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Abstract

In this paper we prove an existence theorem of nonconstant periodic solution of superlinear au-
tonomous Hamiltonian system ẋ(t) = J∇H(x(t)) with prescribed period under an assumption weaker than
Ambrosetti–Rabinowitz-type condition:

0 < μH(x) �
〈∇H(x), x

〉
, μ > 2, |x| � R > 0.

Our result extends the pioneering work of Rabinowitz of 1978.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper deals with the periodic solutions of the following autonomous Hamiltonian systems
with prescribed period:

ẋ(t) = J∇H
(
x(t)

)
, (1.1)

where J = ( 0 −In

In 0

)
is the standard symplectic matrix on R2n. Denote the inner product and norm

of R2n by 〈·,·〉 and | · |, respectively. In his pioneering paper [6], Rabinowitz proved the following
theorem (see also [4,7]):
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Theorem 1.1. Suppose H ∈ C1(R2n,R1) and satisfies

(H1) H � 0,
(H2) H(x) = ◦(|x|2) as |x| → 0, and
(H3) there exist μ > 2 and R > 0 such that for |x| � R,

0 < μH(x) �
〈∇H(x), x

〉
. (1.2)

Then for any T > 0, (1.1) has a nonconstant T -periodic solution.

The condition (H3) is called Ambrosetti–Rabinowitz-type condition, it appears frequently
in the studying of existence and multiplicity of solutions of various superlinear differential
equations. There are some works which improved this condition for certain equations, see, for
example, [5]. Our goal of this paper is to prove that Theorem 1.1 still holds if (H3) is replaced
by a weaker condition. The idea of this paper is related to our early papers [1–3] in which the
periodic solutions of Hamiltonian systems with prescribed energy were considered.

Definition 1.2. A vector field V defined on R2n is called positive if 〈V (x), x〉 > 0 for
x ∈ Rn \ {0}. We call V a normalized positive vector field if V is positive, linear and satisfies the
following conditions:

(V1) JV = V J ,
(V2) 〈V (x), x〉 = 〈x, x〉 for x ∈ R2n.

The main result of this paper is as follows.

Theorem 1.3. Suppose H ∈ C1(R2n,R1) satisfies (H1), (H2) and

(H4) there exist normalized positive vector field V , constants μ > 2 and R > 0 such that for
|x| � R,

0 < μH(x) �
〈∇H(x),V (x)

〉
. (1.3)

Then for any T > 0, (1.1) has a nonconstant T -periodic solution.

It is obvious that if V (x) = x, then (H4) becomes (H3). Example 1.4 below shows that (H4)
is weaker than (H3) essentially. Therefore Theorem 1.3 is a substantial improvement of Theo-
rem 1.1.

Example 1.4. Let θ(x) be the argument of x = (ξ1, ξ2) ∈ R2 \ {0} defined by

θ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

arctan(ξ2/ξ1), if ξ1 > 0, ξ2 � 0,
π
2 , if ξ1 = 0, ξ2 > 0,

arctan(ξ2/ξ1) + π, if ξ1 < 0,
3π
2 , if ξ1 = 0, ξ2 < 0,
arctan(ξ2/ξ1) + 2π, if ξ1 > 0, ξ2 < 0.
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For any μ > 2, define a function H ∈ C1(R2,R1) as follows:

H(x) =
{ |x|μ

exp(μ sin 4(ln |x|+θ(x)))
, if x �= 0,

0, if x = 0.
(1.4)

The direct computation shows that for x �= 0,

H ′
ξ1

(x) = μ|x|μ−2(ξ1 − 4(ξ1 − ξ2) cos 4(ln |x| + θ(x)))

exp(μ sin 4(ln |x| + θ(x)))
,

H ′
ξ2

(x) = μ|x|μ−2(ξ2 − 4(ξ1 + ξ2) cos 4(ln |x| + θ(x)))

exp(μ sin 4(ln |x| + θ(x)))
.

Define a normalized positive vector field V by

V (x) =
(

1 1
−1 1

)
x.

