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Abstract

We show that the minimum number of queens required to cover the n × n chessboard is at
most 8

15n+ O(1). ? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We generally follow the notation and terminology pertaining to domination of [12].
We repeat the main concepts for chessboards here. The queens graph Qn has the
squares of the n × n chessboard as its vertices; two squares are adjacent if they are
in the same row, column or diagonal. A queen on square x of Qn covers a square
y if x and y are adjacent. A set D of squares is a dominating set of Qn if every
square of Qn is either in D or adjacent to a square in D, i.e., if a set of queens,
one on each square in D, covers the board. If no two squares of the dominating set
D are adjacent, then D is an independent dominating set. The domination number
�(Qn) (independent domination number i(Qn)) of Qn is the minimum size amongst all
dominating (independent dominating) sets of Qn. It is easily seen that �(Qn)6 i(Qn)
for all n.

Chessboard domination problems initiated the study of dominating sets of graphs,
at :rst rather informally until the topic of domination was given formal mathematical
de:nition with the publication of the books by Berge [2] and Ore [14] in 1962. That
even the original chessboard domination problems are astonishingly di>cult is apparent
in view of the fact that so few of these problems have been solved completely. The
unsolved classical problems were important in motivating the revival of the study of
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Table 1
Known values for �(Qn) and i(Qn)

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 30 31
� 2 3 3 4 5 5 5 5 6 7 7=8 8=9 8=9 9 9 10 15 16
i 3 3 4 4 5 5 5 5 7 7 8 9 9 9

Table 2
Known values for �(Qn) and i(Qn)

k 5 6 7 8 9 10 11 12 13 14 15 17 19
n 21 25 29 33 37 41 45 49 53 57 61 69 77
� 11 13 15 17 19 21 23 25 27 29 31 35 39
i 11 13 17 23

dominating sets in graphs in the early 1970s. One of the most interesting—and most
di>cult—chessboard problems is the queens domination problem of determining �(Qn).

De Jaenisch [7] :rst considered the problem of determining values of �(Qn) in 1862
and Ball [1] gave values of �(Qn) up to n= 8 in 1892. Much more recently Spencer, as
cited in [6,15], proved the lower bound �(Qn)¿ 1

2 (n − 1); n¿ 1. Several researchers
(see [6,8,9,5]) established upper bounds. Most of the known values of �(Qn) (see Tables
1 and 2) are established by a placement D of queens, where |D| attains some lower
bound. For n¡ 5 optimal placements are easily discovered by trial. With Spencer’s
bound, �(Q11) = i(Q11) = 5 is established. However, n= 3 and 11 are the only values
known for which this bound holds exactly. If n is even Spencer’s bound becomes
�(Q2m)¿m, and this together with dominating sets of the required size establishes
values of �(Qn) for n= 4; 6; 10; 12; 18 and 30. The value �(Q18) = 9 was determined by
McRae (see [9]) and �(Q30) = 15 was obtained in [3]. The exceptional value �(Q8) = 5
is claimed by Ball [1], and Weakley [15] proved �(Q7) = 4.

Weakley [15] re:ned the lower bound by proving �(Q4k+1)¿ 2k+1 for all k¿ 0. He
also showed that �(Q4k+1) = 2k + 1 for k = 3; 4; 5; 6 and 8 by constructing dominating
sets of order 2k+1. Burger et al. [4] added the cases k = 9; 12; 13 and 15 to the list and
Gibbons and Webb [10] :lled in the gaps by :nding dominating sets for k = 7; 10; 11
and 14 so that �(Q4k+1) = 2k + 1 for all k with 06 k6 15. Recently, Burger [3]
showed that this equality also holds for k = 17 and 19. The values �(Q19) = 10 and
�(Q31) = 16 are also obtained in [3].

Thus, we have ample evidence that at least for small values of n; �(Qn) ≈ n=2.
General upper bounds that are close to n=2 seem to be harder to :nd. The previ-
ously best upper bound is given in [5], where it is shown that if n= 108m− 37, then
�(Qn)6 62m− 23 = 31

54n− 95
54 . Compared with the lower bound of �(Qn)¿ 1

2n+O(1),
this leaves a gap of 2

27n+ O(1) between the lower and upper bound. In this paper we
narrow the gap by more than half to 1

30n+O(1) by showing that if n= 60m−11, then
�(Qn)6 32m− 6 = 8

15n− 2
15 .

