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Abstract

Let ρ be a Drinfeld Fq [T ]-module defined over a global function field K . Let z ∈ K be a non-torsion
point. We prove that for almost all monic elements n ∈ Fq [T ] there exists a place ℘ of K such that n is the
“order” of the reduction of z modulo ℘.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let a be a fixed rational number other than 0 or ±1. Let p be a prime number such that a is
a p-unit. Denote the multiplicative order of a modulo p by np . It was proved by several authors
[1,2,20] that there are only finitely many positive integers which are not an np for some p.
This theorem was generalized later to any number field by Postnikova and Schinzel [14] and in
strengthened form by Schinzel [15]. More precisely, let K be a number field and let a be an
element of K which is not a root of unity. Then almost all positive integers N occur as the order
of a modulo P for some prime ideal P of K .

Replacing the multiplicative group Q∗ by an elliptic curve, Silverman [16] showed that the
same phenomenon exists for elliptic curves. Namely, given elliptic curve E defined over Q and
a point Q ∈ E(Q) of infinite order, then for all but finitely many positive integers n there is
a prime p such that n is the order of the point Q modulo p with respect to the group law of the
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reduced curve at prime p. This result was later extended also to elliptic curves defined over any
number field K [5].

In this paper, we study an analogous phenomenon in the setting of Drinfeld Fq [T ]-modules.
Throughout the paper, by a global function field we mean a function field which is of transcen-
dence degree 1 over a finite field. Let K be a global function field together with a fixed ring
homomorphism ι : Fq [T ] → K . Let ρ be a Drinfeld Fq [T ]-module defined over K . The additive
group of K together with the Fq [T ]-action via ρ gives rise to an Fq [T ]-module, denoted by ρK .
Let z ∈ ρK be a point which is not a torsion under the given Fq [T ]-action. Let n ∈ Fq [T ] be
a monic polynomial. We can ask whether or not n can occur as the “order” of z modulo ℘ for
some place ℘ of K (see Section 2 for a more precise definition and formulations). In the setting
of Drinfeld modules, we give an affirmative answer to this question (Theorem 2.3).

The proof of our main result follows ideas in [14,15]. However, in order to apply the ideas
in [14,15] to our situation, we need to study the dynamics at each place of K associated to
the Drinfeld module in question. We organize our paper as follows. In Section 2 we recall the
definition of a Drinfeld module and some elementary properties of Drinfeld modules. After some
preliminaries, we formulate an analogue of the above classical theorem in the setting of Drinfeld
modules.

Let ℘ be a place of K . In Sections 3 and 4 we study, with respect to ℘-adic topology, how
close to 0 the Fq [T ]-orbit of a non-torsion point can be. This problem is treated separately in the
two sections depending on whether ι(T ) is ℘-integral (finite places of K) or not (infinite places
of K). We first treat the case where ℘ is a finite place of K in Section 3. In this section, only
elementary non-archimedean analysis over K℘ is involved. We show that there exists a ℘-adic
disc N0 of the origin in K℘ and a ℘-adic unbounded region N∞ which are stable under the
Fq [T ]-action (Propositions 3.1 and 3.3). Moreover, we are able to give a quantitative description
of the Fq [T ]-orbit of a point in question (Corollaries 3.2 and 3.4).

We consider the case where ℘ is an infinite place of K in Section 4. In this case, ι(T ) is not
℘-integral and there is no neighborhood of the origin in K℘ which is stable under the action of
the Fq [T ]-action. From the viewpoint of (℘-adic) dynamical systems, this is due to the fact that
the origin is a repelling fixed point so that any of its neighborhood will not be stable under the
Fq [T ]-action. Let Jρ be the ℘-adic closure of the set of torsion points of ρ. Then Jρ is a closed
subset of C℘ (the completed algebraic closure of K℘ ) and Jρ is stable under the Fq [T ]-action
via ρ. We show that if z /∈ Jρ then its orbit {ρn(z) | n ∈ Fq [T ]} is unbounded with respect to
the ℘-adic topology as deg(n) → ∞ (Corollary 4.5). If z ∈ Jρ , then its orbit remains bounded
and ρn(z) can be close to the origin for suitable choices of n. Assume that z is non-torsion of ρ

and that z ∈ K̄ ∩ Jρ , then for any given positive ε we show that there exists a positive constant
cε depending only on ρ and z such that deg(ρn(z)) � −cε(degn)1+ε for all n ∈ Fq [T ] \ Fq

(Theorem 4.6). Here deg denotes the extension to C℘ of the degree function on Fq [T ]. The key
ingredient of the proof of Theorem 4.6 is the analogue of Baker’s theorem on linear forms in
logarithms for Drinfeld modules which is established by Yu [18,19] for qualitative version and
is obtained by Bosser [3] for a quantitative result. For a more detailed discussion, see Section 4.

In Section 5 we prove our main result. We treat the case where K is generic Fq [T ]-
characteristic in Section 5.1 and then the case of finite characteristic in Section 5.2. A key tool for
combining the local information obtained in the previous sections is the canonical height ĥρ as-
sociated to the Drinfeld module ρ in question (see Section 5 for definition). The canonical height
associated to a Drinfeld module was introduced in [6] which is an analogue of the Néron–Tate
height on Abelian varieties (see [13] for the definition and properties). For z ∈ ρK , its canonical
height ĥρ(z) can be thought of as a measurement of the arithmetic complexity of the orbit of z
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under the action of Fq [T ]. If z is not a torsion, then its canonical height ĥρ(z) is positive. The
idea of the proof is to evaluate An := ∑

n℘v℘(Φρ,n(z)) where Φρ,n(X) is a an analogue of the
cyclotomic polynomial for monic n ∈ Fq [T ] in the setting of Drinfeld modules and the sum is
taken over all places ℘ of K with n℘, v℘ the local degree and the normalized valuation at ℘,
respectively. If n is not the order of z modulo ℘ for any place ℘ of K , then we show that An has
an upper bound of the form ϕr(n)(−ĥρ(z) + O(q−γ degn)) for some fixed positive constant γ .
Here, ϕr is a positive function of non-zero elements in Fq [T ] and the implied constant in the
minor term is independent of n (see Section 5 for details). As ĥρ(z) is positive, we see that the
upper bound is negative if the degree of such monic polynomial n is large enough. On the other
hand, we have An = 0 by the product formula. From this, our main result follows.

2. Preliminaries

In this section, we gather some basic facts of the theory of Drinfeld modules and fix some
notations which will be needed in this paper. To ease the notations, we use A to denote the ring
of polynomials Fq [T ] and k the rational function field Fq(T ) in the variable T over the finite
field Fq , where q is the cardinality of Fq . As usual, the degree function on polynomials is denoted
by deg(·) and its extension to k is also denoted by deg(·).

A field F is called an A-field if it is equipped with a structural ring homomorphism ιF :
A → F . If F is a global function field, the following notations will be used.

Notations:

MF the set of places of F ,
F℘ the completion of F at the place ℘ ∈ MF ,
O℘ the ring of integers of F℘ ,
π℘ a uniformizer at the place ℘,
v℘ the normalized valuation at the place ℘ ∈ MF such that v℘(π℘) = 1,
F℘ the residue field at the place ℘,
n℘ = dimFq

F℘ , the degree of F℘ over Fq ,
|n| = qdegn, the norm of element n ∈ k,
A+ the subset of monic polynomial of A.

2.1. Drinfeld modules

Let F be an A-field and let τ = (x �→ xq) be the qth power Frobenius endomorphism of Ga .
Denote by F {τ } the twisted polynomial ring which is generated by F and τ subjected to the
relation that τα = αqτ for all α ∈ F . A Drinfeld (A-)module over F is a ring homomorphism

ρ : A → F {τ }
such that

(i) ρT �= ιF (T ) where ρa denotes the image of a ∈ A, and
(ii) ρT = g0τ

0 + g1τ + · · · + grτ
r , for some positive integer r , called the rank of ρ and gi ∈ F

(0 � i � r), such that g0 = ι(T ) and gr �= 0.