Then for x �= 0,〈∇H(x),V (x)
〉 = μ|x|μ

exp(μ sin 4(ln |x| + θ(x)))
= μH(x) > 0.

i.e., (H4) is satisfied. We prove that H does not satisfy (H3). Note that〈∇H(x), x
〉 = μ|x|μ(1 − 4 cos 4(ln |x| + θ(x)))

exp(μ sin 4(ln |x| + θ(x)))
.

Let x = (1,0), y = (
√

2/2,
√

2/2), then〈∇H(x), x
〉
< 0,

〈∇H(y), y
〉
> 0.

By continuity, there exists z ∈ R2 \ {0} such that 〈∇H(z), z〉 = 0. Let

xn = enπx, yn = enπy, zn = enπz, n = 1,2, . . . .

One has, |xn| → ∞, |yn| → ∞, |zn| → ∞ as n → ∞, and〈∇H(xn), xn

〉
< 0,

〈∇H(yn), yn

〉
> 0,

〈∇H(zn), zn

〉 = 0, ∀n.

Hence H satisfies (H4) but does not satisfy (H3) essentially.

In the rest part of this section we discuss the properties of a modified function HK which will
be used in the proof of Theorem 1.3.

Lemma 1.5. Suppose H(x) satisfies (H1), (H2) and (H4), K > 0 is a constant. Define

HK(x) = χ
(|x|)H(x) + (

1 − χ
(|x|)),R(K)|x|4, (1.5)

where constant R(K) and function χ ∈ C∞(R1,R1) satisfy

R(K) = sup
K�|x|�K+1

H(x)

|x|4 , χ(s) =
⎧⎨
⎩

1, if s � K ,

χ ′(s) < 0, if K < s < K + 1,

0, if s � K + 1.

Then HK also satisfies (H1), (H2) and (H4). Furthermore,∣∣HK(x)
∣∣ � a1|x|4 − a2, a1, a2 > 0. (1.6)
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Proof. It is easy to prove that HK satisfies (H1), (H2) and (1.6). We only verify (H4). By using
(V2) and (1.3), for |x| � R > 0,〈∇HK(x),V (x)

〉 = χ(|x|)〈∇H(x),V (x)
〉 + |x|−1〈x,V (x)

〉
χ ′(|x|)H(x)

+ R(K)
(
4
(
1 − χ(|x|))|x|2〈x,V (x)

〉 − 〈
x,V (x)

〉
χ ′(|x|)|x|3)

= χ(|x|)〈∇H(x),V (x)
〉 + |x|χ ′(|x|)H(x)

+ R(K)
(
4
(
1 − χ(|x|))|x|4 − χ ′(|x|)|x|5)

� μχ(|x|)H(x) + 4R(K)
(
1 − χ(|x|))|x|4

+ |x|χ ′(|x|)(H(x) − R(K)|x|4).
Since |x|χ ′(|x|)(H(x) − R(K)|x|4) � 0, one has〈∇HK(x),V (x)

〉
� νHK(x) > 0, for |x| � R > 0, (1.7)

where ν = min{μ,4}. �
Lemma 1.6. Denote by ϕs the flow of the linear vector field V with property (V2), then

|ϕsx| = es |x|, ∀s ∈ R1, ∀x ∈ R2n.

Proof. Let g(s) = |ϕsx|2, then g(0) = |x|2. By (V2),

d

ds
g(s) = 2

〈
V (ϕsx),ϕsx

〉 = 2〈ϕsx,ϕsx〉 = 2g(s).

Then g(s) = e2s |x|2 by solving the ordinary differential equation. �
Lemma 1.7. Let HK be defined by (1.5), then there exist a3, a4 > 0 such that

HK(x) � a3|x|ν − a4, ∀x ∈ R2n. (1.8)

Proof. Denote by S2n−1 the unit sphere in R2n. For any x ∈ R2n \ {0}, since

d

ds

(|ϕsx|2) = 2
〈
ϕsx,V (ϕsx)

〉
> 0,

|ϕsx| is increasing in s. Hence, there exist s ∈ R1 and ξ ∈ S2n−1 such that x = ϕsξ (see [1,
Lemma 2.2] for details). Since |x| = |ϕsξ | = es , by (1.7),

d

ds
HK(ϕsξ) = 〈∇HK(ϕsξ),V (ϕsξ)

〉
� νHK(ϕsξ) > 0, s � lnR. (1.9)

Integrating this inequality, for some constant c,
s∫

lnR

d
ds

HK(ϕsξ)

HK(ϕsξ)
ds � νs − c.

