The Rank of the Cartier Operator and Linear Systems on Curves

Riccardo Re

Communicated by Walter Feit
Received June 7, 1999

We find bounds for the genus of a curve over a field of characteristic p under the hypothesis that the Cartier operator of this curve has low rank and in the case where it is nilpotent. © 2001 Academic Press

1. INTRODUCTION

Let C be a smooth complete irreducible curve defined over an algebraically closed field k of characteristic $p > 0$. The Cartier operator defined in [1] is a p-linear operator acting on the sheaf Ω_C^1 of differential forms on C. It has the following properties:

1. $\mathcal{C}(\omega_1 + \omega_2) = \mathcal{C}(\omega_1) + \mathcal{C}(\omega_2)$
2. $\mathcal{C}(df) = 0$
3. $\mathcal{C}(f^p \omega) = f \mathcal{C}(\omega)$
4. $\mathcal{C}(f^{p-1} df) = df$
5. $\mathcal{C}(df/f) = df/f$

where ω_1, ω_2 (respectively f) are local sections of Ω_C^1 (respectively of \mathcal{O}_C).

This operator induces a p-linear map $\mathcal{C}: H^0(\Omega_C^1) \to H^0(\Omega_C^1)$ acting on the space of the regular differential forms. Serre duality identifies this operator with the dual to the Frobenius operator acting on $H^1(\mathcal{O}_C)$; see, e.g., [11]. Moreover, we wish to remark that the rank of the Cartier operator on a curve is equal to $g - g'$ where g is the genus of the curve and g' is the dimension of the space of locally exact regular differential forms on the curve, i.e., the regular differential forms ω such that, locally,
In characteristic p the numbers g and g' need not to be equal. The number g' is an isomorphism invariant of the curve, or more precisely of its Jacobian as an Abelian variety, which we think deserves further investigations. We refer the reader to [12] for a discussion of more general invariants of Abelian varieties in characteristic p and applications to the study of moduli spaces of polarized Abelian varieties. Finally we refer to [7] for more information on (sheaves of) locally exact differential forms on curves.

The purpose of this paper is to show that the condition that the Cartier operator has low rank, or the condition that it is nilpotent, implies strong properties on the geometry of the curve C. Indeed we will prove that the curve C cannot have arbitrary genus: if we impose the condition that the rank of the Cartier operator is small when compared to the genus, or if we impose that the Cartier operator is nilpotent, then the genus of the curve C is smaller than a certain bound depending on the rank of the Cartier operator (see Theorem 3.1), or its order of nilpotency (see Theorem 4.1). Bounds on the rank of the Cartier operator and of its powers, depending on the ramification behaviour of the canonical linear system at a point $x \in C$, were previously given by Stöhr and Viana in [9]. We are able to give unconditional bounds by showing that the hypothesis that the Cartier operator has a certain rank $m < g(C)$ implies the existence of certain base point free linear systems on the curve. This is done in Section 2. One is able to estimate the dimensions of these linear systems, and draw some bounds on the genus $g(C)$ from this information. This procedure applies for both the main results of this paper, Theorems 3.1 and 4.1. The result in Theorem 4.1 is sharp as is shown by some classical examples of curves: see Example 4.1. The result in Theorem 3.1 is almost certainly not sharp, but it is a first step toward better and possibly sharp bounds.

2. DEGENERACY OF THE CARTIER OPERATOR AND LINEAR SYSTEMS

We will prove some simple propositions which link degeneration properties of the Cartier operator of a certain curve to the existence of particular linear systems on that curve. These propositions use only the properties of the Cartier operator stated in the Introduction and are basic to all the results of this paper.

PROPOSITION 2.1. Suppose that there is a point $x \in C$ and there are integers $0 \leq n_1 < n_2 < \cdots < n_m$ such that for every i one has

$$h^0((n_i + 1)px) = h^0((n_i, p + p - 1)x)$$

(i.e., $(n_i + 1)p$ is a gap at x). Then $\text{rk}(\mathcal{O}) \geq m$.