Let P = ker(ιF ). If P = (0) then we say that F is of generic A-characteristic; otherwise ρ is
of finite A-characteristic. To ease the notation, if F is of generic characteristic we will identify A
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with its image ιF (A) ⊂ F and regard F as an extension of k. If F is of finite characteristic, let
p be the monic generator of P and call p the A-characteristic of F . The additive group Ga(F )

of F is equipped with an A-module structure via ρ and will be denoted by ρF . If no confusion
arises, we will also call ρ the Drinfeld module to mean the additive group Ga together with the
A-action induced by ρ. Note that

ρT (x) = g0x + g1x
q + · · · + grx

qr

is the image of x ∈ F̄ under ρT where F̄ is a fixed algebraic closure of F .
The leading coefficient of ρn in τ will be denoted by Δn for any n ∈ A where Δ0 = 0 by

convention. By definition we have ΔT = gr and for non-zero n ∈ A

Δn = αnΔ
γn

T where αn is the leading coefficient of n and γn = (|n|r − 1
)
/
(
qr − 1

)
. (1)

A point α ∈ ρF̄ is called a torsion point of ρ if there exists a non-zero n ∈ A such that ρn(α) = 0.
We will denote the set of n-torsion of ρ by ρ[n] and the submodule of torsion points of ρF

by ρtor(F ).

2.2. The reduction of a Drinfeld module

In this subsection, we recall the notion of the reduction of a Drinfeld. Assume that F is a
local field complete with respect to a discrete valuation v. Let O be the ring of integers and let
M = (π) be the maximal ideal of F where π is a uniformizer of F . Assume further that the
residue field Fv := O/M is a finite field containing Fq . Let nv = dimFq

Fv . Let ρ be a Drinfeld
module defined over F such that

ρT = g0τ
0 + g1τ + · · · + grτ

r , gi ∈ O, ∀i = 0, . . . , r.

In this case we say that ρ is defined over O. Note that our assumption on g0 ∈ O implies that
ιF (A) ⊂ O. Thus, the residue field Fv has an A-field structure induced from that of F and the
characteristic of Fv is finite. Let p be the characteristic of Fv . In particular, we have ιF (p) ∈ M.
The reduction ρ̄ of ρ is well defined and determined by

ρ̄T = ḡ0τ
0 + ḡ1τ + · · · + ḡr τ

r

where the bar denotes the reductions of gi modulo the maximal ideal M. The Drinfeld module ρ

is said to have good reduction if ρ is defined over O and ḡr �= 0; otherwise it has bad reduction.
We see that ρ̄ induces a Drinfeld module structure of rank l � r over Fv . Moreover, l = r if and
only if ρ has good reduction.

Assume that ρ has good reduction and let q be a monic irreducible polynomial which is
different from p. The Tate module

Tq(ρ̄) = lim←−


ρ̄
[
q

]

gives rise to a q-adic representation of End(ρ̄). The geometric Frobenius Frobv := τnv of Ga acts
on the Tate module Tq(ρ̄). Let Lp(X) be the characteristic polynomial associated to Frobv . Then
Lp(X) is a monic polynomial of degree r with coefficients in A which is independent of q. Let

Lp(X) = Xr − a1X
r−1 + · · · + (−1)rar , ai ∈ A.
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The following properties of Lp(X) are well known (see [8] or [10, §4.12]).

Proposition 2.1.

(a) We have deg(ai ) � inv/r for i = 1, . . . , r and deg(ar ) = nv .
(b) The ideal generated by Lp(1) annihilates the finite A-module ρFv .

For any positive integer i, the quotient Fi := O℘/Mi is a finite A-module via the action given
by ρ modulo Mi .

Lemma 2.2. The finite A-module Fi is annihilated by the ideal generated by pi−1Lp(1).

Proof. To ease the notation, let χi = pi−1Lp(1). Let α ∈ O be arbitrary. We need to show that
ρχi

(α) ∈ Mi . By Proposition 2.1(b), we have ρχ1(α) ∈ M.
We notice that ρχi

(α) = ρp(ρχi−1(α)) for i > 1. On the other hand, we have

ρp(x) = ιF (p)x + higher terms in x.

Thus, v(ρp(α)) � v(α) + 1 if v(α) > 0. The lemma now follows by induction on i. �
2.3. Statement of the main result

From now on, we will reserve the notation K for a fixed global function field which is assumed
to be an A-field with structural homomorphism ι : A → K . We use the symbol ∞ to denote the
unique place of k where T has a pole. A place ℘ of K is said to be a finite place if ι(T ) does not
have a pole at ℘; otherwise it is a infinite place of K . Note that K has infinite places only if K

is of generic A-characteristic. In this case, the set of infinite places of K is denoted by M∞
K . In

the case of finite characteristic p, the Drinfeld module ρ is called supersingular if ρp = Δpτ rd

where d = deg(p); otherwise it is called ordinary.
Given a non-torsion point z ∈ ρK of ρ, let Sρ,z be the subset of places ℘ of K where ρ has

bad reduction at ℘ or z is not ℘-integral. Let ℘ /∈ MK \ Sρ,z and let z̄℘ denote the reduction
of z modulo ℘. The annihilator of z̄℘ ∈ ρF℘ is a non-zero ideal of A and its monic generator is
denoted by d℘ which we call the order of z modulo ℘. Analogous to the case of the multiplicative
group over a number field, our main result is the following.2

Theorem 2.3. Let z ∈ ρK be a non-torsion point of ρ. Let B = A+,p, the set of monic polynomials
which are prime to p, if K is of finite A-characteristic p and ρ is supersingular; otherwise
B = A+. Then, for all but finitely many n ∈ B there is a place ℘ of K such that n is the order d℘

of z modulo ℘.

3. AAA-orbits over K℘ for ℘ a finite place of K

In this section, we study the orbits of non-torsion points of a Drinfeld module ρ over a com-
plete local field. Let ℘ be a fixed finite place of K . The complete local field K℘ has an A-field

2 The author was informed that the same result was obtained by Ghioca and Tucker [9] for the generic characteristic
case using their equidistribution theorem for Drinfeld modules.
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structure induced from that of K via the embedding K ↪→ K℘ . Recall that ρ is a Drinfeld module
of rank r defined over K given by

ρT = g0τ
0 + g1τ + · · · + grτ

r , g0 = ι(T ), gr �= 0.

By abuse of the notation, we will still use ι : A → K℘ to denote the structural homomorphism and
consider ρ as a Drinfeld module defined over the complete field K℘ . Note that, as ℘ is a finite
place of K we must have ι(T ) ∈ O℘ and therefore, ι(A) ⊂ O℘ . As in Section 2.2, we denote the
A-characteristic of ρF℘ by p and let d be the degree of p. For the convenience of our discussion
below, we also fix the coefficients of ρp as follows:

ρp = h0τ
0 + h1τ + · · · + hrdτ rd ,

h0 = ι(p), hrd �= 0.

Note that since p is the characteristic of F℘ , we must have v℘(p) > 0. Replacing T by T + 1 as a
generator of A over Fq if necessary, we will make the assumption that p �= T . As a consequence,
we have that v℘(g0) = 0. As usual, the maximal exponent of p dividing n is denoted by ordp(n).

We first give a quantitative description of the subset of K℘ consisting of points z ∈ K℘ whose
A-orbits {ρn(z) | non-zero n ∈ A} are unbounded with respect to ℘-adic topology.

