On $q^2/4$-sets of type $(0, q/4, q/2)$ in projective planes of order $q \equiv 0 \pmod{4}$

A. Maschietti and G. Migliori

Dipartimento di Matematica, Università 'La Sapienza', P.le A. Moro, 00185, Roma, Italy

Received 1 August 1991
Revised 14 November 1991

Abstract

In this paper we investigate $q^2/4$-sets of type $(0, q/4, q/2)$ in projective planes of order $q \equiv 0 \pmod{4}$. These sets arise in the investigation of regular triples with respect to a hyperoval. Combinatorial properties of these sets are given and examples in Desarguesian projective planes are constructed.

1. Introduction

The aim of this paper is to study $q^2/4$-sets of type $(0, q/4, q/2)$ in projective planes whose order is divisible by four. These sets arise in the investigation of regular triples with respect to a hyperoval.

If Ω is a hyperoval of a projective plane of order q, Π_q (i.e. Ω is a set of $q + 2$ points no three of which are collinear), then a nonordered triple $\{X, Y, Z\}$ of distinct points not in Ω is said to be regular with respect to Ω if there is no point P of Π_q such that the lines PX, PY and PZ are exterior (see [2]).

If we define, for every point P not in Ω,

$$E(P) = \{Q \in \Pi_q \mid Q \neq P \text{ and the line } PQ \text{ is exterior to } \Omega\},$$

then the triple $\{X, Y, Z\}$ is regular if and only if $E(X) \cap E(Y) \cap E(Z) = \emptyset$.

In [2, Theorem 1.2] is proved that the existence of a regular triple implies that of $q^2/4$-sets W of type $(0, q/4, q/2)$, namely, the sets $E(X) \cap E(Y)$, $E(X) \cap E(Z)$, $E(Y) \cap E(Z)$. Hence, the order q of the plane must be divisible by four. Furthermore, if $\{X, Y, Z\}$ is regular, then X, Y and Z are on the same secant line, ℓ of Ω [3] and if W is...
one of the $q^2/4$-sets determined by \{X, Y, Z\}, then X, Y and Z are the unique points of
\ell on which there are 0-secant and $q/2$-secant lines of W.

An interesting problem is, in our opinion, to prove the converse.

Problem. Given a $q^2/4$-set of type $(0, q/4, q/2)$, are there three collinear points on
which there are only 0-secant and $q/2$-secant lines of W?

A partial answer to the problem is Proposition 1.1: if there exists a $q^2/4$-set W
of type $(0, q/4, q/2)$, then there are at most three collinear points, on which
there are only 0-secant and $q/2$-secant lines of W. This is proved using only
combinatorial methods.

Sections 2 and 3 are devoted to the construction of $q^2/4$-sets of type $(0, q/4, q/2)$.
In $PG(2, q)$, such sets always exist (Theorems 2.1 and 3.1) and are at least of
two different types. One type of these $q^2/4$-sets gives examples not related to
regular triples with respect to a complete conic (i.e. a conic plus its nucleus). The
sets of the other type result from the union of $q/4$ irreducible conics pairwise tangent
at the same point O and having the same nucleus, N, minus the common points O
and arise from regular triples with respect to a complete conic. In every case, for
such sets there exist three collinear points, on which there are only 0-secant or
$q/2$-secant lines.

2. Preliminaries

Let Π_q be a projective plane of order q. A c-set \mathcal{C} is a subset of c
distinct points of Π_q. The character of index s of \mathcal{C} is the number t_s of lines of Π_q
meeting \mathcal{C} in exactly s distinct points, $0 \leq s \leq q + 1$. A line ℓ meeting \mathcal{C} in s
points is said to be an s-secant line.

We say that \mathcal{C} is of class $[m_1, m_2, \ldots, m_d]$ if $t_m = 0$ for every $m \notin \{m_1, \ldots, m_d\}$,
where m_1, \ldots, m_d are integers such that $0 \leq m_1 < m_2 < \cdots < m_d \leq q + 1$. \mathcal{C} is said to be of type
(m_1, m_2, \ldots, m_d) when it is of class $[m_1, m_2, \ldots, m_d]$ and $t_{m_j} \neq 0$ for every $j = 1, 2, \ldots, d$.