Denote a3 = e−c, then

HK(x) = HK(ϕsξ) � a3e
sν = a3|x|ν, |x| � R.

Since HK is bounded for |x| � R, there exists a constant a4 such that

HK(x) � a3|x|ν − a4, ∀x ∈ R2n. �
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2. Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3. At first we state an abstract critical point
theorem of [7].

Theorem 2.1. [7, Theorem 5.29] Let E be a real Hilbert space with E = E1 ⊕ E2 and E2 = E⊥
1 .

Suppose f ∈ C1(E,R1), satisfies (PS) condition, and

(f1) f (x) = 1
2 〈Ax,x〉E + φ(x), where Ax = A1P1 + A2P2 and Ai : Ei → Ei is bounded and

self-adjoint, i = 1,2;
(f2) φ′ is compact; and
(f3) there exist a subspace Ẽ ⊂ E and sets S ⊂ E, Q ⊂ Ẽ and constants α > ω such that

(i) S ⊂ E1 and f |S � α,
(ii) Q is bounded and f |∂Q � ω,

(iii) S and ∂Q link.

Then

c = inf
h∈Γ

sup
x∈Q

f
(
h(1, x)

)
(2.1)

is a critical value of f and c � α, where Γ is defined by

Γ = {
h ∈ C

([0,1] × E,E
) ∣∣ h(0, x) = x, h(1, x)|∂Q = x, h(t, x) = eθ(t,x)A + K(t, x)

}
.

Let ST = R1/(T Z). Denote E = W1/2,2(ST ,R2n) the Sobolev space consists of all x(t) in
L2(ST ,R2n) whose Fourier series

x(t) =
+∞∑

k=−∞
exp

(
2kπtJ

T

)
ak, ak ∈ R2n,

satisfies

‖x‖2
E ≡ T |a0|2 + T

∞∑
k=−∞

|k| · |ak|2 < +∞.

The inner product on E is defined by

〈x1, x2〉E = T
〈
a1

0, a2
0

〉 + T

+∞∑
k=−∞

|k|〈a1
k , a

2
k

〉
,

where xi = ∑+∞
k=−∞ exp( 2kπtJ

T
)ai

k , i = 1,2.
Define linear bounded self-adjoint operator A on E by extending the bilinear form

〈Ax,y〉E =
T∫

0

(−J ẋ, y) dt. (2.2)
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Clearly, kerA = R2n. Let E0 = R2n,

E+ =
{
x ∈ E | x(t) =

∑
k>0

exp

(
2kπtJ

T

)
ak

}
,

E− =
{
x ∈ E | x(t) =

∑
k<0

exp

(
2kπtJ

T

)
ak

}
.

Denote by P ± the projections of E to E±, respectively. Then

A = 2π

T
P + − 2π

T
P −. (2.3)

Let V be the normalized positive vector field in (H4) of Theorem 1.3. Then V is an invert-
ible linear operator from R2n to R2n. Let a = 1/‖V −1‖, b = ‖V ‖, where ‖V ‖ and ‖V −1‖ are
operator norms. For any x ∈ R2n, one has a|x| � |V x| � b|x|. Define a vector field Ṽ on E by

(Ṽ x)(t) = V
(
x(t)

)
. (2.4)

Using conditions (V1), (V2) and the Fourier series, a direct computation shows

Lemma 2.2. [1] For ∀x ∈ E, there hold

〈Ax, Ṽ x〉E = 〈Ax,x〉E. (2.5)

a‖x‖E � ‖Ṽ x‖E � b‖x‖E. (2.6)

Define φ : E → R1 by

φ(x) =
T∫

0

HK

(
x(t)

)
dt. (2.7)

By (1.6) and [7, Proposition B.37], φ ∈ C1(E,R1), φ′(x) is compact. We consider the critical
point of the following functional fK ∈ C1(E,R):

fK(x) = 1

2
〈Ax,x〉E − φ(x), ∀x ∈ E. (2.8)

It is easy to see that

f ′
K(x)y = 〈Ax,y〉E −

T∫
0

〈∇HK(x), y
〉
dt, ∀x, y ∈ E. (2.9)

It is well known that the critical points of fK are the T -periodic solutions of

ẋ(t) = J∇HK

(
x(t)

)
. (2.10)

Lemma 2.3. If fK satisfies the (PS) condition, i.e., if {xm} ⊂ E, with f ′
K(xm) → 0 and

|fK(xm)| � M for some constant M > 0, then {xm} has a convergent subsequence.