Proposition 3.1. There exists an integer l∞ < −v℘(ΔT )/(qr − 1) so that for z ∈ K℘ with
v℘(z) � l∞ we have

v℘

(
ρn(z)

) = v℘

(
Δnz|n|r )

= |n|r
{
v℘(z) + v℘(ΔT )

qr − 1

}
− v℘(ΔT )

qr − 1
(2)

for all non-zero n ∈ A.

Proof. Put

 = min

{
v℘(gi) − v℘(ΔT )

qr − qi

∣∣∣ gi �= 0, 0 � i < r

}
.

Then,  � (v℘(g0) − v℘(ΔT ))/(qr − 1) = −v℘(ΔT )/(qr − 1). Let z ∈ K℘ be such that

v℘(z) < . Then v℘(ΔT zqr
) < v℘(giz

qi
) for all i = 0, . . . , r − 1. Hence,

v℘

(
ρT (z)

) = v℘

(
ΔT zqr ) = |T |rv℘(z) + v℘(ΔT ).

Note that v℘(ρT (z)) < v℘(g0z) = v℘(z) < . It follows by induction that for integer n � 1,

v℘

(
ρT n(z)

)
< v℘

(
ρT n−1(z)

)
< · · · < v℘

(
ρT (z)

)
< v℘(z) < , (3)

v℘

(
ρT n(z)

) = ∣∣T n
∣∣rv℘(z) + v℘(ΔT n). (4)
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Let n = ∑n
i=0 αiT

i be a non-zero element of A. It follows from (3) and (4) that

v℘

(
ρn(z)

) = v℘

(
ραnT n(z)

) = ∣∣T n
∣∣rv℘(z) + v℘(ΔT n).

Note that Δn = αnΔT n = αnΔ
γn

T by (1) and |n| = |T n|, we have

v℘

(
ρn(z)

) = |n|rv℘(z) + |n|r − 1

qr − 1
v℘(ΔT )

= |n|r
{
v℘(z) + v℘(ΔT )

qr − 1

}
− v℘(ΔT )

qr − 1

as desired. Take l∞ = [] if  /∈ Z; otherwise l∞ = − 1. Then it is clear that l∞ has the property
as claimed. �
Remark 1. (a) It follows from the proof of Proposition 3.1 that the constant l∞ depends on ρ and
℘ only and can be determined effectively. For a finite place ℘ of K , we let ∞,℘ be the maximum
of integers l∞ < −v℘(ΔT )/(qr − 1) such that the identity (2) in Proposition 3.1 holds. Then, by
rewriting (2) as

v℘

(
ρn(z)

) = v℘(z) + (|n|r − 1
){

v℘(z) + v℘(ΔT )

qr − 1

}
,

it follows that for non-zero n ∈ A we have v℘(ρn(z)) � v℘(z) � ∞,℘ provided that
v℘(z) � ∞,℘ .

(b) We will call a non-torsion point z ∈ ρK℘ having (℘-adically) unbounded A-orbit if the
orbit {ρn(z) | n ∈ A} of z is unbounded with respect to ℘-adic topology; otherwise we say that
it has bounded A-orbit. As a consequence of Proposition 3.1, if z has unbounded A-orbit then
v℘(ρn(z)) � ℘,∞ for some n ∈ A+.

Corollary 3.2. Let z ∈ ρK℘ be a non-torsion point with unbounded A-orbit. Then, there exists a
constant δ℘,z > 0 depending only on ℘ and z such that

v℘

(
ρn(z)

) = −δ℘,z|n|r + O(1)

for all non-zero n ∈ A, where the implied constant in O(1) is independent of n.

Proof. Since z has unbounded orbit we must have v℘(ρa(z)) � ∞,℘ for some a ∈ A+. Let b

be such a polynomial for z whose degree is minimal. Let n ∈ A be given and let c, r ∈ A be such
that n = cb + r with 0 � deg(r) < deg(b) or r = 0.

Notice that if c �= 0 then v℘(ρcb(z)) = v℘(ρc(ρb(z))) � ∞,℘ by Remark 1(a) and if r �= 0
then v℘(ρr(z)) > ∞,℘ by the choice of b. Therefore, if deg(n) � deg(b) then
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v℘

(
ρn(z)

) = v℘

(
ρcb(z)

)

= |c|r
{
v℘

(
ρb(z)

) + v℘(ΔT )

qr − 1

}
− v℘(ΔT )

qr − 1
by Proposition 3.1

= −δ℘,z|n|r − v℘(ΔT )

qr − 1
where δ℘,z = −1

|b|r
{
v℘

(
ρb(z)

) + v℘(ΔT )

qr − 1

}
> 0.

On the other hand, for non-zero r ∈ A such that 0 � deg(r) < deg(b), we may write

v℘

(
ρr(z)

) = −δ℘,z|r|r + {
v℘

(
ρr(z)

) + δ℘,z|r|r
}
.

Note that there are only finitely many r such that 0 � deg(r) < deg(b). Thus we may conclude
that |v℘(ρn(z)) + δ℘,z|n|r | is bounded above by a constant independent of non-zero n ∈ A. This
completes the proof. �

Now we describe the subset of points of K℘ whose orbits under the A-action remain
(℘-adically) bounded. Notice that if K is of generic A-characteristic, then K℘ is also of generic
A-characteristic. In our discussion below, if K is of generic characteristic then we will iden-
tify A with its image in K℘ under the structural homomorphism ι : A → K℘ . If K is of finite
characteristic p, then we have h0 = 0 and in fact

ρp = hf dτf d + · · · + hrdτ rd , hf d �= 0,

for some positive integer f � r . To ease the notation, we set Hρ := hf d for the case of finite
A-characteristic.

Proposition 3.3. There exists an integer l0 depending only on ρ and ℘ so that for z ∈ K℘ with
v℘(z) � l0 and for all non-zero n ∈ A the following hold:

(a) if K℘ is of generic characteristic then

v℘

(
ρn(z)

) = v℘(z) + v℘(n);

(b) if K℘ is of finite characteristic p then

v℘

(
ρn(z)

) = ∣∣pf
∣∣ordp(n)

v℘(z) +
{ |pf |ordp(n) − 1

|pf | − 1

}
v℘(Hρ).

Proof. (a) Assume that K℘ is of generic characteristic. Set

 = max

{
v℘(gi)

1 − qi
,
v℘(hj ) − v℘(h0)

1 − qj

∣∣∣ gi �= 0, hj �= 0, 1 � i � r, 1 � j � rd

}
.

For a positive integer n, we will write ρpn(z) = pnz + gn(z) and ρT n(z) = T nz + fn(z). Note
that fn(z), gn(z) are Fq -linear polynomials in z with coefficients in K℘ . Let z ∈ K℘ satisfying
v℘(z) > . Then, it follows by induction that
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v℘

(
T nz

)
< v℘

(
fn(z)

)
and (5)

v℘

(
pnz

)
< v℘

(
gn(z)

)
. (6)

Consequently, the strong triangle inequality yields

v℘

(
ρT n(z)

) = v℘

(
T nz

)
and (7)

v℘

(
ρpn(z)

) = v℘

(
pnz

)
. (8)

Let N = {z ∈ K℘ | v℘(z) > }. Then, ρT gives rise to a self map of N by (7). As N is a
Fq -vector space and ρa(a ∈ A) are Fq -linear maps, N is stable under the A-action via ρ. Let
z ∈ N and a = ∑n

i=0 αiT
i, αi ∈ Fq . Then, ρa(z) = az+∑d

i=0 αifi(z). If v℘(a) = 0, applying (5)
we see that v℘(ρa(z)) = v℘(az) = v℘(z). For any non-zero n ∈ A, write n = pmn′ where m =
ordp(n) and p � n′. Since ρn(z) = ρpm(ρn′(z)), we see that v℘(ρn(z)) = v℘(pmρn′(z)) by (8).
Therefore, v℘(ρn(z)) = v℘(ρn′(z)) + v℘(pm) = v℘(z) + v℘(n) and (a) is proved.

