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T. Gneiting (1998, J. Multivariate Analysis 64, 131�147) proved a relation
between the primitives of the classes 8d (2) and 8d (1) of 2- and 1-symmetric
characteristic functions on Rd, respectively. We will give a straightforward proof of
his relation, answering a question of his. To do this we use the calculus of
generalized hypergeometric functions. � 2000 Academic Press
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1. INTRODUCTION

The characteristic function of a d-dimensional distribution is called
:-symmetric, :>0, if it can be written in the form

.(( |v1|:+ } } } +|vd |:)1�:), v=(v1 , ..., vd) # Rd, (1)

where . # C(R� +). The set of all these functions will be denoted by 8d (:).
Functions of type (1) are called radial with respect to the l: -norm, or

:-radial for short. Due to Bochner's famous theorem :-symmetric charac-
teristic functions can be interpreted as positive definite :-radial functions.

A basic notion in this context is the so-called scale mixture of a function
f on Rd, i.e., a function g on Rd for which there exists a distribution
function G on R� + such that

g(x)=|
�

0
f (x{) dG({), x # Rd.

The classes we are interested in consist of all functions which can be
represented as scale mixtures of a specific function, which we will call the
primitive generating the class.
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In 1938 Schoenberg [9] characterized the class 8d (2) as the set of all
scale mixtures of the function 0d ; i.e., as the set of all . satisfying

.(t)=|
�

0
0d (tu) dF(u), t # R+ , (2)

where the primitive 0d is defined by

0d (u)=1 \d
2+\

u
2+

&(d&2)�2

J(d&2)�2(u), u # R+ . (3)

J&(u) is the Bessel function of the first kind of order &, & # R.
For the class 8d (1), Cambanis et al. [4] gave a similar characterization:

a function . is an element of 8d (1) if and only if . can be expressed in the
form

.(t)=|
�

0
|d (tu) dF(u), t # R+ , (4)

F, again, being a distribution function on R� + . The primitive of the class
8d (1) is given as a Hankel transform by

|d (u)=
2d�21 2 \d

2+
1 \1

2+ 1 \d&1
2 +

u&(d&2)�2 |
�

1
({2&1)(d&3)�2{&(3d&4)�2

_J(d&2)�2(u{) d{, u # R+ . (5)

In this connection, Gneiting [5] recently proved an interesting relation
between the two primitives.

Theorem (Gneiting). For the primitive |d of the class 8d (1) and the
primitive 02d&1 of the class 82d&1(2) we have

|d (t)=
1 2 \d

2+
1 \1

2+ 1 \2d&1
2 +

I d&102d&1(t), t # R+ , (6)

where If (t)=��
t f (u) du, t # R+ , defined for all functions f: R� + � R for

which If (0) exists.
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Gneiting proved the theorem by using arguments similar to those of
Cambanis. His proof seems to hide the simple structure of the relation (6).
Therefore, Gneiting himself asked in [6] on page 24 for a more direct
verification just using integration and�or differentiation arguments.

In [2] Berens and the current author gave a representation of the
primitives of both classes in terms of generalized hypergeometric functions.
The advantage of using special functions lies in the fact that there is a
powerful calculus available to handle operations like integration and dif-
ferentiation, as well as integral transforms. We want to use this calculus to
give a straightforward proof of the theorem.

2. SOME SPECIAL FUNCTION THEORY

In connection with summability of the inverse Fourier integral on Rd,
Berens and Xu [1] reestablished among others Cambanis' characterization
of 8d (1) (cf. [4, Theorem 3.1]); except for the factor 2d1 2(d�2) they iden-
tified the primitive |d as the Fourier integral of the (d&1)st B-spline
Md&1(u | x2

1 , ..., x2
d), where x=(x1 , ..., xd) is a point in Rd and u is a

parameter in R+ . To be precise, independent of Cambanis they proved

Md&1(u | ( } )2
1 , ..., ( } )2

d)7 (v)=
(- u)d&2

1 \1
2+ 1 2 \d

2+
|d (- u |v|1), v # Rd. (7)

In [2] the authors picked up the paper [1] and reformulated and reproved
the basic results using the calculus of generalized hypergeometric functions.
Indeed, the primitives 0d and |d can be represented as pFq -symbols. We
postpone a detailed discussion of formula (7) for the appendix, since it is
not of immediate relevance for the understanding of the following proof.

Using the Pochhammer symbol (a)&=a } (a+1) } } } (a+&&1), & # N,
(a)0 :=1, a # C, the pFq -functions are defined for some non-negative
integers p and q as

pFq _a1 , ..., ap

b1 , ..., bq } z&= :
�

k=0

(a1)k } } } (ap)k

(b1)k } } } (bq)k
}
zk

k!
, z # C,

where p denotes the number of numerator parameters and q the number of
denominator parameters; both groups of parameters can be chosen in the
complex plane. In this context the notion symbol is used if the hyper-
geometric series is handled in a formal sense. For a general treatment of the
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theory, especially for questions of convergence, asymptotic behavior, etc.,
the reader is referred to the book by Luke [7].