For a c-set the following character equations hold:

$$
\sum_{s=0}^{q+1} \binom{s}{i} t_s = \lambda_i \binom{c}{i}, \quad i = 0, 1, 2, (1.1)
$$

where $\lambda_0 = q^2 + q + 1$, $\lambda_1 = q + 1$, $\lambda_2 = 1$ (for a general reference, see [1, 5, 6]).

From now on we assume that Π_q is a projective plane of order $q \equiv 0 \pmod{4}$ and that
W is a $q^2/4$-set of type $(0, q/4, q/2)$. For such a set the characters are

$$
t_0 = \frac{3q}{2} + 1, \quad t_{q/4} = q(q - 2), \quad t_{q/2} = \frac{3q}{2}. (1.2)
$$
Furthermore, if \(v_s(P) \) denotes the number of \(s \)-secant lines on a point \(P \not\in W \) and \(v_s(P) \) the number of \(s \)-secant lines on a point \(P \in W \), then

\[
\begin{align*}
 v_0 &= 0, & v_{q/4} &= q - 2, & v_{q/2} &= 3, \\
 u_0 &= u_{q/2} + 1, & u_{q/4} &= q - 2u_{q/2}.
\end{align*}
\]

Therefore, \(u_{q/2}(P) \leq q/2 \) and \(1 \leq u_0(P) \leq (q/2) + 1 \), for every point \(P \in \Pi_q \setminus W \).

Proposition 1.1. Let \(W \) be a \(q^2/4 \)-set of type \((0, q/4, q/2)\). Then there are at most three necessarily collinear points for which \(u_0 = (q/2) + 1 \).

Proof. Let \(\mathcal{L} \) be the set of 0-secant lines of \(W \). In the dual plane, \(\Pi_q^* \), \(\mathcal{L} \) is a \(((3q/2) + 1)\)-set of class \([0, 1, 2, \ldots, (q/2) + 1]\), whose characters \(\theta_i \) satisfy the equations

\[
\begin{align*}
 \sum_{i=0}^{(q/2)+1} \theta_i &= q^2 + q + 1, \\
 \sum_{i=1}^{(q/2)+1} i\theta_i &= \left(\frac{3q}{2} + 1\right)(q + 1), \\
 \sum_{i=2}^{(q/2)+1} i(i-1)\theta_i &= \frac{3q}{2} \left(\frac{3q}{2} + 1\right).
\end{align*}
\]

Since \(\theta_0 = q^2/4 \), eliminating \(\theta_1 \) and \(\theta_2 \) we obtain

\[
\sum_{i=3}^{q/2} (i-2)(i-1)\theta_i = \frac{q}{2} \left(\frac{q}{2} - 1\right)(3 - \theta_{q/2+1}),
\]

which is nonnegative. Therefore, \(\theta_{(q/2)+1} \leq 3 \) and equality holds if and only if \(\theta_1 = 0 \), for every \(i = 3, \ldots, q/2 \).

If \(\theta_{(q/2)+1} = 3 \), then \(\mathcal{L} \) is of class \([0, 1, 2, (q/2) + 1]\). Equalities (1.3) and (1.3a) imply that the set \(\mathcal{K} \) of \(q/4 \)-secant lines to \(W \) is a \(q(q-2) \)-set of class \([0, q-2, q]\) in \(\Pi_q^* \), whose characters are \(\sigma_0 = 3, \sigma_{q-2} = q^2, \sigma_q = q - 2 \). We show that the exterior lines of \(\mathcal{K} \) are concurrent. By way of contradiction, if they form a triangle then the number of \((q-2)\)-secant lines to \(\mathcal{K} \) is \(q/2 \) or \(q \). Hence, this set would be a \(q^2 \)-set of type \((q/2, q)\), which cannot exist, as follows from its character equations. Thus, the exterior lines of \(\mathcal{K} \) are concurrent in the dual plane. Hence, by duality, the three corresponding points of \(\Pi \) are collinear, as claimed. \(\square \)

3. \(q^2/4 \)-sets of type \((0, q/4, q/2)\) in \(\text{PG}(2, q) \)

In this section we prove the existence of \(q^2/4 \)-sets of type \((0, q/4, q/2)\) in \(\text{PG}(2, q) \), the Desarguesian projective plane over the Galois field \(GF(q) \), \(q = 2^h, h \geq 3 \).