Note that there are restrictions on n, but the set of admissible values of n is an
arithmetic progression and for all other values of n we can create a dominating set by
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adding queens to a dominating set on a largest admissible board of size less than n.
At most one queen is needed for each new row and column. Therefore, the number of
queens added is never more than a constant. This will show that �(Qn)6 8

15n+ O(1).
Observe that the pattern formed by the queens to obtain this bound is diNerent from

the so-called Z-pattern used in [5,11]. The results presented here were obtained as part
of the doctoral thesis [3]. For surveys on the queens domination problem and upper
bound results we refer the reader to [6,8,9,11] and especially the recent survey [13].

2. Dominating sets on Q4k+1

Since n= 60m − 11 ≡ 1 (mod 4), we number the squares as illustrated in Fig. 1.
A row or column is called even or odd according to the parity of its label, while a
square is called even–even , odd–odd, even–odd or odd–even according to the parity
of its coordinates. We consider placements of queens with at least one queen in each
even row and column. Thus, all the squares in these rows and columns are dominated
and the only squares that need to be considered are the odd–odd squares (shaded in
Fig. 1), which must be dominated either diagonally or by placing a queen in its row
or column.

We can simplify the representation by drawing only the odd-odd squares as illus-
trated in Fig. 2. Imagine that the even rows and even columns are squeezed to be only
lines. Place the simpli:ed board on the (x; y)-plane with the centre of the board at co-
ordinates (0; 0) and the lines formed by the even rows and columns at unit lengths from
each other. The coordinates of the queens are then the coordinates of the points (in
the plane) on which they are placed. Notice that a queen with coordinates (2x; 2y) on
the normal chessboard has coordinates (x; y) on the simpli:ed representation. Hence-
forth, when we refer to coordinates, it will be of the simpli:ed representation. As
in the case of squares of the chessboard, a queen in the simpli:ed representation
is called even–even, even–odd, odd–even or odd–odd according to the parity of her
coordinates.

The diagonals (of squares) that rise from left to right correspond to the straight lines
with equations y= x+d, where d∈{−(2k−1); : : : ;−1; 0; 1; : : : ; 2k−1}. These lines are
called d-diagonals and are labelled d=−(2k−1); : : : ; d=−1; d= 0; d= 1; : : : ; d= 2k−1
according to their intersections with the y-axis. Similarly, the s-diagonals fall from left
to right, and correspond to the straight lines with equations y= − x + s; s∈{−(2k −
1); : : : ;−1; 0; 1; : : : ; 2k−1} and are also labelled according to their intersections with the
y-axis. An even (odd) diagonal is a diagonal with an even (odd) intersection with the
y-axis. Notice that a queen (in an even row and column of the unreduced board) that
lies on an odd (even) d-diagonal, also lies on an odd (even) s-diagonal and vice versa.
Queens on odd (even) diagonals are also referred to as odd (even) queens. By a point
on a d-diagonal (or s-diagonal) we mean an intersection point of its corresponding
line and a line formed by an even row or column. Notice that the diNerence between
the y and x coordinates of any point on a d-diagonal is equal to its label. Similarly,
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Fig. 1. A dominating set of Q13.

Fig. 2. Simpli:ed representation of Q13.

the sum of the coordinates of any point on the s-diagonals is equal to its label. Fig. 3
illustrates these concepts for a general board.

The following result is easily seen to be true (Fig. 3) and is stated without proof.

Lemma 1. If an s-diagonal s= l¿ 0 intersects a row y=p or a column x= q, then
any s-diagonal s= l′ with 06 l′6 l intersects all rows y=p′ with p′¿p and all
columns x= q′ with q′¿ q. A symmetric statement holds for negative s-diagonals and
similar results are true for d-diagonals.

A line (row, column, diagonal) which does not contain a queen is called an empty
line (row, column, diagonal). A set of 2k+ 1 queens in every second row and column
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Fig. 3. Numbering of diagonals.

of Q4k+1, where the :rst empty s-diagonal from the centre is s= i or s= − i and the
:rst empty d-diagonal from the centre is d= j or d=−j, is called an (i; j)-set, i; j¿ 0.
(See Fig. 2 for a (1; 1)-set of Q13.) We need the following result from [4].

Theorem 2. An (i; i)-set of queens which lie on the diagonals

s; d= 0;±1;±2; : : : ;±(i − 1);±(i + 1);±(i + 3); : : : ;±(2k − i − 1) (1)

(2k − 1 of each type) is dominating.