One example, which will be needed in the following proof, is given by

J&(z)=
\z

2+
&

1(&+1) 0F1 \&+1 } &
z2

4 + (8)

[7, Eq. 6.2.7(1)].
To verify Eq. (6) we need two more formulae. The n th derivative of the

symbol p Fq is again a hypergeometric pFq -series (cf. [7, 3.4.(1)]) and is
given by

d n

dzn p Fq _a1 , ..., ap

b1 , ..., bq } z&
=

(a1)n } } } (ap)n

(b1)n } } } (bq)n
pFq _a1+n, ..., ap+n

b1+n, ..., bq+n } z& . (9)

A second formula gives the derivative of a product of a pFq -symbol and a
power of the argument (cf. [7, 3.4(2)]):

d n

dzn {z$
pFq _a1 , ..., ap

b1 , ..., bq } z&=
=($&n+1)n z$&n

p+1Fq+1 _$+1, a1 , ..., ap

$+1&n, b1 , ..., bq } z& . (10)

Finally, we need the representation of the primitive |d in terms of hyper-
geometric functions as given in [2]

|d (!)= 1 F2 _
&

d&2
2

1
2

,
d
2 } &!2

4 &
&

1 2 \d
2+

1 \d+1
2 + 1 \d&1

2 +
! } 1 F2 _

&
d&3

2
3
2

,
d+1

2 } &
!2

4 & , ! # R+ . (11)
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3. PROOF OF THE THEOREM

As stated in [5] the operator I can be inverted using differentiation.
Instead of Eq. (6) we will therefore verify the equivalent statement

02d&1(t)=(&1)d&1

1 \1
2+ 1 \2d&1

2 +
1 2 \d

2+
|(d&1)

d (t), t # R+ . (12)

One of the two terms in (11) is a polynomial of degree d&2; for d even it's
the first term, for d odd it's the second one. The (d&1)th derivative of the
polynomial term therefore vanishes.

Let us first consider the case when d is odd. Just for brevity we will use
the notation

h(!)= 1F2 _
&

d&2
2

1
2

,
d
2 } &

!2

4 &
for the nonpolynomial term of the function |d . The case d=1 is quickly
verified and omitted. For d>1 formula (9) gives

d
d!

h(!)=
d&2

d
} 2(&1) i } \&

!2

4 +
1�2

} 1F2 _
&

d&2
2

+1

3
2

,
d
2

+1 } &
!2

4 & ,

i being the complex unit. Using (10) we continue differentiating to get

d 2

d!2 h(!)=
d&2

d \!
2+

&1 !
2

} 1 F2 _
&

d&2
2

+1

1
2

,
d
2

+1 } &
!2

4 & .

We remark that the resulting series has a numerator and a denominator
parameter in common. The series therefore reduces in order to the above
1F2 -function.
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In the next step we use (9) again and continue differentiating. Let us
remark that in each odd step the derivative of the argument [&( } )2�4] of
the hypergeometric function yields the complex factor which is needed to
use formula (10). The negative sign is obtained by inserting the complex
unit; this factor vanishes again in the even steps. Because of d being odd,
differentiation ends in an even step, which yields, after another reduction of
order,

\ d
d!+

d&1

h(!)=C } 1 F2 _
&

d&2
2

+
d&1

2
1
2

,
d
2

+
d&1

2 } &
!2

4 &
=C } 0F1 _d&

1
2 } &

!2

4 & , ! # R+ ,

where C denotes a constant which will be determined in the following
paragraph. Setting &=d& 3

2 in the representation (8) of the Bessel function,
the 0F1 -series turns out to be the function 02d&1 .

It remains to take a closer look at the constant C. After d&1 differentia-
tions we have

C=
(d&2)(d&4) } } } (d&(d&1))

d } (d+2) } } } (d+(d&3))
=

2(d&1)�21 \d
2+ } 1 \d

2+
1 \1

2+ } 2(d&1)�21 \2d&1
2 +

.

Observing that (&1)d&1=1, C will be the right constant in (12).
The case of d being even is done analogously. Using both differentiation

formulae alternatively, the derivatives can again be expressed in terms of
hypergeometric functions. Abbreviating again the nonpolynomial term of
the function |d by

h(!)=
(&1) 1 2 \d

2+
1 \d+1

2 + 1 \d&1
2 +

! } 1F2 _
&

d&3
2

3
2

,
d+1

2 } &
!2

4 & ,
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we get

\ d
d!+

d&1

h(!)

=C }
(&1) 1 2 \d

2+
1 \d+1

2 + 1 \d&1
2 +

1F2 _
&

d&3
2

+
d&2

2
1
2

,
d+1

2
+

d&2
2 } &

!2

4 & , ! # R+ .

Reduction of order then yields the function 02d&1 . Here, the constant C
has the form

C=
(d&3)(d&5) } } } (d&(d&2)&1)
(d+1)(d+3) } } } (d+(d&2)&1)

=
2(d&2)�21 \d&1

2 + } 1 \d+1
2 +

1 \1
2+ } 2(d&2)�21 \2d&1

2 +
.