Let \(\omega \) be a primitive element of \(GF(q) \) and \(T_0 \) (resp. \(T_1 \)) the set of elements in \(GF(q) \) of trace 0 (resp. 1). Briefly, we recall that an element \(d \in GF(q) \) is of trace 0 if the second
degree equation \(x^2 + x + d = 0 \) has solution in \(GF(q) \). Furthermore, \(T_0 \) is an additive subgroup of order \(q/2 \) in \(GF(q) \) and the sum of elements of different traces is an element of trace 1 (for a general reference, see [1, 4]).

Lemma 2.1. For every \(\omega \in GF(q) \setminus \{0, 1\} \), let \(H' = \{ x \in T_0 | x \omega \in T_0 \} \) and \(H'' = \{ \beta \in T_1 | \beta \omega \in T_1 \} \). Then

\[
|H'| = |H''| = \frac{q}{4}.
\] (2.1)

Proof. We put \(|H'| = x \) and \(|H''| = y \). Then, \(x = y \), since \(x + (q/2) - y = q/2 \). Now, by way of contradiction, suppose \(x < q/4 \). Hence \(|T_0 \setminus H'| > q/4 \). If we denote by \(u_0, u_1, \ldots, u_{q/4}, \ldots \), the elements of \(T_0 \setminus H' \), then each sum \(u_0 + u_i, i = 1, 2, \ldots, q/4 \), belongs to \(H' \), which contradicts \(x < q/4 \).

To prove that \(x = q/4 \), it will suffice to show that \(x < q/2 \), since \(H' \) is a subgroup of \(T_0 \). Suppose that \(x = q/2 \). Then

\[
\omega^k x \in T_0 \text{ if and only if } x \in T_0 \text{ for every } k \in \mathbb{Z}.
\] (2.2)

Let \(\langle \omega \rangle \) be the multiplicative cyclic subgroup of \(GF(q) \setminus \{0\} \) generated by \(\omega \). Each class of \(GF(q) \setminus \{0\} \) (mod \(\langle \omega \rangle \)) is either a subset of \(T_0 \setminus \{0\} \) or \(T_1 \). In fact, \(x \) is congruent to \(\beta \) (mod \(\langle \omega \rangle \)) if and only if \(x^{-1} \beta = \omega^k \). Thus, by (2.2), \(x \) and \(\beta \) belong either to \(T_0 \setminus \{0\} \) or to \(T_1 \). Hence the order of \(\langle \omega \rangle \) divides both \((q/2) - 1 \) and \(q/2 \), which is a contradiction, since \(\omega^k \neq 1 \). \(\square \)

Theorem 2.2. Let \((x_0, x_1, x_2) \) denote homogeneous coordinates in \(PG(2, q) \). Then each of the sets \(W_{ij} = \{(x, y, z) | x \in T_i, y \in T_j \} \), for every \(i, j \in \{0, 1\} \), is a \(q^2/4 \)-set of type \((0, q/4, q/2) \).