Proof. By Lemmas 1.5 and 2.2, for m large enough,
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M + b‖xm‖E � M + ‖Ṽ xm‖E � fK(xm) − 1

2
f ′

K(xm)(Ṽ xm)

= 1

2
〈Ax,x〉E −

T∫
0

HK(xm)dt − 1

2
〈Ax, Ṽ x〉E + 1

2

T∫
0

〈∇HK(xm),V xm

〉
dt

= 1

2

T∫
0

〈∇HK(xm),V xm

〉
dt −

T∫
0

HK(xm)dt

�
(

ν

2
− 1

) T∫
0

HK(xm)dt − M1

� M2‖xm‖4
L4 − M3.

One has,

‖xm‖L4 � M4‖xm‖1/4
E + M5. (2.11)

Decompose xm as

un = x+
m + x−

m + x0
m ∈ E+ ⊕ E− ⊕ E0.

By (1.8),

M + b‖xm‖E �
(

ν

2
− 1

) T∫
0

HK(xm)dt − M1

� M6‖xm‖ν
Lν − M7 � M8‖xm‖ν

L2 − M7 � M9
∥∥x0

m

∥∥ν

E − M7.

Hence,∥∥x0
m

∥∥ � M10
(
1 + ‖xm‖1/ν

E

)
.

On the other hand,

2π

T

∥∥x+
m

∥∥2
E = 〈

Axm,x+
m

〉
E = f ′

K(xm)x+
m +

T∫
0

〈∇HK(xm), x+
m

〉
dt

�
∥∥x+

m

∥∥
E +

∣∣∣∣∣
T∫

0

〈∇HK(xm), x+
m

〉
dt

∣∣∣∣∣
�

∥∥x+
m

∥∥
E +

( T∫
0

∣∣∇HK(xm)
∣∣4/3

dt

)3/4( T∫
0

∣∣xm(t)
∣∣4

dt

)1/4

�
∥∥x+

m

∥∥
E + M11

(‖xm‖3
L4 + 1

)∥∥x+
m

∥∥
L4

� M12
(‖xm‖3

L4 + 1
)∥∥x+

m

∥∥
E.

By (2.11),∥∥x+
m

∥∥ � M13
(‖xm‖3

4 + 1
)
� M14

(‖xm‖3/4 + 1
)
.
E L E
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In the same fashion,∥∥x−
m

∥∥
E � M14

(‖xm‖3/4
E + 1

)
.

Therefore,

‖xm‖E �
∥∥x+

m

∥∥
E + ∥∥x−

m

∥∥
E + ∥∥x0

m

∥∥
E � M15

(
1 + ‖xm‖3/4

E + ‖xm‖1/ν

E

)
.

This shows that {xm} is bounded in E. By (2.3),

f ′
K(xm) = 2π

T
x+
m − 2π

T
x−
m − φ′(xm).

Since f ′
K(xm) → 0, φ′ is compact, it is easy to see that {xm} has a convergent subsequence. �

Lemma 2.4. fK has a critical value cK > 0.

Proof. Let E1 = E+, E2 = E− ⊕ E0. Then fK satisfies the conditions (f1) and (f2) of Theo-
rem 2.1. We need only to verify (f3). This can be achieved by the same method used in the proofs
of Lemmas 6.16 and 6.20 of [7], here we give the proof for completeness.

By (H2) and (1.5), for any ε > 0, there exists an M > 0 such that

HK(x) � ε|x|2 + M|x|4, ∀x ∈ R2n.