Proof. Under the hypotheses above the Riemann–Roch theorem tells us that
\[h^0(K_C - (n_i p + p - 1)x) = 1 + h^0(K_C - (n_i + 1)px) \]
for every \(i = 1, \ldots, m \). In other words, there are global differential forms \(\omega_i \) on \(C \) such that \(\omega_i \) has multiplicity \(n_i p + p - 1 \) at \(x \) for every \(i = 1, \ldots, m \). Because of the universality of the construction of the Cartier operator (see [1]), one may compute \(\mathcal{O}(\omega_i) \) on an expansion \(\omega_i = (t^{n_i p + p - 1} + (\text{higher order terms})) dt \) with respect to a local parameter \(t \) at \(x \), and then apply the properties of the Cartier operator stated in the Introduction to get \(\mathcal{O}(\omega_i) = t^n(1 + m) dt \), where \(m \) belongs to the ideal \(\mathcal{O}_{C, x} \). Then one finds immediately that \(\mathcal{O}(\omega_1), \ldots, \mathcal{O}(\omega_m) \) are linearly independent, which concludes the proof.

We note that as a consequence of the proposition above, we have:

Corollary 2.1. If \(\text{rk}(\mathcal{O}) = m \), then \(h^0((m + 1)px) \geq 2 \) for every \(x \in C \).

We will need also a strengthened version of the preceding corollary.

Proposition 2.2. Suppose that for a curve \(C \) one has \(\text{rk}(\mathcal{O}) = m \). Then for a general effective divisor \(D \) on \(C \) with \(\deg D = m + 1 \), which we also write as \(D = x_1 + \cdots + x_{m+1} \), one has
\[h^0(pD) = 1 + h^0(pD - x_{m+1}). \]

Remark. By a general divisor of degree \(n \) we will always mean that, if we denote by \(C_n \) the \((m + 1)\)th symmetric product of the curve \(C \), there is an open subset \(U \subset C_{m+1} \), such that all the effective divisors \(D \in U \) have the stated property.

Proof. Let us consider the linear system induced by the image of the Cartier operator \(\text{Im}(\mathcal{O}) \subseteq H^0(K_C) \). This is a linear system of dimension \(m - 1 \) (empty if \(m = 0 \)); hence \(m \) general points \(x_1, \ldots, x_m \) will not be in the support of any divisor in this linear system. This implies that for any \(x_{m+1} \in C \) there is no differential form \(\omega \) which has zeros of order at least \(p \) at \(x_1, \ldots, x_m \) and a zero of order \(p - 1 \) at \(x_{m+1} \), since otherwise \(\mathcal{O}(\omega) \) would be non-zero and it would give a divisor in \(\mathbb{P}(\text{Im}(\mathcal{O})) \) which contains \(x_1, \ldots, x_m \). The non-existence of such an \(\omega \) can be rephrased by saying
\[h^0(\Omega(-px_1 - \cdots - px_m - (p - 1)x_{m+1})) \]
\[= h^0(\Omega(-px_1 - \cdots - px_m - px_{m+1})), \]
which by Riemann–Roch is equivalent to
\[h^0(px_1 + \cdots + px_{m+1}) = 1 + h^0(px_1 + \cdots + x_m + (p - 1)x_{m+1}). \]
The next proposition, similar in spirit to the preceding ones, is needed in Section 4.

Proposition 2.3. If the \(r \)-th power \(\mathcal{C}^r \) of the Cartier operator is zero, then \(h^0(p^r x) \geq 2 \) for every \(x \in C \).