Proof. We can consider the affine plane \(AG(2, q) \), having as line at infinity the line \(x_2 = 0 \). For every line \(\ell \) of \(AG(2, q) \), consider the numbers \(x_{ij} = \ell \cap W_{ij} \). We show that \(x_{ij} \in \{0, q/4, q/2\} \). Since the group \(GF(q) \times GF(q) \) acts transitively on the lines of \(AG(2, q) \) and permutes the numbers \(x_{ij} \), it suffices to study lines of equation \(y = mx \) or \(x = 0 \). If \(m = 0 \), then the line \(y = 0 \) meets \(W_{i0} \) in \(q/2 \) points and \(W_{ij}, j \neq 0 \) in \(0 \) points. When \(m = 1 \), the line \(y = x \) has \(q/2 \) (resp. \(0 \)) points in common with \(W_{0i} \) (resp. \(W_{ij}, i \neq j \)). The line \(x = 0 \) has \(q/2 \) points on \(W_{0j} \) and \(0 \) points on \(W_{ij}, i \neq 0 \). Finally, let \(m \neq 0, 1 \). It is easily seen that \(x_{00} + x_{01} + x_{10} + x_{11} = q \) and that \(x_{01} + x_{11} = x_{00} + x_{10} \). To achieve the proof, it suffices to show that \(x_{00} = x_{11} \) and \(x_{01} + x_{10} = q/2 \). These equalities follow from Lemma 2.1. \(\square \)

Remark. Observe that for each of the \(q^2/4 \)-sets \(W_{ij} \) there exist three collinear points, on which there are only 0-secant or \(q/2 \)-secant lines of \(W_{ij} \). They are the points \((0, 1, 0) \), \((0, 0, 1) \) and \((0, 1, 1) \).
4. On $q^2/4$-sets of type $(0, q/4, q/2)$, which are union of conics of $PG(2, q)$

Let Γ be a conic of $\Pi_q = PG(2, q)$, $q = 2^n$, and N its nucleus, i.e. the meet of the tangents of Γ. For every $P \notin \Gamma \cup \{N\}$, we define

$$E(P) = \{Q \in \pi_q | Q \neq P \text{ and the line } PQ \text{ is exterior to } \Gamma\}.$$

Theorem 3.1. Let X and Y be two distinct points other than N on a tangent line s of Γ, $X, Y \notin \Gamma$. The set $W = E(X) \cap E(Y)$ is a $q^2/4$-set of type $(0, q/4, q/2)$. Furthermore, W is union of $q/4$ irreducible conics pairwise tangent at the same point O and having the same nucleus N, minus the point O.

Proof. If we adopt a convenient frame in $PG(2, q)$, we may suppose that Γ has equation $x_0x_2 = x_1^2$ and that s is the line of equation $x_2 = 0$, which is tangent to Γ in the point $O(1, 0, 0)$. We directly construct W from two distinct points $X(1, 0', 0)$ and $Y(1, 0'', 0)$, where ω is a primitive element of $GF(q)$.

The line on X,

$$x_2 = \omega^j(x_1 + \omega^j x_0),$$

is exterior to Γ if and only if $\omega^j \omega = T_1$.

Similarly, the line on Y,

$$x_2 = \omega^j(x_1 + \omega^j x_0),$$

is exterior to Γ if and only if $\omega^j \omega = T_1$.

Therefore,

$$W = E(X) \cap E(Y) = \{\omega^j, \omega^j \omega^j + \omega^j \omega^j, \omega^j \omega^j \omega^j = T_1\}.$$
Because of this remark, it will suffice to consider only the intersections of W with one line of the pencil of center $P(1, \omega^k, 0)$.

The line t of equation
\[x_1 = \omega^k x_0, \]
\[\omega^k \in GF(q), \] is on P and is a secant line of Γ. If Q is a point of W, then $Q \in t$ if and only if
\[\omega^i \omega^{-1} = d \quad \text{and} \quad \omega^j \omega^{-1} = d^* \]
are in T_1. Equality (3.1) implies
\[d^*(\omega^k + \omega^j) = d(\omega^k + \omega^j). \] (3.2)
If $\omega^k = \omega^i$ or $\omega^k = \omega^j$, then $|t \cap W| = 0$. Then, let $\omega^k \neq \omega^i$ and $\omega^k \neq \omega^j$.

