) = z(x) for 
x E f t  and w(x) = ~0 on B(0, R0) \ f~. We show that  v <_ w in B(0, R0). In fact, if we suppose 
that  max(v - w) in B(0, R0) is positive, then the point where the maximum occurs must  lie in gt 
since 

Mof  (¢o) R 2 v(x) - Mof  (e0) r2 < < eo -- w(x), x E B(O, Ro) \ [~. 
2----X-- - 7 ~  o -  

Therefore, at the point where max(v - u) occurs, we have 

0 > v ( v  - ~ )  = V(v  - z)  = M o f  (~o) - p f ( z )  + IVzE q > p ( f  (~o) - f ( z ) )  > o. 

That  is a contradiction. So, v < w in B(0, R0) which yields v < w in ft or (Mof(Eo)/2N)r 2 < z(x) 
in ft. Since r > 0 in f t ,  we get z(x) > 0 in ft. Hence, Ul > 0 in ft. 

Now, let s be a sufficiently small positive number so that  BR+~ C ft and let vn be a solution of 

Vvn = roof (vn), x e BR+~, 
(2.6) 

vn =- n, x E OBR+~. 
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A similar argument as above implies that  v~ > 0 in BR+~. By the maximum principle, it is 
clear that  vn _< v~+l, n = 1,2 . . . . .  I t  is also easy to show tha t  v~ is a radial solution by [13, 
Theorem A]. Thus, v~ satisfies 

N - 1  / t  I v n + v n = mof  (v~), x e BR+e, 
r (2.7) 

Vn = n, x E OBR+e. 

It is clear tha t  v~(0) = 0 and v~(r) >_ 0 for any n and r. From (2.7), we have 

(rN-lvln(r) ) ' = morN-l  f (Vn(r) ) , (2.8) 

integrating from 0 to r, we get 

/o /o (sg-~v~(s)) ' ds = m o  s N - l f  (V,~(S)) ds. (2.9) 

Thus, we have 

which implies tha t  

fO ?~ rN-lvln(r ) = m o  s N - l f  (V~(S)) ds <__ morNf  (v~(r)), (2.1o) 

v ' ( r )  < m 0 r f  (v~(r)).  (2.11) 

Let v be a solution of 
Vv = roof(v), z ~ BR+~, 

(2.12) 
V[OBR+~ ~- 00. 

The existence of v is proved by [10, Theorem 1]. By the maximum principle, vn < v in BR+e 

for all n. Thus, v~ is bounded above on BR by a constant which is independent of n. By (2.11), 
v~(r) is also bounded above by a constant independent of n. Let k be an upper bound for both 

! vn and v n on/3R.  If  we can find a function w~ which satisfies 

Vwn + [VWn[ q ~ roof (wn), X 6 BR+~ C f~, 

w~ = n, x 60BR+e, (2.13) 

w~ <Ko,  z e B R ,  

where K0 is a constant independent of n, then by the maximum principle, we have un < wn < Ko, 
and we will be done. 

Let wn = Cv~n, where vn is a solution of (2.7), the constants C (C > 1) and A (A > 1), both  
independent of n, are determined later. Since 

Vw~ + [Vw~[ a - mof(wn)  

= c ~ v ~ - l w ~  + c ~ ( ~  - 1)v~ -2 Iw~l  2 + cq~qvi ~-~)~ rVv~l ~ - roof (C,~) 

= m 0 C ~ - ~ f  (v~) + C~(~ - 1 ) ~  - :  IW~I ~ + C q ~ %  ~-1)~ IW~l ~ - roof (Cv~). 

By (2.2), if we let 6 -- v ~  (C is defined as above), then there is M,  such tha t  f ( s ) / s  >_ C as 
s > M.  S i n c e C  > l a n d A  > 1, t h e n C v ~  >_ Masv ,~  > M.  Thus, f (Cv~) / ev~  > C, which 
implies f (Cv~) > 2 _ C v~. On the other hand, v~(r) < k, v~(r) < mo(R + z) f (k) ,  thus we have 

moC~v~-x f(v~) + C~(~ - 1)v~ -2 IVv,~l 2 + cq~qv(~ ~-~)~ IVvnl q - roof (Cv~) 

<_ rnoCAv~n-l f (k )  + CA(A - 1)vn ~-2 [v~[ 2 + cq/~qv(nA-1)q Iv" l q - moC%~ 
,k 1 ,~ 2 2 2 2 q q ()~ 1)q q q q 2 A <_ moCAv~- f (k )+CA(A-1)v~-  mo(R+e ) f (k)+C A v - mo(R+¢ ) f ( k ) - m o C  vn 

2f2(k)+mo-q 1 q 1 qVn(A 1)q+2-A(R_t_E)q q 2 moC~ -2 [~f(k)v~+.~o~(~-l)(R+~) C - ~ - f (k)-C~]. 
t 
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To complete the proof, it suffices to find C (C > 1) and A (A > 1), such tha t  

Af(k)v~, + moA(A 1)(R "-1- E ) 2 f 2 ( k )  2- , , 'nq-- l (~q-- l~q~,(A--1)q+2--)~[D --  - -  - -  " ' " 0  . . . .  n ~,~ + ¢ ) q f q ( k )  C v  2 < O. 