Proof. Suppose that \(h^0(p^r x) = 1 \). Then, because
\[h^0(K - (p^r - 1)x) = 1 + h^0(K - p^r x) \]
(cf. Proposition 2.2), one can find a global differential form \(\omega \) which has multiplicity \(p^r - 1 \) at \(x \). But then one can easily show by induction on \(0 \leq i \leq r \) that \(\mathcal{C}^i(\omega) \) has multiplicity \(p^r - 1 \) at \(x \), by using an expansion of \(\omega \) with respect to a local parameter at \(x \). In particular one gets that the multiplicity of \(\mathcal{C}^r(\omega) \) at \(x \) is zero, which implies that \(\mathcal{C}^r(\omega) \neq 0 \), a contradiction.

So far we have shown that some degeneration hypotheses on the Cartier operator imply the existence of certain (infinite) families of linear systems on the curve, which are not expected to exist on arbitrary curves. This will be used in the next sections to get bounds on the genus of the curve. To do this we will need the following proposition on the multiplication of sections of line bundles over a curve.

Proposition 2.4. Let \(\mathcal{L}, \mathcal{M}, \mathcal{N} \) be line bundles on a curve \(C \) such that:

1. \(H^0(\mathcal{N}) \) induces a base point free linear system on \(C \).
2. \(\mathcal{L} = \mathcal{O}_C(D) \) and \(\mathcal{M} = \mathcal{O}_C(E) \), where \(D \) and \(E \) are effective divisors with disjoint supports, \(D \) non-zero.
3. There is a point \(y \in \text{Supp}(D) \) and a divisor \(F \in \mathcal{P}(H^0(\mathcal{N})) \) such that \(\mu(y) = 1 \), and \(\text{Supp}(D) \cap \text{Supp}(F) = \{ y \} \).
4. For this point \(y \) one has \(h^0(\mathcal{M}(y)) = h^0(\mathcal{M}) \).
5. \(y \) is not a base point for \(\mathcal{L} \otimes \mathcal{M} \).

Then one has
\[
h^0(\mathcal{L} \otimes \mathcal{M} \otimes \mathcal{N}) - h^0(\mathcal{M} \otimes \mathcal{N}) \geq h^0(\mathcal{L} \otimes \mathcal{M}) - h^0(\mathcal{M}) + 1. \quad (1)
\]

Proof. The divisors \(F \) and \(D \) given in the hypotheses are associated to certain global sections of \(\mathcal{N} \) and \(\mathcal{L} \), respectively, which we will denote again by \(F \) and \(D \). These global sections can be used to construct a commutative diagram, with exact rows:

\[
\begin{array}{cccc}
0 & \to & H^0(\mathcal{M}) & \xrightarrow{D} & H^0(\mathcal{L} \otimes \mathcal{M}) & \to & H^0(\mathcal{O}_D) \\
\downarrow F & & \downarrow F & & \downarrow F|_D \\
0 & \to & H^0(\mathcal{M} \otimes \mathcal{N}) & \xrightarrow{D} & H^0(\mathcal{L} \otimes \mathcal{M} \otimes \mathcal{N}) & \to & H^0(\mathcal{O}_D). \\
\end{array}
\]
The map $H^0(\mathcal{O}_D) \to H^0(\mathcal{O}_D)$ induced by the multiplication by F has cokernel equal to $H^0(\mathcal{O}_D) \cong k(y)$, because F is the equation of the reduced subscheme $\{y\}$ of D by hypothesis. On another hand the composition

$$H^0(\mathcal{L} \otimes \mathcal{M} \otimes \mathcal{N}) \to H^0(\mathcal{O}_D) \to k(y)$$

is surjective, by the property (5). The proof will be complete if we show that the map

$$H^0(\mathcal{L} \otimes \mathcal{M} / D \cdot H^0(\mathcal{M}) \to H^0(\mathcal{L} \otimes \mathcal{M} \otimes \mathcal{N}) / D \cdot H^0(\mathcal{M} \otimes \mathcal{N})$$

induced by F is injective, because the image V of this map cannot generate \mathcal{O}_D at the point y, whereas $H^0(\mathcal{L} \otimes \mathcal{M} \otimes \mathcal{N}) / D \cdot H^0(\mathcal{M} \otimes \mathcal{N})$ does. The injective of that map is proven if one shows that

$$F \cdot H^0(\mathcal{L} \otimes \mathcal{M}) \cap D \cdot H^0(\mathcal{M} \otimes \mathcal{N}) = F \cdot D \cdot H^0(\mathcal{M}).$$

The left hand side of the formula above is easily seen to be equal to $D \cdot (F - y) \cdot H^0(\mathcal{M}(y))$; hence the assertion follows by the property that $H^0(\mathcal{M}(y)) = y \cdot H^0(\mathcal{M})$.