(b) Assume that K℘ is of characteristic p and set

′ = max

{
v℘(gi)

1 − qi
,
v℘(hj ) − v℘(Hρ)

|pf | − qj

∣∣∣ gi �= 0, hj �= 0, 0 < i � r, f d < j � rd

}
.

Notice that if v℘(z) > ′ then by the same arguments as in (a), we have

v℘

(
ρT n(z)

) = v℘

(
gn

0z
)

and v℘

(
ρpn(z)

) = v℘

(
Hu(n)

ρ z|pf |n)

where u(n) = (|pf |n − 1)/(|pf | − 1). As in (a), we let N = {z ∈ K℘ | v℘(z) > ′}. Then N is
stable under the A-action and v℘(ρa(z)) = v℘(z) for a relatively prime to p. Let n ∈ A be given
and let write n = pmn′ where m = ordp(n). Then,

v℘

(
ρn(z)

) = v℘

(
ρpm

(
ρn′(z)

))

= v℘

(
Hu(m)

ρ

(
ρn′(z)

)|pf |m)

= ∣∣pf
∣∣mv℘(z) +

{ |pf |m − 1

|pf | − 1

}
v℘(Hρ).

This proves (b). �
We let 0,℘ to be the smallest integer so that Proposition 3.3 holds. We will need to be able to

determine a lower bound of 0,℘ . As a consequence of Proposition 3.3, if ρ is defined over O℘

then we have the following results.

Corollary 3.4. Assume that ρ is defined over O℘ .

(i) In the case where K℘ is of generic A-characteristic, if v℘(z) > [v℘(p)/(|p| − 1)] then

v℘

(
ρn(z)

) = v℘(z) + v℘(n).
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(ii) In the case where K℘ is of finite A-characteristic p, if v℘(Hρ) = 0 and if v℘(z) > 0 then

v℘

(
ρn(z)

) = ∣∣pf
∣∣ordp(n)

v℘(z).

Proof. (i) By the commutative relation ρpρT = ρT ρp we have that

hl

(
g

ql

0 − g0
) =

∑
i+j=l, j<l

gih
qi

j −
∑

i+j=l, j<l

hjg
qj

i (9)

where by our convention g0 = T . On the other hand, we note that by assumption we have
v℘(gi) � 0. Therefore, v℘(gi)/(1 − qi) � 0. Let ξ be the image of T in Fp = A/(p). Then ξ

generates the finite field Fp over Fq . It follows that ξ, ξq, . . . , ξqd−1
are distinct conjugates of ξ

over Fq . Therefore, p � (T qi − T ) for i = 1, . . . , d − 1. As v℘ is an extension of p-adic valuation

of kp ⊂ K℘ we see that v℘(T qi − T ) = 0 for i = 1, . . . , d − 1. It follows by induction that

v℘(hi) � v℘(h0) = v℘(p) for i = 0, . . . , d − 1.

Now, for i = 1, . . . , d − 1, we obviously have v℘(p)/(qd − 1) � 0 � (v℘(p) − v℘(hi))/(q
i − 1).

For the case where i � d ,

v(p)

qd − 1
� v(p)

qi − 1
� v(p) − v(hi)

qi − 1
.

Hence, v℘(p)/(qd − 1) � ′ where ′ is as defined in the proof of Proposition 3.3(a). As v℘(z) >

[v℘(p)/(qd − 1)] we have

v℘(z) �
[
v℘(p)/

(
qd − 1

)] + 1 > v℘(p)/
(
qd − 1

)
� ′.

Now (i) follows by applying Proposition 3.3(a).
(ii) In the finite characteristic case, we note that under the assumption v℘(Hρ) = 0 the constant

′ < 0 in the proof of Proposition 3.3(b). Now (ii) is just a special case of Proposition 3.3(b). �
Remark 2. (a) Let N0,℘ = {x ∈ K℘ | v℘(x) � 0,℘} and let N∞,℘ = {x ∈ K℘ | v℘(x) � ∞,℘}.
Then, Propositions 3.1 and 3.3 say that the neighborhood N0,℘ of 0 and the neighborhood N∞,℘

of the point at “infinity” are both invariant under the A-action.
(b) Assume that ρ has good reduction at ℘. Then it is not hard to see that ∞,℘ = −1. If,

furthermore, deg(p) is large enough so that |p| > v℘(p) + 1, then 0,℘ = 1.

Corollary 3.5. Let z ∈ K℘ be a non-torsion point of ρ. Let n be any non-zero element of A.

(i) Suppose that K℘ is of generic A-characteristic. Then there exists a constant c℘ depending
only on ρ,℘ and z such that

v℘

(
ρn(z)

)
� v℘(z) + v℘(n) + c℘.
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(ii) Suppose that K℘ is of finite A-characteristic p. Then there exits a non-zero b ∈ A+ such that

v℘

(
ρn(z)

)
�

∣∣pf
∣∣ordp(n/b)

v℘

(
ρb(z)

) +
{ |pf |ordp(n/b) − 1

|pf | − 1

}
v℘(Hρ)

where by convention ordp(n/b) = 0 if n is not divisible by b.

Proof. We first claim that for each z ∈ K℘ there exist an a ∈ A+ such that either v℘(ρa(z)) �
∞,℘ or v℘(ρa(z)) � 0,℘ . Notice that the claim is obviously true if already v℘(z) � ∞,℘ or
v℘(z) � 0,℘ . Let us assume that v℘(z) � ∞,℘ + 1 and suppose that there is no n ∈ A such that
v℘(ρn(z)) � ∞,℘ . Let N0 := {x ∈ K℘ | v℘(x) � ∞,℘ +1}. Then N0 is a compact neighborhood
of 0 with respect to the ℘-adic topology. It follows that N0 is covered by finitely many disks of
the form D(α) = {x ∈ K℘ | v℘(x − α) � 0,℘} with α ∈ N0. By the assumption that ρn(z) ∈ N0
for all n ∈ A and the fact that z is a non-torsion point, we see that its A-orbit {ρn(z) | n ∈ A}
is an infinite subset of N0. Therefore there exist distinct n,n′ ∈ A+ such that v℘(ρn(z) −
ρn′(z)) � 0,℘ . Thus, v℘(ρn−n′(z)) = v℘(ρn(z) − ρn′(z)) � 0,℘ and our claim is proved by
taking a to be n − n′ divided by its leading coefficient.

Our claim above implies that for each z ∈ K℘ , there exists a bz ∈ A+ with minimal degree
such that either v℘(ρbz

(z)) � ∞,℘ or v℘(ρbz
(z)) � 0,℘ . Let z ∈ K℘ be a given non-torsion

point and denote by b = bz if no confusion will arise. Let n ∈ A be a given non-zero element and
write n = cb + r, for unique c, r ∈ A such that 0 � deg(r) < deg(b) or r = 0.

(i) (K℘ is of generic characteristic.) Let

c℘ = max
({∣∣v℘

(
ρr(z)

) − v℘(z)
∣∣ ∣∣ deg(r) < deg(b), r �= 0

} ∪ {∣∣v℘

(
ρb(z)

) − v℘(z)
∣∣}).

Let us first treat the case where z has unbounded A-orbit. Then, v℘(ρb(z)) � ∞,℘ . Now
v℘(ρn(z)) = v℘(ρcb(z) + ρr(z)). Applying Proposition 3.1 if c �= 0, it is not hard to deduce
that v℘(ρn(z)) − v℘(z) � c℘ in this case.

Next, we assume that z has bounded A-orbit. Then v℘(ρb(z)) � 0,℘ . Since v℘(ρcb(z)) �
0,℘ > v℘(ρr(z)), we have

v℘

(
ρn(z)

) = ρr(z) < 0,℘ � v℘

(
ρb(z)

)
if r �= 0;

otherwise, if r = 0 then by Proposition 3.3(a), we have

v℘

(
ρn(z)

) = v℘

(
ρb(z)

) + v℘(c)

� v℘

(
ρb(z)

) + v℘(n).