Since (&1)d&1=&1, this too leads to the constant in formula (12). K

APPENDIX

The Fourier transform f� of a function f in L(Rd) is defined as f� (v)=
1�(2?)d } �Rd e&iv } xf (x) dx, v # Rd. Starting with a function . in C0(R� +), we
want to study nonnegative functions f # L(Rd), the Fourier transform of
which are positive definite and :-radial; i.e., f� (v)=.(( |v1|:+ } } } +
|vd |:)1�:)=.( |v| :), v # Rd.

Following Richards [8] we get

f (x)=|
�

0
.(\) E (:)

\; d (x) d\, x # Rd, (13)

where the kernel E (:)
\; d (x) is defined as

E (:)
\; d (x)=\d&1 |

|v|:=1
ei\x } v|(v),

|(v)= :
d

j=1

(&1) j&1 vj dv1 } } } dvj&1 dvj+1 } } } dvd .

Note that Richards called the kernels E (:)
\; d generalized Bessel functions.
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At the first glance, the representation (13) is just a formal one, but for
:=2 we get the well-known representation

E (2)
\; d (x)=(- 2?)d |x| &(d&2)�2

2 \d�2J(d&2)�2( |x| 2 \), (14)

while for :=1

E (1)
\; d (x)=[x2

1 , ..., x2
d] H\; d ( } ). (15)

The function H\; d is defined as

H\; d (u)=(&1)[(d&1)�2] 2d(- u)d&1 {sin \ - u,
cos \ - u,

for d even,
for d odd,

u # R+ .

The representation (15) for :=1 was given by Berens and Xu [1], while
formula (14) goes back to Schoenberg [9].

Using the formula of Curry and Schoenberg for the n th divided dif-
ference of a sufficiently smooth function g on R with knots x0 , ..., xn , n # N,
not all equal, i.e.,

[x0 , ..., xn] g=|
R

g(n)(u) Mn(u | x0 , ..., xn) du, (16)

we get a second representation of the kernel E (1)
\; d which enables us to hide

the multidimensional structure of E\; d into the B-spline kernel,

E (1)
\; d (x)=|

�

0
H (d&1)

\; d (u) Md&1(u | x2
1 , ..., x2

d) du, x # Rd.

Compare this with formula (3.6) of [4].
The B-spline of order n, n # N, with knots x0 , ..., xn on R hereby is

defined as

Mn(u | x0 , ..., xn)=[x0 , ..., xn] {( } &u)n&1
+

(n&1)! = , u # R,

where (u)+=u, for u>0, and is 0 otherwise. The spline vanishes outside
the largest interval spanned by the knots, is strictly positive inside the
interval, and satisfies �R Mn(u | x0 , ..., xn) du=1�n !. Note that formula (16)
can also be seen as a definition of the B-spline; cf. deBoor's survey [3] for
details.
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To simplify notation the authors of [1] introduced the functions

Hd (u)=(&1)[(d&1)�2] ud&1 {sin u,
cos u,

for d even,
for d odd,

and

hd (u)=\1
u

d
du+

d&1

Hd (u).

Then

H\; d (u)=
2d

\d&1 Hd (\ - u) and H (d&1)
\; d (u)=2\d&1hd (\ - u).

An obvious transformation of variables then gives

f (x)=|
�

0
�(- u) Md&1(u | x2

1 , ..., x2
d) du, x # Rd, (17)

where

�(u)=2 |
�

0
\d&1.(\) hd (u\) d\, u # R+ . (18)

In [2] the authors studied the integral transform (18) from the point of
view of special functions. They derived a representation of the kernel hd in
terms of generalized hypergeometric functions and determined the kernel,
say md , of the inverse transform

.(\)=2 |
�

0
ud&1�(u) md (\u) du, \ # R+ .

Formally taking the Fourier transform on both sides of Eq. (17) and
changing the order of integration yields (7); i.e.,

.( |v|1)=|
�

0
�(- u) \ 1

(2?)d |
Rd

e&iv } xMd&1(u | x2
1 , ..., x2

d) dx+ du,

v # Rd;

see [1] and [2] for details.
For :=2 the situation is more transparent. The reason lies in the fact

that the Fourier transform of a 2-radial function is itself 2-radial and vice
versa. This is not the case for 1-radial functions, as is shown above. Using
0d (\ |x| 2) instead of E (2)

\; d (x), (13) reduces to the classical Fourier�Bessel
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transform which is self-inverse. To separate the one-dimensional radial part
from the multidimensional component we just have to observe that

f (x)=
2?d�2

1 \d
2+

|
�

0
\d&1.(\) 0d ( |x|2 \) d\, x # Rd.

It follows that the transform (17) reduces to the identification f (x)=
�( |x|2), x # Rd.

Theorem 3.1 of Cambanis et al. [4] has three equivalent formulations,
one in terms of characteristic functions, a second giving a statistical inter-
pretation, and a third using distribution functions. Their central technical
lemma (Proposition 3.1) and its proof are purely statistical, but whenever
they deal with characteristic functions and�or distribution functions their
arguments and the one of Berens and Xu [1] are quite similar.
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