By (2.3) and inequality ‖x‖Ls � αs‖x‖E (see [7, Proposition 6.6]), for x ∈ E1,

fK(x) = 1

2
· 2π

T
‖x‖2

E −
T∫

0

HK(x)dt � π

T
‖x‖2

E − (
ε‖x‖2

L2 + M‖x‖4
L4

)

� π

T
‖x‖2

E − (
εα2 + Mα4‖x‖2

E

)‖x‖2
E.

Choose ε = π
3T α2

, ρ2 = π
3T Mα4

. Denote by Bρ the closed ball in E with radius ρ centered at

origin. Let S = ∂Bρ ∩ E1, α = π
3T

ρ2. For x ∈ S,

fK(x) � π

3T
ρ2 = α.

Then (i) of (f3) holds.
Let e ∈ ∂B1 ∩ E1, define

Ẽ = span{e} ⊕ E2, Q = {
re | r ∈ [0, r1]

} ⊕ (Br2 ∩ E2),

where r1, r2 are constants which will be chosen later.
Let x = x0 + x− ∈ Br2 ∩ E2. Then

fK(x + re) = 1

2
· 2π

T

(
r2 − ‖x−‖2

E

) −
T∫

0

HK(x + re) dt.

x0, x− and e are mutually orthogonal in L2, by Lemma 1.7,
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T∫
0

HK(x + re) dt � a3

T∫
0

|x + re|ν dt − T a4 � a5

( T∫
0

|x + re|2 dt

)ν/2

− a6

= a5

( T∫
0

(∣∣x0
∣∣2 + |x−|2 + r2|e|2)dt

)ν/2

− a6 � a7
(∣∣x0

∣∣ν + rν
) − a6.

Hence,

fK(x + re) � π

T

(
r2 − ‖x−‖2

E

) − a7
(∣∣x0

∣∣ν + rν
) + a6

= πr2

T
− a7r

ν + a6 −
(

π‖x−‖2

T
+ a7

∣∣x0
∣∣ν).

Since ν > 2, we can choose a r1 > 0 such that for r � r1,

πr2

T
− a7r

ν + a6 � 0.

Note that (πr2

T
− a7r

ν + a6) is bounded on [0, r1] and

lim‖x‖→∞

(
π‖x−‖2

T
+ a7

∣∣x0
∣∣ν) = +∞ uniformly in E2,

there exists r2 > 0 such that

fK(x + re) � M −
(

π‖x−‖2

T
+ a7

∣∣x0
∣∣ν) � 0, for ‖x‖ � r2.

It is obvious that fK � 0 on E2, then fK � 0 ≡ ω on ∂Q. By Lemma 6.27 of [7], S and ∂Q link.
So (ii) and (iii) of (f3) hold.

According to Theorem 2.1, fK has a critical value cK > 0. �
Proof of Theorem 1.3. Denote by xK a critical point of fK corresponding to critical value cK ,
then xK is a nonconstant T -periodic solution of (2.10) and

fK(xK) = cK = inf
h∈Γ

sup
x∈Q

fK

(
h(1, x)

)
.

Since h0 ∈ Γ if h0(t, x) ≡ x, cK � supx∈Q fK(x). For ∀x = re + x0 + x− ∈ Q,

fK(x) = π

T

(
r2 − ‖x−‖2

E

) −
T∫

0

HK(x)dt � π

T
r2

1 .

Therefore cK � π
T

r2
1 . Note that the constants r1 and r2 in the definition of Q are independent

of K .
By (2.5) and (1.7), there exists M0 > 0 such that

π

T
r2

1 � cK = fK(xK) − 1

2
f ′

K(xK)(Ṽ xK)

= 1

2

T∫ 〈∇HK(xK),V xK

〉
dt −

T∫
HK(xK)dt
0 0
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�
(

ν

2
− 1

) T∫
0

HK

(
xK(t)

)
dt − M0.

Since HK(xK(t)) is constant, HK(xK(t)) has a K independent upper bound

HK

(
xK(t)

)
�

(
νT

2
− T

)−1(
π

T
r2

1 + M0

)
.

By using (1.8), xK(t) has a K independent L∞ bound. That is, ‖xK‖L∞ � K0 for some con-
stant K0.

If K > K0, by (1.5),

∇HK(xK) = ∇H(xK).

Consequently, xK is a nonconstant T -periodic solution of (1.1). �
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