The last inequality follows from the fact that v℘(n) � 0 for any non-zero n ∈ A. In both cases,
we see that v℘(ρn(z)) − v℘(z) � v℘(n) + c℘ as desired.

(ii) (K℘ is of finite characteristic p.) Let b = bz then either v℘(ρb(z)) � 0,℘ or
v℘(ρb(z)) � ∞,℘ . Thus, the proof is reduced to the case where b = 1 together with the condition
that v℘(z) � 0,℘ or v℘(z) � ∞,℘ .

If v℘(z) � 0,℘ then the assertion follows from Proposition 3.3(b). If v℘(z) � ∞,℘ then
we observe that v℘(ρn(z)) = v℘(Δnz|n|r ) � v℘(z) by Remark 1(a). Let m = ordp(n) and write
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n = pmn′. Since v℘(ρn(z)) � v℘(z) it follows that (ii) is true if m = 0. Put y = ρn′(z) and note
that

ρpm(y) = Hu(m)
ρ y|pm|f + · · · + Δpmy|pm|r

where u(m) = (|pf |m − 1)/(|pf | − 1). From the proof of Proposition 3.3(b), we see that

v℘(ρpmy) = v℘

(
Δpmy|pm|r ) � v℘

(
Hu(m)

ρ y|pm|f )
.

The proof is now completed simply by observing that v℘(y) � v℘(z) by Remark 1(a). �
Remark 3. (a) Assume that ρ has good reduction at ℘. If for z ∈ K℘ with v℘(z) = 0 then
bz | L℘(1) as L℘(1) annihilates the finite A-module F℘ by Proposition 2.1(b).

(b) Regarding ρT as a polynomial map over K℘ on P1/K℘ , one can ask if ρT extends to
a morphism over O℘ on P1/O℘ . This is the case if ρ has good reduction at ℘. If ρ does not
have good reduction at ℘ but if ℘ is a finite place of K then a modification of the proof of
Propositions 3.1 and 3.3 can show that there exists a weak Neron model [11] X for ρT .

(c) By definition we have bz = 1 if v℘(z) � ∞,℘ or v℘(z) � 0,℘ . In fact, the set {bz | z ∈ K℘}
is finite. To see this, we note by Proposition 3.3 that bz depends only on the disk D(z) = z+N0,℘

and is independent of the choice of the center. As there are only finitely many disks of this type
in

U = {
x ∈ K℘

∣∣ ∞,℘ + 1 � v℘(x) � 0,℘ − 1
}

and bz = 1 for z /∈ U . It follows that {bz | z ∈ K℘} is a finite set.

4. AAA-orbits over K∞

In this section, we assume that K is of generic A-characteristic and K is viewed as a finite
extension of k. Let D = [K : k] be the extension degree of K over k. We fix an infinite place
of K . To simplify the notation, we also denote it by ∞ if no confusion arises. Then K∞ will be
the completion of K at ∞ and O∞ denotes the ring of integers of K∞. Similarly, v∞ will be the
normalized valuation of K∞. Let e∞ be the ramification index of K∞ over k∞ = Fq((1/T )).
Note that the degree function deg has a unique extension to K∞ so that v∞(·) = −e∞ deg(·). As
one usually does for the infinite place of a function field, we will use deg instead of v∞ as our
valuation at the infinite place of K . Let C∞ denote the completion of an algebraic closure of K∞.
The extension of the degree function on C∞ will still be denoted by deg. For any α ∈ C∞, its
absolute value is defined to be |α| := qdegα .

By the analytic uniformization theorem for Drinfeld modules [7], there exists an A-lattice Λρ

over K∞ and an Fq -linear, ∞-adic entire function eρ(z) associated to ρ such that ρn(eρ(z)) =
eρ(nz) for all n ∈ A, where eρ(z) is defined by

eρ(z) = z
∏

0�=λ∈Λρ

(
1 − z

λ

)
.

Note that, Λρ = ker eρ is the lattice of periods of eρ .
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4.1. Linear forms in Drinfeld logarithms

We briefly recall some results in [3] on lower bounds of linear forms in logarithms for Drinfeld
modules. Following the notations in [3], we let ρ0 denote the trivial Drinfeld module such that
ρ0,T (x) = T x. Let ρ1, . . . , ρn denote Drinfeld modules of rank d1, . . . , dn over K such that

ρi,T = ai,0τ
0 + · · · + ai,di

τ di for i = 1, . . . , n.

Let G = (Gn+1
a ,Φ) where Φ = ρ0 × ρ1 × · · · × ρn and call G a product of Drinfeld modules

ρ0, . . . , ρn. Thus, G becomes an A-module via the diagonal A-action. The map

expG : Cn+1∞ → Cn+1∞ defined by expG(z0, z1, . . . , zn) = (
z0, eρ1(z1), . . . , eρ1(zn)

)

will be called the exponential map associated to Φ . Let Λ1, . . . ,Λn be the corresponding lattices
of periods of eρ1, . . . , eρn . Let λi be a period of eρi

such that degλi is minimal among non-zero
periods of eρi

for i = 1, . . . , n.
Let N be a nonnegative integer. For any point x = (x0, x1, . . . , xN) ∈ PN(K), let h(x) be its

(logarithmic) height which is defined by the following formula

h(x) = h(x0, . . . , xN) = 1

D

∑
℘∈MK

n℘ max
{−v℘(xi); 0 � i � N

}

where n℘ = dimFq
F℘ (Section 2). Moreover, the height of G is defined to be h(G) :=

h(1, a1,0, . . . , an,di
). The following is Theorem 1.1 of [3].

Theorem 4.1. Let G = (Gn+1
a , ρ0 × · · · × ρn) be a product of A-modules defined over K . Let

H(x) = β0x0 + · · · + βnxn be a non-zero linear form defined over K . Let u1, . . . , un be elements
of C∞ such that, for all 1 � i � n, eρi

(ui) ∈ K . Set γi = eρi
(ui), and δ = [K∞(u1, . . . , un) : K∞]

which is finite. Let B,E,V1, . . . , Vn and h be constants satisfying the following conditions

logB � max
{
e,h(β1), . . . , h(βn)

}
,

logVi � max

{
h(γi),

|ui |di

D|λi |di

}
, logV1 � · · · � logVn � e,

h � h(G),

e � E � min

{
e(D logVi)

1/di
|λi |
|ui | , 1 � i � n

}
.

Put d = d1 +· · ·+dn and u = (1, u1, . . . , un) ∈ Cn+1∞ . If H(u) �= 0 then there exists a computable
positive constant C depending only on q,n and d such that

deg
(
H(u)

)
� −C(Dh)d+2δd+1(logB)

( ∏
1�i�n

logVi

)(
log+ δ

)d+2

× (
log(Dh) + log logV1

)
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× (
log logB + log(Dh) + log logV1

)d+1−n

× (logE)−(n−1)

where log+(x) = max{0, x} for real x.

Let λ1, . . . , λr be a basis for the A-lattice Λρ = ker eρ . By a successively minimum basis of
Λρ we mean a basis λ1, . . . , λr for the A-lattice Λρ such that 0 < degλ1 � · · · � degλr and their
degrees are minimal with this property. We shall choose λ1, . . . , λr to be a successive minimum
basis of Λρ . Note that, λ1, . . . , λr may not be unique but their degrees are. The following is a
corollary to Theorem 4.1.

Proposition 4.2. Let n be a non-constant element of A and let a1, . . . ,ar be any r element of A.
Let u ∈ C∞ be such that eρ(u) = z ∈ K which is not a torsion point of the Drinfeld module ρ.
Then, for any given ε > 0 there exists a constant Cε > 0 depending only on ρ and u such that

deg(a1λ1 + · · · + arλr − nu) � −Cε(degn)1+ε .