We can choose ,k (), > 1) so that  2 > (,k - 1)q + 2 - A. In fact, it is clear tha t  if q = 1. If q > 1, 

then ), < q/(q - 1), we can choose 1 < A < q/(q - 1). If  q < 1, then A > q/(q - 1), we can choose 
A > 1. For the choice of )~, let C (C > 1) be large so that  

;~f(k)s + moA()~ - 1)(R + e)2 f2 (k )  + m~-~Cq- l  Aqs(~-l)q+2-~(R + e)q fq (k )  - Cs  2 < 0, (2.14) 

for s > 2. Since 0 < vl < v2 < . . .  < v~ < V~+l < . . . ,  in B R+e, we may find/3 > 0, such that  
vn(r) :>/3, for any n and r. For the above choice of A, choose the constant  C > 1 so that  the 
following inequality holds: 

2),f(k) + m0A()~ - 1)(R + s)2 f2(k)  + m q - l c q - 1 / ~ q 2 ( A - 1 ) q + 2 - A ( R  + ¢)q  f q ( k )  - -  C~ 2 < O. 

Thus, whether v~(r) ___ 2 or v,~(r) _> 2, we get 

~,,~q--l(-!q--l&q ~ ( A - 1 ) q + 2 - X (  ].? _ C v  2 .  Af(k )v~  + moA(A - 1)(R + s)2f2(k) + "o0 . . . .  n ,-o + s)q fq(k)  < 

Hence, Vwn + I W ~ l  q mof (wn) ,  where K0 = Ck ~. 

PROOF O F  THEOREM 1.1. By [12, Theorem 8.3, p. 301], it is easy to prove that,  for each k E N, 
the boundary  value problem 

VVk + IVVkl q = p(x)f (Vk), Z e 
(2.15) 

Vk(X) = k, X e 0f , 

has a unique positive classical solution. It  can be shown that  vk <_ Vk+l, k k 1 in f~ by the 
maximum principle. Indeed, suppose that  there is a point x0, such tha t  v - vk+t - v k  is negative 
at x0. Let xo E R N \ ~2, we assume, without  loss of generality, tha t  x0 -- 0. Let r = Ixl, then for 
some small ¢ > 0, v + z / (1  + r) has a negative minimum in ft. At tha t  minimal point, we have 

N - 1  
_ < O - E  < 0 .  

r ( l  + r) 3 

N - 1  
(1 + ,.)s 

I t  is a contradiction. Hence, vk < Vk+l, for k = 1,2, . . . .  Furthermore, by Lemma 2.2, Vl > 0 
in fL 

Of course, it is understood that  the maximum principle is applied as above, where the factor 
~/(1 + r) is used whenever the function p is not strictly positive. To complete the proof, it suffices 
to show the following facts: 

(C1) VX0 E ~'~, there exists M (depending on x0 but independent of k), such that  vk(x) < M 
for any x near x0, 

(C2) tim~--.on v(x)  = co, where v(x)  = limk__.c¢ vk(x) for x E f~, 
(C3) v is classical solution of (p+). 

To prove (C1), we consider the following two cases. 

CASE (a). p(xo) > 0. Since p is continuous, there exists a ball B(xo,  r), such tha t  p(x)  >_ mo in 
B(xo,  r) for some mo > 0, then (C1) follows easily from Lemma 2.2. 

CASE ( b ) .  p ( x 0 )  = 0. By Condition (C), there exists a domain fro _ ~t, such that  xo E ~0 
and p(x)  > 0 for any x E 0f~0. From the above Case (a), we know tha t  for any x E 0ft0 there 
exists a ball B(x ,  rx) and a positive constant Mx, such that  vk <<_ Mx on B(x ,  rx/2) .  Since f~ 
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is bounded, 0f~0 is compact. Thus, there exists a finite number of such balls that cover 0~0. 
Let M = max{Mxl , . . . ,  M~k}, where the bails B(xi, rx~/2), i = 1, 2 , . . . ,  k, cover 0f~0. Clearly, 
vk _< M on 0f~0. By the maximum principle again, we obtain Vk <_ M on f~0. 