Equality (3.2) can be written as
\[d^* = d\omega^j, \quad \text{where} \quad \omega^j = \frac{\omega^k \omega^j + \omega^k}{\omega^j (\omega^k + \omega^k)}. \]

Now, $\omega^j = 1$ if and only if $\omega^k = \omega^i + \omega^j$. In this case $|t \cap W| = q/2$.

In the other cases, i.e. when $\omega^k \notin \{\omega^i, \omega^j, \omega^k \pm 1\}$, $\omega^i \neq 0, 1$. Thus, by Lemma 2.1, $|t \cap W| = q/4$.

To prove that W results from the union of $q/4$ irreducible conics, we remark that the group G has $q/4$ orbits on W. We show that each G-orbit, together with the tangency-point of s to Γ, is an irreducible conic. In fact, if
\[P(\omega^i + \omega^j, \omega^i \omega^j + \omega^j \omega^i, \omega^i \omega^k \omega^j (\omega^i + \omega^j)), \]
where $\omega^{-1} \omega^i, \omega^{-1} \omega^j \omega^k \in T_1$, is a point of W, then the conic \mathcal{C} of equation
\[x_0 x_2 = x_1^2 + \delta x_2^3, \]
where δ is determined by P, contains P. If $g \in G$ is represented by
\[
\begin{pmatrix}
1 & 0 & \gamma^2 \\
0 & 1 & \gamma \\
0 & 0 & 1
\end{pmatrix},
\]
then
\[P^g(\omega^i + \omega^j + \gamma^2 \omega^i \omega^j + \omega^i \omega^k \omega^j (\omega^i + \omega^j)), \omega^i \omega^k \omega^j (\omega^i + \omega^j), \omega^i \omega^j (\omega^i + \omega^j) \]
belongs to \mathcal{C} and G stabilizes \mathcal{C}. Therefore, $\mathcal{C} \setminus \{(1, 0, 0)\}$ coincides with the G-orbit containing P. \(\square\)

Remark. The $q^2/4$-set W is different from the sets $W_{ij}, i, j \in \{0, 1\}$. In fact, the line $x_0 = x_2$ meets W in $q/4$ points and $W_{ij}, i, j \in \{0, 1\}$ in 0 or $q/2$ points.

We now show that, in a certain sense, the construction given in the previous theorem may be inverted: given $q/4$ convenient conics \mathcal{C}_i, pairwise tangent at the same
point O and having the same nucleus N, then $W = \bigcup_{i=1}^{q/4} (\mathcal{C}_i \setminus \{O\})$ is a $q^2/4$-set of type $(0, q/4, q/2)$. Moreover, on the line ON there are exactly three points X, Y and Z, such that $u_0 = (q/2) + 1$ and $W = E(X) \cap E(Y)$ for $q/4$ conics.

Lemma 3.2. Let $W = \bigcup_{i=1}^{q/4} (\mathcal{C}_i \setminus \{O\})$, where $\mathcal{C}_i, i = 1, \ldots, q/4$ are irreducible conics of $PG(2, q)$, pairwise tangent in O and having the same nucleus N. Then there exists an automorphism group G which stabilizes W and has on W each $\mathcal{C}_i \setminus \{O\}$ as orbit.

Proof. Fix a conic \mathcal{C} different from $\mathcal{C}_i, i = 1, \ldots, q/4$, and tangent to each of them in O and having as nucleus N. Adopting a convenient frame in $PG(2, q)$, we can assume \mathcal{C} of equation $x_0 x_2 = x_1^2$ and \mathcal{C}_i of equation $x_0 x_2 = x_1^2 + \delta_i x_2^2, \delta_i \in GF(q), i = 1, \ldots, q/4$. Then the group G, introduced in the proof of Theorem 3.1, is sharply transitive on the points of $\mathcal{C} \setminus \{O\}$ and of $\mathcal{C}_i \setminus \{O\}$, for every $i = 1, \ldots, q/4$. □

Lemma 3.3. Let $\{\mathcal{C}_i\}_{i=1}^{q/4}$ be a set of $q/4$ conics of $PG(2, q)$, pairwise tangent at the same point O and having the same nucleus N. Let $W = \bigcup_{i=1}^{q/4} (\mathcal{C}_i \setminus \{O\})$. Then W is a $q^2/4$-set of type $(0, q/4, q/2)$ if and only if on the line ON there are three distinct points, such that on each of them there are $u_0 = (q/2) + 1$ 0-secant lines and $u_{q/2} = q/2$ $q/2$-secant lines of W.