3. A BOUND ON THE GENUS OF A CURVE WITH DEGENERATE CARTIER OPERATOR

The Hyperelliptic Case

We deal with the case of hyperelliptic curves separately, because the bound on the genus we will get in this case will actually be stronger than for a general non-hyperelliptic curve.

Proposition 3.1. Let C be an hyperelliptic curve over an algebraically closed field in characteristic $p > 0$, and suppose that the Cartier operator \mathcal{O} has rank m. Then

$$g(C) < \frac{(p + 1)}{2} + mp.$$

Proof. For $g = 1$ the bound clearly holds. Let us assume $g \geq 2$. Let us consider the case $p \geq 3$ first, and let us suppose that $g \geq \frac{(p + 1)}{2} + mp$. Let x be a ramification point of the g_{1}^{1} on C so that $L = \mathcal{O}_{C}(2x)$ is the line bundle giving the g_{1}^{1}. Since $p > 2$ we will have

$$\Omega_{C}(-(2kp + (p - 1))x) \equiv L^{k+1} \otimes L^{-(p-1)/2-kp} = L^{n},$$

where $n = g - 1 - (p - 1)/2 - kp \geq 0$, for any $k \leq m$. Then $\Omega_{C}(-(2kp + (p - 1))x)$ has no base points, which implies that

$$h^{0}\Omega_{C}(-(2kp + (p - 1))x) > h^{0}\Omega_{C}(-(2k + 1)p_{x}).$$
Hence there is a differential form \(\omega \) vanishing in \(x \) with order \(2kp + p - 1 \), for any \(0 \leq k \leq m \). From Proposition 2.1, one finds that \(\text{rk}(\mathcal{C}) \geq m + 1 \), a contradiction. If \(p = 2 \) we will consider instead \(x_1, \ldots, x_{m+1} \) generic points of \(C \). Since \(\Omega_C = L^{n-1} \) we see that if \(g - 1 \geq 2m + 1 \) then for any \(1 \leq i \leq m + 1 \) there is a section of \(\Omega_C \) with double zero at \(x_{i-1} \) and a simple zero at \(x_i \). But then, as in the proof of Proposition 2.2 one sees that \(\text{rk}(\mathcal{C}) \geq m + 1 \). Hence \(g \leq 2m + 1 \).

The Non-hyperelliptic Case

We will now assume that \(C \) is a non-hyperelliptic curve such that \(\text{rk}(\mathcal{C}) = m \). Then by Proposition 2.2 we know that \(h^0(pD_{m+1}) \geq 2 \) for a general effective divisor \(D_{m+1} \) of degree \(m + 1 \) on \(C \), and moreover the linear system \(|pD_{m+1}| \) will not have base points. From this fact we will draw the following bound on the genus of \(C \):

\[\text{THEOREM 3.1.} \quad \text{If a smooth complete curve \(C \) of genus \(g \) defined over a field of characteristic \(p \) > 0 has Cartier operator of rank \(m \) < \(g \), then the following bound on the genus of \(C \) holds:} \]

\[g \leq (m + 1) \frac{p(p - 1)}{2} + pm. \]

The proof will be split in some lemmas which will enable us to estimate \(g = h^0(\Omega_C) \) by estimating differences of the form \(h^0(\Omega_C(-pD)) - h^0(\Omega_C(-pD_{m+1})) \) for general divisors \(D, D_{m+1} \). By Riemann–Roch this is equivalent to estimating the differences of the form \(h^0(pD + px) - h^0(pD) \). We do this in the following lemmas.