Depending on the parity of i, there are either more odd queens or more even queens
in a dominating (i; i)-set D of Q4k+1 of the type described in Theorem 2. Call the
smaller of these sets the core of D and the bigger one the body of D. The core
diagonals (respectively body diagonals) are the diagonals listed in (1) containing core
(respectively body) queens. Note that there can be core (body) queens that are not on
the core (body) diagonals, i.e., they lie on diagonals not listed in (1).

3. The upper bound

We now present the new upper bound for the domination number of the queens
graph.
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Fig. 4. m= 2 (�(Q109)6 58).

Theorem 3. For each positive integer m; �(Q60m−11)6 32m− 6:

Proof. Let i= 6m− 1 and k = 15m− 3. Note that {(0; 0);±(2; 1);±(1;−2)} is a min-
imum dominating set for Q11. The construction in the proof below is based on this
pattern — it uses :ve groups of queens, with group centres the squares in the set
{(0; 0);±(2i; i);±(i;−2i)}, plus a few additional queens to cover the rows, columns
and diagonals necessary to give an (i; i)-set satisfying the hypothesis of Theorem 2.
This results in a set of queens on Q4k+1 with at least one queen in every second row
and column and at least one queen on each of the diagonals listed in (1), thus forming
a dominating set according to Theorem 2. See Figs. 4 and 5 for the cases m= 2 and 3
(on the simpli:ed version of the board).

At each point in the construction, one can divide the lines of the chessboard into
four types:

(i) Lines that are occupied,
(ii) Lines that are empty, but must be occupied to satisfy the hypothesis of Theorem

2,
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Fig. 5. m= 3 (�(Q169)6 90).

(iii) Lines that are empty, need not be occupied but will be (by queens placed on lines
of Type (ii)),

(iv) Lines that are empty and will remain so.
The core queens are the odd queens and their coordinates are

(1; i − 3) + j(1;−3) and (−1;−i + 3) + j(−1; 3) for j= 0; 1; : : : ; 3m− 2:

These queens are on the diagonals

s (respectively d) = − i + 2;−i + 4; : : : ;−1; 1; 3; : : : ; i − 2; (2)

i.e., all the consecutive odd diagonals required by (1) for s; d6 i − 2.
The body consists of four groups of queens, two of which are exact copies of the

core. If we regard (0; 0) as the centre of the core queens, then the centres of the exact
copies are at (2i; i) and (−2i;−i). First, consider the copy with centre (2i; i). Since it
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is a copy of the core, it will also cover consecutive diagonals (of the same parity).
We can therefore determine the s- and d-diagonals of the copy by adding i + 2i and
i − 2i to (2) respectively. This gives

s= 2i + 2; 2i + 4; : : : ; 3i − 1; 3i + 1; 3i + 3; : : : ; 4i − 2 (3)

d= − 2i + 2;−2i + 4; : : : ;−i − 1;−i + 1;−i + 3; : : : ;−2: (4)

Similarly, the copy with centre (−2i;−i) has queens on the diagonals

s= − 4i + 2;−4i + 4; : : : ;−3i − 1;−3i + 1;−3i + 3; : : : ;−2i − 2 (5)

d= 2; 4; : : : ; i − 1; i + 1; i + 3; : : : ; 2i − 2: (6)

The other two groups of queens are also copies of the core with the only diNerence
that if m¿ 2, then some of the queens do not :t on the board and these, of course,
cannot be part of the dominating set. The centres of the groups are at (i;−2i) and
(−i; 2i). These queens (including those that do not :t on the board) are on the even
diagonals

s= − 2i + 2;−2i + 4; : : : ;−2; (7)

s= 2; 4; : : : ; 2i − 2; (8)

d= − 4i + 2;−4i + 4; : : : ;−2i − 2; (9)

d= 2i + 2; 2i + 4; : : : ; 4i − 2: (10)

We see that the diagonals listed in (3)–(10) are all the even diagonals from s; d=
−4i + 2 = − (2k − i − 1) to s; d= 4i − 2 = 2k − i − 1 except s; d= 0 and s; d= ± 2i.