The proof of (C2) is straightforward. For any L > '0  and any sequence Xk ~ x E Of~, since 
VL+I = L +  1 on 0f~ and is continuous, there is some K > 0, such that VL+l(x~) >_ L for k > K. 
Note that, since v >_ VL+l in f~, we have v(xk) >_ L, k >_ K. Hence, v(xk) ~ oo as k --, oo. Thus, 
we have v ~ oo as x ~ 0f~. 

To prove (Ca), we let x0 E f~ and B(xo,r) be the ball of radius r centered at xo, such that 
it is contained in fh Let ¢ be a C °° function which is equal to 1 on B(x0, r/2) and zero out of 
B(xo, r). 

Let g(s) = 1/(1 + s). Multiplying both sides of equation (2.15) by ¢2g(vk) and integrating 
over B(xo, r) yields 

fS ¢2g(vk)Vvkdx+ f ¢2g(vk) JVvklq d x = £  ¢2g(v~)p(x)f(vk)dx. (2.16) 
(xo,r) J B(xo,r) (xo,r) 

Integrating by part gets 

Thus, we have 

- £(.o .)¢'g' (v )Iv.hi' ex- £(.o.)2¢vcg (v )v.ke. 

(~o,~) <~o,~) 

(2.17) 

1 / s  ¢2 iVvkl2 dx 
(1+ M~) ~. (~o,.~ 

£ ¢2 /B < IVvkJ 2 dx + ¢2g (vk) [Vvkl q dz 
- (~o,~) (1 + vk) 2 (~o,~) 

= f B  2¢VCVvk ( 1 ) fB (~o,~) ~ dx+ ¢2g(vk)p(x)f(vk) dx 
(~o,~) 

_< (¢Vvk) \ 1 + v, ] - 1 + v-'----~' -- (~:o,r) 

- (.o,,.) -~ (.o,,.) \l--+~v~] dx + M~ 

< e £ ¢21Vvkl2 dx + M2, 
(~o,,') 

where M~ is an upper bound for Vk (k = 1, 2 , . . .  ) on B(xo, r), e is any positive number, and the 
constants M1 and M2 are independent of k. Hence, we get 

B I@Vvk[ 2 dx < M. 
(~o,~) 

That  is, the L2(B(xo, r))-norm of ICVvkl is bounded independently of k. Thus, the L2(B(xo, r/2))- 
norm of ]Vvk[ is bounded independently of k. 

By the standard regularity argument (see [1]), we may find a number r l  > 0, such that there 
is a subsequence of {vk}~, which we still call {vk}~ °, that converges in Cl+a(B(xo, r)) for some 
positive number a <: 1. Let ¢ be as before but with r replaced by r l .  

Now, we consider two cases regarding the regularity of the function p(x). 
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CASE 1. p(x )  E C ~ ( ~ ) .  Note tha t  both  of V v k  = p f ( v k )  - IVv~l q and V(¢vk)  = 2Vq2Vvk + 

vk V ¢ + C V vk converge in C~ ( B ( xo, r l ) ) as k ~ oo. By the Schauder theory, {¢vk}~  converges 
in C2+~(B(xo ,  r l ) ) ,  and hence, {vk}~ converges in C2+~(B(xo ,  r l / 2 ) )  when k --~ oo. Since x0 is 
arbitrary,  it follows tha t  v E C2+~(~)  and is a solution of (p+).  

s-c(P(=o.~l)) 
CASE 2. p ( x )  E C ( ~ ) .  W e  have vk ~ v and, consequently, 

v v k  = p f ( v k )  - IVv~l  q s - c ( s ( ~ ) ° x l ) ) p ( x ) f ( v )  - IVv l  q ~ z. 

T h a t  the Laplacian is a closed linear operator  implies tha t  v E D(V)  and Vv = z. Since x0 is 
arbitrary,  we get tha t  v is a classical solution of (p+).  

REMARK 2.1. Theorem 1.1 implies tha t  if the nonnegative function p is such tha t  each of its 
zero points is enclosed by a bounded surface of nonzero points, then  equat ion (p+)  has a large 
positive solution. The  following proposit ion implies tha t  if the condition does not hold in the 
sense tha t  p vanishes in an "outer  ring" of the domain,  then equation (p+)  has no positive large 
solution. 

PROPOSITION 2.1. Suppose tha t  g(x,O) = 0 for all x C ~t. If  there exists a domain D _ ~t, such 
t h a t / )  C ~t and g(x ,  t) = O, x E £t \ D,  t > 0, then there is no positive large solution of 

w + I w t  q = g(x,  u), x e f~. (2.18) 

Note tha t  this includes the case g(x,  u) = p ( x ) f ( u ) ,  and p(x )  = 0 in £t \ D. 