\[\text{LEMMA 3.1.} \quad \text{If} \ x \ \text{and} \ y \ \text{are general points and} \ D \ \text{is a divisor on} \ C, \ \text{then} \]

\[h^0(pD + px + py) - h^0(pD + px) \geq h^0(pD + px) - h^0(pD). \]

\[\text{Proof.} \quad \text{There is an exact sequence (see [6, Chap. IV, Sect. 5])} \]

\[0 \to \mathcal{O}_C \to \mathcal{O}_C(px) \oplus \mathcal{O}_C(py) \to \mathcal{O}_C(px + py) \to 0, \]

where, if we denote by \(\sigma \) (resp. \(\tau \)) a section of \(\mathcal{O}_C(px) \) (resp. \(\mathcal{O}_C(py) \)) whose associated divisor is \(px \) (resp. \(py \)), then the first non-zero map is \(f \to (f \sigma, f \tau) \) and the second one is the map \((a, b) \to a \tau - b \sigma \). After tensoring by \(\mathcal{O}_C(pD) \) and taking the global sections one immediately gets

\[h^0(pD + px + py) - h^0(pD + px) \geq h^0(pD + px) - h^0(pD). \]

The proof is then complete when one observes that \(h^0(pD + py) = h^0(pD + px) \) because of the genericity of \(x \) and \(y \).
Remark 3.1. If for a sufficiently general divisor D of degree n the linear system $|pD|$ is base-point-free, then the same holds for $|pD + px|$, where x is a general point. This is because the role of x and any of the points in $\text{Supp}(D)$ may be exchanged, by the genericity assumptions. In particular, if $\text{rk}(\mathcal{O}) = m$ then $|pD|$ is base-point-free for every generic D such that $\text{deg}(D) \geq m + 1$.

Now we will see that in certain cases the result of Lemma 3.1 can be strengthened.

Lemma 3.2. Let $m = \text{rk}(\mathcal{O}) < g$ as above, and let E be a divisor on C. Then either E is non-special and one has

$$h^0(E + py) - h^0(E) = p$$

for any $n \geq 0$, or E is special and there exists an integer $1 \leq k \leq m + 1$ such that for general points y, z_1, \ldots, z_k in C, one has

$$h^0(E + py + p(z_1 + \cdots + z_k)) - h^0(E + p(z_1 + \cdots + z_k)) \\
\geq h^0(E + p(z_1 + \cdots + z_{k-1} + z_k)) - h^0(E + p(z_1 + \cdots + z_{k-1})) + 1.$$

Proof. The assertion in the case where E is non-special is clear by Riemann–Roch. Let us now assume that E is special and

$$h^0\left(E + py + \sum_{i=1}^{k} p(z_i)\right) - h^0\left(E + p \sum_{i=1}^{k} z_i\right) \\
= h^0\left(E + p \sum_{i=1}^{k} z_i\right) - h^0\left(E + p \sum_{i=1}^{k-1} z_i\right)$$

for every $k = 1, \ldots, m + 1$. But then

$$h^0\left(E + py + \sum_{i=1}^{m+1} p(z_i)\right) - h^0\left(E + p \sum_{i=1}^{m+1} z_i\right) = h^0(E + py) - h^0(E) \quad (2)$$

by using recursion on k and by the generality of y and the z_i’s.