Proof. If W is of type $(0, q/4, q/2)$, then $t_{q/2} = 3q/2$. Since ON is a 0-secant line of W, every $q/2$-secant line of W meets ON in only one point, on which there are other $(q/2) - 1$ $q/2$-secant lines, as follows from Lemma 3.2 and Theorem 3.1. Therefore, if h is the number of points of ON, on which there are $q/2$-secant lines, then

$$t_{q/2} = h \frac{q}{2}.$$

Hence $h = 3$.

Conversely, let X, Y and Z be the three points of ON, for which $u_0 = (q/2) + 1$ and $u_{q/2} = q/2$. Then $t_{q/2} = 3q/2$. Furthermore,

$$t_i = t_{(q/2) - i}, \quad 2 \leq i \leq \frac{q}{4} - 2. \quad \text{(*)}$$

In fact, fix a conic \mathcal{C}, as in Lemma 3.2. \mathcal{C} admits a group G of elations, having as common axis the line ON. This group is sharply transitive on the lines but ON on O or N. Thus, every line on O or N has $q/4$ points on W. Moreover, G is transitive on the set of exterior (resp. secant but ON) lines of \mathcal{C}. Therefore, if an exterior line of \mathcal{C} on $P \in ON$ has x_P points on W, then every exterior line on P has x_P points on W. Hence, every secant line but ON of \mathcal{C} has $\beta_P = (q/2) - x_P$ points on W. Since every line of $PG(2, q)$ is on one of the points of ON, identity (**) follows.

When $i = 0$ we have

$$t_0 = t_{q/2} + 1. \quad \text{(**)}$$
Using equalities (\(*) and (\(**), the first and third character equations of \(W\) become, respectively,

\[
\begin{align*}
t_{q/4} + 2 \sum_{i=2}^{(q/4)-2} t_i &= q(q-2), \\
\frac{q}{4} \left(\frac{q}{4} - 1\right) t_{q/4} + \sum_{i=2}^{(q/4)-2} i(i-1)t_i + \sum_{i=2}^{(q/4)-2} \left(\frac{q}{4} - 1\right) \left(\frac{q}{2} - i - 1\right) t_{(q/2)-i} \\
&= \frac{q^2}{4} \left(\frac{q^2}{4} - 3q\right) + 2.
\end{align*}
\]

Hence,

\[
\begin{align*}
\frac{q}{4} \left(\frac{q}{4} - 1\right) t_{q/4} + \sum_{i=2}^{(q/4)-2} \left(2q^2 + q^2 - qi - \frac{q}{2}\right) t_i &= \frac{q^2}{4} \left(\frac{q^2}{4} - 3q\right) + 2.
\end{align*}
\]

Elimination of \(t_{q/4}\) between (3.3) and (3.5) gives

\[
\sum_{i=2}^{(q/4)-2} \left(2q^2 + \frac{q^2}{8} - qi\right) t_i = 2 \sum_{i=2}^{(q/4)-2} \left(\frac{q}{4} - \frac{q}{2}\right)^2 t_i = 0.
\]

Hence \(t_i = 0, 2 \leq i \leq (q/4) - 2\). Since

\[
t_i = t_{(q/2)-i}, \quad 2 \leq i \leq (q/4) - 2,
\]

the proof is achieved. \(\square\)

For the next theorem, we introduce the following notation. If \(\omega^k\) is an element of \(GF(q) \setminus \{0,1\}\), where \(\omega\) is a primitive element of the field, set

\[
H_k = \{x \in T_0 \mid x\omega^k \in T_0\}.
\]

We proved in Lemma 2.1 that \(|H_k| = q/4\).