Proof. Since z is not a torsion point of ρ, it follows that a1λ1 + · · · + arλr − nu �= 0. It suffices
to prove the proposition in the case where

deg(a1λ1 + · · · + arλr − nu) < deg(nu).

Note that in this case, we must have deg(a1λ1 + · · · + arλr) = deg(nu). On the other hand, as
λ1, . . . , λr are successive minimum of Λρ , we have [17, Lemma 4.2]

deg(a1λ1 + · · · + arλr) = max
{
deg(a1λ1), . . . ,deg(arλr )

}
.

Therefore, deg(aiλi) � deg(n) + deg(u) � c1 deg(n) for some positive constant c1 which may
be chosen to depend on u only.

Let G = (Gr+2
a ,Φ) be the product of ρ0 with (r + 1)-copies of ρ. Let

H(x) = a1x1 + · · · + arxr − nxr+1.

We regard H(x) as a linear form on Cr+2∞ . Let u = (1, λ1, . . . , λr , u). Then, H(u) is non-zero.
Let

logB = max
{
e, c1 deg(n)

}
, (10)

logVr+1 = max

{
e,h(z),

|u|r
D|λ1|r

}
,

logVi = max

{ |λi |r
D|λ1|r , logVi+1

}
, 1 � i � r,

h = max
{
deg(g0), . . . ,deg(gr)

}
,

E = min

{
e(D logVi)

1/r |λ1|
, 1 � i � r, (e logVr+1)

1/r |λ1|}
.
|λi | |u|
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It is not difficult to check that these constants satisfy the condition required in Theorem 4.1.
By Theorem 4.1, deg(H(u)) has a lower bound depending on deg(λi),deg(u) and constants
B,E,V1, . . . , Vr+1. Note that all the above constants but logB are independent of deg(n). Ap-
plying Theorem 4.1, we get

deg
(
H(u)

)
� −c2(logB)(log logB + c3)

r2

where in the expression, we use c2 and c3 to denote products of all the constants which
are independent of degn. We choose the constant c1 in (10) large enough so that logB =
c1 deg(n) � e for all non-constant n ∈ A. Let ε > 0 be given. Then the quantity

c1c2(log(c1 deg(n)) + c3)
r2

deg(n)ε

is bounded above as deg(n) increases. Let cε be the least upper bound. Then,

deg
(
H(u)

)
� −cε(degn)1+ε .

Note that in the above inequality, cε is chosen to depend on c1, c2, c3, ε and r . Thus, cε depends
on ρ,u and ε only. This completes the proof of the proposition. �
4.2. A lower bound for the degrees of an A-orbit

Since ρ is a Drinfeld module defined over K∞, the lattice Λρ is contained in a finite separable
extension L of K∞ [10, Theorem 4.6.9]. Note that Λρ ⊗A k as well as the torsion submodule
ρtor = eρ(Λρ ⊗A k) are also contained in L [10, Remark 4.3.6].

Remark 4. (a) Since |ρ′
a(z)| = |a| > 1 for every non-constant a ∈ A, it follows that every α ∈

ρtor is a repelling (pre)periodic point for the ∞-adic dynamical systems associated to the maps
ρa(X). The closure of ρtor in C∞, denoted by Jρ , is the Julia set associated to the ∞-adic
dynamical systems of ρa for a ∈ A (cf. [11,12]).

(b) Since ρtor is bounded and contained in L, it follows that Jρ is contained in L and is a
compact subset of C∞ (with respect to the ∞-adic topology). Let Fρ = P1(C∞) \ Jρ . Then, Jρ

as well as Fρ are stable under the A-action.

Let n ∈ A be given. Recall that

ρn(z) = ρn

(
eρ(u)

) = eρ(nu) = nu
∏

0�=λ∈Λρ

(
1 − nu

λ

)
.

Therefore, to estimate deg(ρn(z)) we need to count the elements of the A-lattice Λρ whose
degree is bounded by deg(nu).

As Λρ is discrete in C∞, there are only finitely many lattice elements λ ∈ Λρ whose degrees
are bounded above. To simplify our discussion below, we shall assume that deg(L∗) = Z as it
is not difficult to generalize our argument to the general situation. Put  = deg(nu). For any
integer s, define the following two sets
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L(s) = {
λ ∈ Λρ

∣∣ deg(λ − nu) �  − s
}
,

L(s) = {
λ ∈ Λρ

∣∣ deg(λ) �  − s
}
.

Clearly, we have L(s) ⊇ L(s + 1) and L(s) ⊇ L(s + 1) for all s ∈ Z. Note that, the set L(s) is
empty if s is large enough. Moreover, if  /∈ Z then L(s) is empty for positive integers s. To see
this, we note that since  /∈ Z it follows deg(λ) �= deg(nu) for any λ ∈ Λρ . We thus have either
deg(λ − nu) = deg(λ) if deg(λ) >  or deg(λ − nu) =  otherwise. Both cases will lead to the
conclusion that L(s) is empty. On the other hand, the set L(s) is a finite-dimensional vector space
over Fq .

Lemma 4.3. If L(s) is non-empty, then there exists a one-to-one correspondence between sets
L(s) and L(s).

Proof. Let λ0 be any fixed element of L(s) which is non-empty by assumption. Let f :L(s) →
L(s) be defined by f (λ) = λ0 + λ for λ ∈ L(s). The map f is well defined since

deg
(
f (λ) − nu

) = deg(λ0 − nu + λ)

� max
{
deg(λ0 − nu),deg(λ)

}
�  − s.

Clearly, f is one-to-one. We claim that f is surjective. To see this, let λ′ ∈ L(s) be given.
Then,

deg(λ′ − λ0) � max
{
deg(λ′ − nu),deg(λ0 − nu)

}
�  − s.

It follows that λ′ − λ0 ∈ L(s). Thus λ′ = f (λ) = λ0 + λ for some λ ∈ L(s). This completes the
proof of the lemma. �

Let

L0(s) = L(s) \ L(s + 1) = {
λ ∈ Λρ

∣∣ deg(λ − nu) =  − s
}
,

L0(s) = L(s) \L(s + 1) = {
λ ∈ Λρ

∣∣ deg(λ) =  − s
}
.

Let |S| denote the cardinality of a finite set S. If L(s + 1) is non-empty then it follows from
Lemma 4.3 that

∣∣L0(s)
∣∣ = ∣∣L(s)

∣∣ − ∣∣L(s + 1)
∣∣ = ∣∣L(s)

∣∣ − ∣∣L(s + 1)
∣∣ = ∣∣L0(s)

∣∣.
Furthermore, if s is the smallest positive integer such that L(s + 1) is empty, then |L0(s)| =
|L(s)| = |L(s)|. To ease the notations in our discussion below, we will let Λ′ = Λρ \ {0}.
ρ
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Proposition 4.4. Let n ∈ A be a non-zero element. Let u ∈ C∞ be such that eρ(u) = z which is
not a torsion of ρ. Let λ0 ∈ Λ′

ρ be such that deg(nu − λ0) = min{deg(nu − λ) | λ ∈ Λ′
ρ}. Then,

degρn(z) � deg(nu) + deg

(
1 − nu

λ0

)
.

Proof. Note that ρn(z) = nu
∏

λ∈Λ′
ρ
(1 − nu

λ
). We split the product according to the two cases:

either deg(λ) > deg(nu) or deg(λ) � deg(nu).
If deg(λ) > deg(nu), then deg(1 − nu

λ
) = 0 which does not contribute anything to the total

degree.
If deg(λ) � deg(nu), then

∏
deg(λ)�deg(nu)

(
1 − nu

λ

)
=

∏
deg(λ)<deg(nu)

(
1 − nu

λ

) ∏
deg(λ)=deg(nu)

(
1 − nu

λ

)
.