We set $\mathcal{L} = \mathcal{O}_C(py)$, $\mathcal{M} = \mathcal{O}_C(E)$, and $\mathcal{N} = \mathcal{O}_C(\sum_{i=1}^{m+1} p(z_i))$ and proceed to verify the hypotheses (1)–(5) of Proposition 2.4 in this case. The assumptions (1), (2) are easy consequences of the generality assumption on y, z_i and Remark 3.1 above. (3) clearly holds if the map induced by the base-point-free line bundle \mathcal{N} is separable, since the statement in (3) is equivalent to saying that this map is smooth at y. If this map were inseparable, then we would find that $\dim|z_1 + \cdots + z_{m+1}| \geq 1$, which is impossible for $g > 0$ and z_1, \ldots, z_{m+1} general points, since a general
effective divisor of degree less or equal than \(g \) cannot move. (4) follows if
\(y \) is taken as a non-base-point of \(|K_G - E| \), which is certainly possible
since this linear system is non-empty. (5) follows because \(\mathcal{I} \otimes \mathcal{N} \) is
base-point-free by Remark 3.1 and \(y \) may also avoid any base point of \(\mathcal{M} \).

Now Proposition 2.4 gives us the inequality
\[
h^0 \left(E + py + \sum_{i=1}^{m+1} p_i z_i \right) - h^0 \left(E + \sum_{i=1}^{m+1} p_i z_i \right) = h^0 (E + py) - h^0 (E) + 1
\]
which contradicts (2).

We state a numerical consequence of Lemma 3.2.

Corollary 3.1. Under the same hypotheses as above, let us denote by \(D \)
a general divisor of degree \(k \). Then for any \(n \geq 1 \), one has:

1. \(p \geq h^0 (pD_{n(m+1)}) - h^0 (pD_{n(m+1)-1}) \geq \min(n, p) \).
2. \(pD_{(p-1)(m+1)+m} \) is non-special; i.e., \(h^0 (K_G - pD_{(p-1)(m+1)+m}) = 0 \).
3. For \(1 \leq n \leq p \) one has
 \[
h^0 (pD_{n(m+1)-1}) - h^0 (pD_{(n-1)(m+1)}) \geq (n-1)m.
\]
4. For \(1 \leq n \leq p \) one has
 \[
h^0 (pD_{n(m+1)}) - h^0 (pD_{(n-1)(m+1)}) \geq (n-1)m + n.
\]
5. \(h^0 (K_G - pD_{n-1(m+1)}) - h^0 (K_G - pD_{n(m+1)}) \leq (p-n)(m+1) + m \), for any \(1 \leq n \leq p \).
6. \(h^0 (K_G - pD_{(p-1)(m+1)}) \leq m \).

Proof. (1) First note that the inequality
\[
p \geq h^0 (pD_{n(m+1)}) - h^0 (pD_{n(m+1)-1})
\]
is obvious. We will prove the other inequality by induction on \(n \). For \(n = 1 \), from the fact that \(|D| \) has no base points, it is clear that
\[
h^0 (pD_{n+1}) \geq 1 + h^0 (pD_n).
\]
Suppose the assertion holds for \(n-1 \) and let us prove it for \(n \). We apply Lemma 3.2 with \(E = pD_{n-1(m+1)-1} \). If this
divisor is non-special then \(h^0 (pD_{n(m+1)}) - h^0 (pD_{n(m+1)-1}) = p \). If not,
then Lemma 3.2 implies
\[
h^0 (pD_{n(m+1)}) - h^0 (pD_{n(m+1)-1})
\geq 1 + h^0 (pD_{(n-1)(m+1)}) - h^0 (pD_{(n-1)(m+1)-1}),
\]
but by the inductive hypothesis the right hand side is greater or equal than n, whence the conclusion follows.

(2) By (1) one has

$$h^0(pD_{p(m + 1)}) - h^0(pD_{p(m + 1) - 1}) \geq p,$$

which implies that

$$h^0(K_C - pD_{(p - 1)(m + 1) + m}) = h^0(K_C - pD_{p(m + 1)})$$

by Riemann–Roch. This means that py is in the base locus of $H^0(K_C - pD_{(p - 1)(m + 1) + m})$ for any generic $y \in C$. This can only happen when $H^0(K_C - pD_{(p - 1)(m + 1) + m}) = 0$.