Furthermore, if \(\Gamma_j\) is a conic, set, for every \(P \notin \Gamma_j\),

\[
E_j(P) = \{Q \in \Pi_q \mid Q \neq P \text{ and the line } PQ \text{ is exterior to } \Gamma_j\}.
\]

Theorem 3.4. Let \(\mathcal{C}_i\) be the conic of \(PG(2,q)\) having equation \(x_0x_2 = x_1^2 + \gamma_i x_2^2\), where

\[
\gamma_i \in H_k, \quad i = 1, \ldots, q/4, \text{ and let } O \text{ be the point } (1,0,0) \text{ of } \mathcal{C}_i. \text{ Then}
\]

(1) the set

\[
W = \bigcup_{i=1}^{q/4} (\mathcal{C}_i \setminus \{O\})
\]

is a \(q^2/4\)-set of type \((0,q/4,q/2)\);

(2) there are \(q/4\) conics \(\Gamma_j, j = 1, \ldots, q/4, \) having the same nucleus \(N\), such that

\[
W = E_j(X) \cap E_j(Y),
\]

for two points \(X\) and \(Y\) other than \(N\) on the tangent line through \(O\).
Proof. $|W| = q^2/4$, since $|H_q| = q/4$.

For abuse of notation, for every $z \in GF(q)$, we denote by \sqrt{z} the unique element of $GF(q)$, whose square is z. Consider the points $X(1,1,0), Y(1,\sqrt{\omega^k},0)$ and $Z(1,1+\sqrt{\omega^k},0)$.

We prove that for each of these points $u_{q/2} = q/2$ and $u_0 = (q/2) + 1$.

Proceeding as in Theorem 3.1, consider the line on X,

$x_1 = x_0$,

which is a $q/2$-secant line to W, since $\gamma \in T_0$.

Similarly, the line on Y,

$x_1 = \sqrt{\omega^k}x_0$

meets every conic C_j in two points, since $\omega^k\gamma \in T_0$. Therefore, it is a $q/2$-secant line.

Finally, since H_q is a subgroup of T_0, the line on Z,

$x_1 = (1 + \sqrt{\omega^k})x_0$,

is a $q/2$-secant line, too.

The proof of statement (1) follows by Lemma 3.3.

(2) Let $P(1, \sqrt{z + \gamma z^2}, z)$ be a point of W, $z \in GF(q) \setminus \{0\}$, and let s be the line PX, having equation

$(1 + \sqrt{z + \gamma z^2})x_2 = z(x_1 + x_0)$.

If Γ_j is the conic of equation

$x_0x_2 = x_1^2 + \delta_jx_2^2$, $\delta_j \in GF(q),$

then a necessary and sufficient condition for s to be an exterior line of Γ_j is

$\delta_j + \frac{z + \gamma z^2 + 1}{z^2} \in T_1,$

which is equivalent to

$\delta_j + z^{-1} + z^{-2} + \gamma \in T_1.$

(3.6a)

Since $z^{-1} + z^{-2} + \gamma \in T_0$, we obtain

$\delta_j \in T_1$.

(3.7)

Similarly, consider the line PY, whose equation is

$(\sqrt{z + \gamma z^2} + \sqrt{\omega^k})x_2 = x_1 + \sqrt{\omega^k}x_0.$

PY is an exterior line of Γ_j if and only if

$\omega^k\delta_j + \omega^kz^{-1} + \omega^k\gamma + \omega^{2k}z^{-2} \in T_1.$
Since
\[\omega^k z^{-1} + \omega^{2k} z^{-2} \in T_0 \]
and
\[\omega^k \gamma_i \in T_0, \]
we deduce
\[\omega^k \delta_j \in T_1. \] \hspace{1cm} (3.8)

By Lemma 2.1, there are \(q/4 \) values of \(\delta_j \) which satisfy conditions (3.7) and (3.8). This completes the proof. \(\Box \)

Acknowledgments

We would like to thank the referees for their useful suggestions and remarks. In particular, we are indebted to one of them, who suggested Theorem 2.1.

References