If deg(nu) /∈ Z = deg(L∗), then the case deg(λ) = deg(nu) does not exist. The assertion of the
proposition can be verified easily. On the other hand, suppose deg(λ) = deg(nu) but λ does not
have cancellation with nu. Then deg(1 − nu

λ
) = 0. Therefore, we shall assume that deg(nu) =

 ∈ Z and there is some positive integer s such that L(s) is non-empty. This is equivalent to
saying that there is some λ such that deg(1 − nu

λ
) < 0. Let us fix such a positive integer s.

As we remark above, we have either |L0(s)| = |L0(s)| when L(s + 1) is non-empty or
|L0(s)| = |L(s)| if L(s + 1) is empty. If |L0(s)| = |L0(s)| then deg(1 − nu

λ
) = −s for λ ∈ L0(s)

and deg(1 − nu
λ

) = s for λ ∈ L0(s). Hence,

deg

( ∏
λ∈L0(s)

(
1 − nu

λ

) ∏
λ∈L0(s)

(
1 − nu

λ

))
= 0.

Suppose |L0(s)| = |L(s)|, hence L(s+1) is empty and any λ0 ∈ L(s) satisfies deg(nu−λ0) =
min{deg(nu − λ) | λ ∈ Λ′

ρ}. We need to estimate

deg

( ∏
0�=λ∈L(s)

(
1 − nu

λ

) ∏
λ∈L0(s)

(
1 − nu

λ

))
.

We fix an element λ0 ∈ L0(s) and write the above product as

( ∏
0�=λ∈L(s)

(
1 − nu

λ

) ∏
λ0 �=λ∈L0(s)

(
1 − nu

λ

))(
1 − nu

λ0

)
.

Note that deg(1 − nu
λ

) � s for λ ∈ L(s) \ {0} provided that L(s) has more than one element. In
any case, we always have

deg

( ∏
0�=λ∈L(s)

(
1 − nu

λ

) ∏
0

(
1 − nu

λ

))
� deg

(
1 − nu

λ0

)
.

λ∈L (s)
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Combining all the computations above, we conclude that

degρn(z) = deg

(
nu

∏
0�=λ∈Λρ

(
1 − nu

λ

))

� deg(nu) + deg

(
1 − nu

λ0

)
.

This complete the proof of the proposition. �
As Jρ and Fρ are stable under the A-action given by ρ (see Remark 4), if z /∈ Jρ , then its

A-orbit will stay away from Jρ . In fact, as a result of Proposition 4.4, its A-orbit is ∞-adically
unbounded.

Corollary 4.5. Let z ∈ C∞ \ Jρ . Then there exist a positive constant δ∞,z depending only on ρ

and z such that

deg
(
ρn(z)

) = δ∞,z|n|r + O(1)

for non-zero n ∈ A, where the constant in O(1) also depends on ρ and z only.

Proof. Note that Jρ is compact and hence is bounded with respect to the ∞-adic topology.
Therefore

s = sup
{
deg(ζ )

∣∣ ζ ∈ Jρ

}

exists. By examining the Newton polygon of ρT (X), it follows that s � −deg(ΔT )/(qr − 1).
Let z ∈ C∞ \ Jρ be given. Suppose that deg(z) > s, then

deg
(
ρn(z)

) = deg

(
Δn

∏
ζ∈ρ[n]

(z − ζ )

)

= |n|r deg(z) + deg(Δn)

= |n|r
{

deg(z) + deg(ΔT )

qr − 1

}
− deg(ΔT )

qr − 1
.

Hence, the corollary is true in this case. Suppose on the other hand that deg(z) � s and let u ∈ C∞
be as in the proof of Proposition 4.4 such that eρ(u) = z. Then,

deg
(
ρn(z)

)
� deg(nu) + deg(1 − nu/λ)

for some λ ∈ Λρ . On the other hand, deg(1 − nu/λ) is bounded below since z /∈ Jρ . Therefore,
there exits a b ∈ A such that deg(ρb(z)) > s by Proposition 4.4.

The remaining arguments is the same as in the proof of Corollary 3.2. We therefore omit the
rest of the proof. �
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Given z ∈ C∞ it is a question in Diophantine approximation on how close to 0 ρn(z) can be
as n varies in A. In the case where z is algebraic over k, we have a control on the lower bound of
deg(ρn(z)) in terms of deg(n).

Theorem 4.6. Let z ∈ K \ ρtor(K) and let ε be a given positive real number. Then, there exists a
positive constant cε such that deg(ρn(z)) � −cε(degn)1+ε for all n ∈ A \Fq . Furthermore, cε is
independent of n.

Proof. Let λ0 ∈ Λρ be an element satisfying the condition of Proposition 4.4. Increasing the
degree of n if necessary, we may assume that there exists a non-zero λ ∈ Λρ such that deg(λ) �
deg(nu). Then, we have that deg(λ0) � deg(nu). It follows from Proposition 4.4 that

deg
(
ρn(w)

)
� deg(nu) + deg

(
1 − nu

λ0

)

= deg

(
nu

λ0

)
+ deg(nu − λ0)

� deg(nu − λ0)

� −cε(degn)1+ε .

Notice that the last inequality and the existence of the constant cε follows from Proposition 4.2.
The assertion of the theorem is proved. �
5. Proof of the main result

We resume our notations in Section 2. Let z ∈ ρK be a given non-torsion point for the Drinfeld
module ρ. Let ℘ ∈ MK . Following [4,6], one can associate to the commuting family {ρn | n ∈ A}
of morphisms the canonical local height ĥ℘(x) of x ∈ K℘ defined by

ĥ℘(x) = lim
deg(n)→∞

max{0,−v℘(ρn(x))}
|n|r .

The existence of the limit is proved in [6] for the case of Drinfeld modules and in [4] for general
cases. In our situation, one can deduce from Corollary 3.5 for finite places ℘ and Corollary 4.5
for infinite place ℘ that the limit exists. For instance, it is clear from the definition that the orbit
{ρn(x) | n ∈ A} of x is ℘-adically bounded if and only if ĥ℘(x) = 0. Suppose that x has ℘-
adically unbounded A-orbit, then Corollaries 3.5(i) and 4.5 say that there exists positive constant
δ℘,x which depends on the place ℘ and x such that v(ρn(x)) = −δ℘,x |n|r +O(1). It follows that
ĥ℘(x) = δ℘,x . Put

ĥρ(z) =
∑

℘∈MK

n℘ĥ℘(z).

We notice that ĥ℘(z) = 0 for almost all places ℘ ∈ MK . Therefore, the sum of the right-hand
side is actually a finite sum. Furthermore, we have ĥρ(z) = ∑

δ℘,z > 0 if and only if z is a
℘∈Tz
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non-torsion for ρ. The function ĥρ called the canonical height associated to the Drinfeld module
ρ enjoys the property that ĥρ(ρn(z)) = |n|r ĥρ(z) (see [6], also [4] for general situation).

Let Tz be the set of places of K where z has unbounded orbit. Note that Tz is a finite subset
of MK . Moreover, it is non-empty if and only if z is a non-torsion point for ρ.

5.1. Generic A-characteristic

Let n ∈ A+ be a non-constant monic polynomial. Let μ : A+ → {−1,0,1} be the Möbius
function on A+. The following elementary fact about the Möbius function is well known.

Lemma 5.1. Let n ∈ A+ then

∑
m|n

μ

(
n

m

)
= Δ(n) =

{
1 if n = 1;
0 otherwise,

where the above sum is over all the monic divisors of n.

Define the primitive nth division polynomial Φρ,n(X) of the Drinfeld module ρ as follows

Φρ,n(X) =
∏
m|n

ρm(X)μ( n
m

).

Lemma 5.2. Let n ∈ A+ be given and let Φρ,n(X) be the primitive nth division polynomial of ρ.