(3) The step $n = 1$ is clear. If we suppose the assertion true for $n - 1$, the inductive step follows from the inequalities

$$h^0(pD_{m(m + 1) - 1}) - h^0(pD_{(n - 1)(m + 1)}) \geq m(h^0(pD_{(n - 1)(m + 1)}) - h^0(pD_{(n - 1)(n(m + 1) - 1)})],$$

due to Lemma 3.1, and

$$h^0(pD_{(n - 1)(m + 1)}) - h^0(pD_{(n - 1)(m + 1) - 1}) \geq \min(n - 1, p) = n - 1,$$

due to (1).

(4) is clear by (1) and (3).

(5) follows from (4) by Riemann–Roch.

(6) One has

$$h^0(pD_{p(m + 1) - 1}) - h^0(pD_{(p - 1)(m + 1)}) \geq m(p - 1)$$

in view of (2). By Riemann–Roch and the fact that

$$h^0(\Omega_C(-pD_{(p - 1)(m + 1) + m})) = 0$$

we can calculate

$$h^0(K_C - pD_{(p - 1)(m + 1)})$$

$$= h^0(pD_{(p - 1)(m + 1)}) - p(p - 1)(m + 1) + g - 1$$

$$\leq h^0(pD_{(p(m + 1) - 1)}) - m(p - 1) - p(p - 1)(m + 1) + g - 1$$

$$= h^0(pD_{(p - 1)(m + 1) + m}) - p(p - 1)(m + 1) - mp + g - 1 + m$$

$$= h^0(K_C - pD_{(p - 1)(m + 1) + m}) + m$$

$$= m.$$
Proof of Theorem 3.1. By Corollary 3.1 above and properties (5) and (6), one may compute

\[
g = h^0(K_C) \\
= h^0(K_C - pD_{(p-1)(m+1)}) \\
+ \sum_{n=1}^{p-1} \left(h^0(K_C - pD_{(p-1)(m+1)}) - h^0(K_C - pD_{n(m+1)}) \right) \\
\leq m + \sum_{n=1}^{p-1} ((p-n)(m+1) + m) \\
= pm + (m+1)p(p-1)/2.
\]

We wish to remark that the result in Theorem 3.1 is certainly sharp only in the case \(m = 0 \) which is also a particular case of Theorem 4.1 in the next section, and for which one has Example 4.1. In the other cases the result is almost certainly not a sharp one. One may get slight improvements pushing a bit further the techniques used here, but we expect to have in general a bound of the form

\[
g(C) \leq mp + f(p) \quad \text{where } m = \text{rk}(\mathcal{C}),
\]

for which our techniques seems to be insufficient.

4. THE CASE OF A NILPOTENT CARTIER OPERATOR

In this section we apply the same techniques introduced in the preceding sections to get the following result:

THEOREM 4.1. Let \(C \) be a curve defined over an algebraically closed field of characteristic \(p \) with Cartier operator \(\mathcal{C} \) such that

\[
\mathcal{C}^r = 0 \quad \text{for some } r \geq 1.
\]

Then one has

\[
g(C) \leq q(q-1)/2 \quad \text{where } q = p'.
\]

This result is sharp, as shown by Example 4.1 below, and we think it may be of some interest to the arithmetic theory of function fields. We refer the reader to [2, Sect. 2] for a comparison with the connected theory of supersingular curves and more generally of the action of the Frobenius
homomorphism on certain cohomology spaces of Jacobians and Abelian varieties, topics which we do not discuss here. We begin by recalling that, by Proposition 2.3, we have for a generic point $x \in C$

$$h^0(qx) \geq 2,$$

and, moreover the linear system $|qx|$ is without base points. For a proof of Theorem 4.1 it will be sufficient to assume that $q = p^r$ is the minimum power of p such that dim$|qx| \geq 1$ (and is without base points), for a generic $x \in C$. A simple consequence of Proposition 2.4 will be the following:

Lemma 4.1. If D is a generic divisor of degree $n \geq 0$ in C, and if x and y are generic points, then either qD is non-special, or

$$h^0(qD + qx + qy) - h^0(qD + qx) \geq h^0(qD + qx) - h^0(qD) + 1.$$

Proof. Since $h^0(qD + qx) = h^0(qD + qy)$ because of the genericity of x and y, we may rewrite our assertion as

$$h^0(qD + qx + qy) - h^0(qD + qx) \geq h^0(qD + qy) - h^0(qD) + 1.$$

This certainly holds if qD is non-special, as a consequence of the Riemann–Roch theorem. Let us then assume that qD is special. We set $\mathcal{L} = \mathcal{O}_C(qy)$, $\mathcal{M} = \mathcal{O}_C(qD)$, and $\mathcal{N} = \mathcal{O}_C(qx)$ and verify by hypotheses of Proposition 2.4 in this case. The property (1) has already been observed before. The property (2) is clear. To prove (3) we need to know that the linear system $|qx|$ does not give an inseparable map from C to some projective space, since, in this case, we may take y to be a point over which this map is smooth, and find the divisor F such that $\mu_y(F) = 1$ as required in Proposition 2.4. If the map associated to $|qx|$ were inseparable, then we would have dim$|p^{r-1}x| \geq 1$. But this contradicts the minimality of q with respect to the property dim$|qx| \geq 1$. This proves (3). The property (4) follows from the speciality of qD since it is equivalent to assert that y is not a base point of $|K_C - qD|$. Finally (5) holds because $|qD + qx + qy|$ is without base points, containing the sum of linear systems without base points.

Proof of Theorem 4.1. By a repeated application of Lemma 4.1 we find that

$$h^0(qx_1 + \cdots + qx_{i+1}) - h^0(qx_1 + \cdots + qx_i) \geq \min(i + 1, q)$$

for every $i \geq 0$,
for generic x_1, \ldots, x_{i+1}. Using Riemann–Roch, this is seen to be equivalent to

$$h^0(K_c - qx_1 - \cdots - qx) - h^0(K_c - qx_1 - \cdots -qx_{i+1}) \leq \max(0, q - i - 1).$$

(3)

In particular it follows that $h^0(K_c - qx_1 - \cdots - qx_{q-1}) = 0$, since otherwise for every generic $x \in C$ we would have qx in the base locus of $|K_c - qx_1 - \cdots -qx_{q-1}|$, which is impossible. We now estimate the genus $g(C)$ by the flag of vector spaces

$$H^0(K_c) \supset H^0(K_c - qx_1) \supset \cdots \supset H^0(K_c - qx_1 - \cdots -qx_{q-1}) = 0.$$

By (3) we will have

$$g(C) \leq (q - 1) + (q - 2) + \cdots + 1 = q(q - 1)/2.$$

Example 4.1. The curve C with affine equation

$$y^q + y = x^{q+1} \quad q = p^r$$

has genus $g(C) = q(q - 1)/2$ and Cartier operator such that $\mathcal{O}' = 0$.

This class of curves is indeed well known; see for example [8] for a characterization of them by their arithmetical properties. The genus formula follows because they are completed to smooth projective plane curves. On the other hand, one knows that the eigenvalues of the Frobenius acting on the Tate module T_c of the Jacobian of C acts as the multiplication by $-q$; see [8, p. 186]. Then one may apply [2, Proposition 1.2, p. 166] to conclude that the Frobenius F acting on $H^1(J(C), \mathcal{O}_JC)$ satisfies $F' = 0$. Finally, since the Cartier operator acting on $H^0(K_c)$ and the Frobenius acting on $H^1(C, \mathcal{O}_C)$ are dual to each other by the Serre duality (see [1]), one gets also $\mathcal{O}' = 0$.

Acknowledgments

This article was written during my visit at the University of Amsterdam, during the academic year 1997–98. I thank Professor Gerard van der Geer for having proposed to me the topic studied in this article, and for his warm hospitality at the University of Amsterdam. I also thank M. Baker, M. Boguslavski, G. Farkas, and V. Shabat for many stimulating discussions.
REFERENCES