The  proof  of this result is similar to the proof of Theorem 13 given in [11], so we omit  its proof 
here. From Proposi t ion 2.1, we get tha t  Condition (C) is nearly opt imal  for (p+).  

PROOF OF THEOREM 1.2. By Theorem 1.1, for k = 1, 2 , . . . ,  the boundary  blow-up problem 

V v ~ + l W k l ~ = p ( x ) f ( v ~ ) ,  Ixl < k, 

v~(z) ~ ,  as Izl ~ k .  
(2.19) 

has a classical solution. I t  is clear tha t  

N 1 >_ V 2 >_ . . .  >_ V k >_ Vk+l >_ . . . ,  (2.20) 

in R N by the m a x i m u m  principle. Let v (x )  = limk-~oovk(x), x E R N. We claim tha t  v is the 
desired solution. To prove this, we consider the related problem 

~ ( ~ ) ~ ,  as Ixl ~ k .  
(2.21) 

I t  is shown in [10] tha t  (2.21) has a unique positive solution for each k, and tha t  

ul  >_ u2 _> . . .  _> uk _> uk+l _> . . .  _> w > 0, (2.22) 

for some w --~ c~ as Ixl --* oo. I t  follows easily from the m a x i m u m  principle tha t  vk > uk for 
k -- 1, 2 , . . . .  Thus,  v (x )  --* oo as Ixl ~ oz. By a similar argument  as (C3) in Theorem 1.1, we 
have tha t  v is the desired solution. 

REMARK 2.2. In [1, Theorem 4], Lair has proved a converse of Theorem 1.2 for the case f ( u )  = u "Y 
(7 > 1). We cannot  obtain a similar result for general f except for the function p admit t ing 
specific decay rates. However, we prove the following result, a "partial  converse" to Theorem 1.2. 
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THEOREM 2. I. Suppose the function p satisfies the hypothesis of Theorem 1.2 including the 
inequality (1.4). If equation (19+) has a nonnegative entire large solution, then f satisfies the 
inequality (2.2), i.e., f l  (dS/f(s)) < oo. 

PROOF. Let u be a nonnegative entire large solution of (p+) and extend f as an odd function 
on R, let {fk} be a sequence of nondecreasing C~(R)  functions which converges uniformly on 
compact sets to f ,  s~tisfy sfk(s) > 0 for~s 7~ 0, fk(0) = 0, and 

f(s) + f (s  - 1 )  < 2fk(S) < f(s) + f (s  + l ) . (2.23) 

Such a sequence is easy to obtain by using mollifiers (see [14, p. 145]). We define nonnegative 
functions wk and w on R n by 

/0 /y s ~(=) ds w(x) = 
wk(x) = 1 + fk(s)'  1 + I(S)'  

and note tha t  {wk} converges uniformly on compact sets to wo. Let  

wk(r) ~ (wnrn-1)-l  /xl=r wk(x) ds--  /=l =r wk(x) da, 

where w,~ denotes the surface area of the unit sphere in R N, and similarly define ~.  Then, 

Vff~k(r) = fl=l=~ Awk(x)d¢ (see [151)and 

w IWl2yL(u) < W, p(:~)f(u) - I W l  a p(m)y(u) ^ 
Vwk -- 1 + fk(u--------~ [1 + fk(u)] 2 - 1 + Yk(u) = 1 + fk(u) - < 1 + fk(u) -- Pk. 

Thus, V~k( r )  _< fl=l=r!3kde, r >__ O. Integrating this we get 

~k(r) <_ ff~k(O) + t 1-N s N- t  Pk da dsdt. (2.24) 
J0 I=s 

For the sequence { fk }  as above, we choose J large such that f(s- l / J )  > - 2  for s _> 0 (because f 
is extended as an odd function on R). By (2.23), we have 

2 [1 + f j ( s ) ]  > f(s), s > O, (2.25) 

thus,/)k _< 2¢(r).  By (2.24), letting k --~ c~ in this expression and i~k < 2¢(r) ,  we get 

~ ( r )  _ ~(0) + 2(N - 2) -1 s¢(s) ds (N > 3) 

_ ~(0) + 2 sO(s) ds = K. 

Thus, lim inflzl__.oo w(x) <_ K. However, since limlzl__. ~ u(x) = c~, we must have 

f"(=) i foo ds 
K >  lim i n f w ( x ) =  lim ] dS=Jo  " 

- I=1-~= I=1-~ jo 1 + ) ( s )  1 ~2] (s )  

Therefore, (2.2) holds, and the proof is complete. 
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