We have to consider the queens that do not :t on the board, because they are on
the extensions of empty diagonals of Type (ii) which therefore must be occupied in
some other way. These queens have y-coordinates bigger than k = 15m− 3 or smaller
than −k. Their coordinates are

(−i; 2i) + (1; i − 3) + j(1;−3) for j= 0; 1; : : : ; m− 2;

(i;−2i) + (−1;−i + 3) + j(−1;+3) for j= 0; 1; : : : ; m− 2;

which are the same as (recall i= 6m− 1)

(−6m+ 2; 18m− 6); (−6m+ 3; 18m− 9); : : : ; (−5m; 15m);

(6m− 2;−18m+ 6); (6m− 3;−18m+ 9); : : : ; (5m;−15m):

Therefore these queens are on the diagonals

s= ± (2i − 2);±(2i − 4); : : : ; m− 1 terms;

d= ± (4i − 4);±(4i − 8); : : : ; m− 1 terms:
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To summarise, the following lines (corresponding to columns, rows and diagonals) of
Type (ii) are empty at this stage:

x= 0;±i;±2i and x= ± (i − 1);±(i − 2); : : : ; m− 1 terms;

y= 0;±i;±2i and y= ± (k − 2);±(k − 5); : : : ; m− 1 terms;

d= 0;±2i and d= ± (4i − 4);±(4i − 8); : : : ; m− 1 terms;

s= 0;±2i and s= ± (2i − 2);±(2i − 4); : : : ; m− 1 terms:

Thus, we have 2m+ 3 empty rows and columns and 2m+ 1 empty s- and d-diagonals
of Type (ii). These lines can be occupied by the following procedure:
(1) Place queens on (0; 0), (i; i) and (−i;−i). This covers the columns x (rows

y) = 0;±i, s-diagonals s= 0;±2i and d-diagonal d= 0, leaving 2m empty rows,
columns and d-diagonals and 2m− 2 empty s-diagonals.

(2) Place a queen on each of 2m − 1 intersections of an empty row and an empty
d-diagonal, leaving one empty row and d-diagonal, say d= 2i.

(3) Place a queen on each of 2m− 2 intersections of an empty column and an empty
s-diagonal, leaving two empty columns, one of which is x= − i + 1 = − 6m+ 2,
say, and no empty s-diagonals.

(4) Place a queen on the intersection of the empty column x= − 6m + 2 and the
remaining empty d-diagonal d= 2i= 12m−2, i.e., on the square with coordinates
(−6m+ 2; 6m).

(5) Place a queen on the intersection of the remaining empty row and column.

Steps 2–5 can be executed in a number of ways. Step 2 is always possible since
even the shortest positive (negative, respectively) empty d-diagonal d= 4i−4 = 24m−8
(d= − 4i + 4 = − 24m + 8, respectively) intersects all the empty rows in the upper
(lower) half of the board. This follows from Lemma 1 since d= 24m−8 (d=−24m+8,
respectively) intersects the empty row y= 12m+1 (y=−12m−1, respectively) closest
to the centre in the upper (lower) half of the board in the point (−12m+ 9; 12m+ 1)
(respectively (12m− 9;−12m− 1)). Similarly, Step 3 is always possible by Lemma 1
since the shortest empty positive (negative) s -diagonal s= 12m − 4 (s= − 12m + 4)
intersects the empty column x= 5m (x= − 5m ) in the right (left) half of the board
closest to the centre (if m¿ 2) in the point 5m; 7m−4) (respectively (−5m;−7m+4)).
The coordinates of the queens in Steps 4 and 5 depend of course on the placements
in Steps 2 and 3; the coordinates chosen to execute Step 4 only serve to illustrate that
Step 4 is possible, and Step 5 is trivially possible in all cases. (Note that for Step 4,
placements on squares with coordinates diNerent from (−6m + 2; 6m), resulting from
diNerent executions of Steps 2 and 3, are illustrated in Figs. 4 and 5.)

We need 4m+ 2 queens for the procedure described in Steps 1–5. The :ve original
groups (disregarding the few queens not on the board) require 5(6m− 2) − 2(m− 1)
queens, giving a total of 32m− 6 queens.

Remark. In some cases it is possible to improve on the above procedure, because if
more than two empty lines cross at one point we need fewer queens to cover those
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lines. For example, if m= 3 we can use one fewer queen by placing queens on

(0; 0);±(34; 0);±(15; 17);±(16; 14);±(26; −34);±(27; −37);±(17; 40):

The same technique with core patterns that result in more empty lines crossing at the
same point would permit us to improve the upper bound even more.
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