(a) Φρ,n(X) is a polynomial in X with coefficients in K .
(b) ρn(X) = ∏

m|n Φρ,m(X).

(c) Let α ∈ K̄ then Φρ,n(α) = 0 if and only if ρn(α) = 0 and ρm(α) �= 0 for any proper divisor
m of n.

(d) If ρ has good reduction at finite place ℘ of K , then all the coefficients of Φρ,n(X) are
℘-integral with the leading coefficient a ℘-unit.

Proof. (a)–(c) follows from the Möbius inversion formula and the fact that ρn(X) are separable
polynomials for non-zero n. (d) follows from the fact that ρn(X) has all its coefficients in O℘

and Δn is a ℘-unit if ρ has good reduction at ℘. �
For a finite place ℘ of K , recall from Section 2.2 the notations Fi = O℘/Mi and that χ1 =

L℘(1) annihilates the finite Drinfeld module ρFp where Lp(X) is the characteristic polynomial
associated to Frobp. The following proposition is a modification of [15, Lemma 4].

Proposition 5.3. Let ℘ be a finite place of K such that ρ has good reduction at ℘. Let z ∈ O℘

be a non-torsion point of ρ. Let n ∈ A+ be a monic polynomial with deg(n) > 2D logq(D + 1).
If v℘(Φρ,n(z)) > 0 but n is not the order of z̄℘ ≡ z (mod π℘) in ρF℘ , then

v℘

(
Φρ,n(z)

)
� v℘(n).
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Proof. (Cf. [15, Lemma 4].) For each positive integer i, let (ai ) be the ideal of annihilators of
z (mod πi

℘) which is viewed as an element of ρFi . We clearly have the following descending
chain of ideals

(a1) ⊇ (a2) ⊇ · · · (an) ⊇ · · ·

and that χi = pi−1χ1 ∈ (ai ) by Lemma 2.2. Set l = [v℘(p)/(|p| − 1)]. Then, l � v℘(p) � D. Let
n be given such that deg(n) > 2D logq(D + 1).

By Corollary 3.4(i), there exists a nonnegative integer l′ � l such that for all z ∈ O℘ with
v℘(z) > l′

v℘

(
ρn(z)

) = v℘(z) + v℘(n).

Let l0 be the smallest nonnegative integer such that the above equality holds. We claim that al0+1
is a proper divisor of n.

Note that v℘(ρn(z)) � v℘(Φρ,n(z)) > 0, this means that n annihilates z̄℘ . Hence we have
a1 | n. On the other hand, n is not the order of z̄℘ in ρF℘ by assumption, there must exist a
proper divisor m of n such that v℘(ρm(z)) > 0. It follows that a1 | m.

If l0 = 0 then the claim is true since a1 | m | n and m is a proper divisor of n. Now we assume
that l0 � 1 and let t be the positive integer such that at | n but at+1 � n. We want to show that
t > l0. Suppose to the contrary that t � l0. By definition, if for some positive integer i � l0, ai | m
but ai+1 � m, then v℘(ρm(z)) = i. Therefore,

v℘

(
Φρ,n(z)

) =
∑
m|n

μ

(
n

m

)
v℘

(
ρm(z)

)

=
t∑

i=1

∑
ai |m|n

μ

(
n

m

)

=
t∑

i=1

Δ

(
n

ai

)
. (11)

On the other hand, we have that

deg(at ) � deg(al+1) � deg
(
plχ1

)
.

As 1 � l0 � [v℘(p)/(|p| − 1)], we see that deg(p) � logq(v℘(p) + 1) � logq(D + 1). Moreover,
by Proposition 2.1, we have deg(χ1) = deg(ar ) = n℘ � D deg(p). Thus,

deg(al+1) � l deg(p) + D deg(p)

� 2D logq(D + 1) < deg(n).

It follows that at is a proper divisor of n if t � l0. However, if at is a proper divisor of n then the
sum in (11) equals 0 which cannot happen since v℘(Φρ,n(z)) > 0 by assumption. Therefore, we
must have t > l0. Then, al0+1 | n. But, deg(al0+1) � deg(al+1) < deg(n), it follows that al0+1 is
a proper divisor of n as claimed.
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As in [15, Lemma 4], we have

v℘

(
Φρ,n(z)

) =
l0∑

i=1

∑
ai |m|n

μ

(
n

m

)
+

∑
al0+1|m|n

μ

(
n

m

)
v℘

(
ρm(z)

)

=
l0∑

i=1

∑
ai |m|n

μ

(
n

m

)
+

∑
al0+1|m|n

μ

(
n

m

)(
v℘

(
ρal0+1(z)

) − l0
)

+
∑

al0+1|m|n
μ

(
n

m

)
v℘

(
m

al0+1

)
.

Now al0+1 is a proper divisor of n,

∑
ai |m|n

μ

(
n

m

)
= 0

for i = 1,2, . . . , l0 + 1. Hence,

v℘

(
Φρ,n(z)

) =
∑

al0+1|m|n
μ

(
n

m

)
v℘

(
m

al0+1

)

=
{

v℘(p) if n
al0+1

is a power of p,

0 otherwise,

� v℘(n).

This proves the assertion of the proposition. �
Proof of Theorem 2.3. (The case of generic A-characteristic.) Let z ∈ ρK be a given non-
torsion point of ρ. Recall the set Sρ,z consists of places ℘ of K where ρ has bad reduction at ℘

or z is not ℘-integral. Since adding a finite set of places to Sρ,z will not affect the truth of the
theorem, in the following we will enlarge Sρ,z to include the non-empty finite subset Tz of MK .
Thus, we have Tz ⊂ Sρ,z and if ℘ /∈ Sρ,z then ρ has good reduction at ℘ and z is ℘-integral with
℘-adically bounded A-orbits.

Let n ∈ A be given with deg(n) > 2D logq(D + 1). Suppose that there is no ℘ ∈ MK \ Sρ,z
such that n = d℘ . The idea of the proof is to compute

∑
℘∈MK

n℘v℘(Φρ,n(z)) in two ways.
On the one hand, by the product formula for K we have

∑
℘∈Mk

n℘v℘

(
Φρ,n(z)

) = 0.

On the other hand, we split the sum into three sub-sums: the sums over ℘ /∈ Sρ,z, ℘ ∈ Sρ,z \Tz
and ℘ ∈ Tz. Compare these two results we will get a contradiction if deg(n) is large enough.

First, for ℘ /∈ Sρ,z, by Proposition 5.3 we have the following
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∑
℘ /∈Sρ,z

n℘v℘

(
Φρ,n(z)

)
�

∑
℘ /∈Sρ,z

n℘v℘(n)

� D deg(n).

If ℘ ∈ Sρ,z \ Tz, then we apply Corollary 3.5(i) and Theorem 4.6 that there exist constant c℘

or cε > 0 which depend only on ℘, z such that

v℘

(
ρn(z)

)
�

{
v℘(z) + v℘(n) + c℘ if ℘ ∈ Sρ,℘ ∩ M0

K,

cε(deg(n))1+ε if ℘ ∈ Sρ,z ∩ M∞
K ,

where we use the relation v℘(·) = −e℘ deg(·) for ℘ ∈ M∞
K . We may choose the largest cε work-

ing for all infinite ℘. In the following, we will simply take ε = 1/2 and by choosing C = c1/2 > 0
large enough, we might as well assume that v℘(ρn(z)) � C(deg(n))3/2 for all ℘ ∈ Sρ,z \Tz. Thus
for any ℘ ∈ Sρ,z \ Tz we have

v℘

(
Φρ,n(z)

) =
∑
m|n

μ

(
n

m

)
v℘

(
ρm(z)

)

� C2ν(n)
(
deg(n)

)3/2

where ν(n) denotes the number of monic irreducible factors of n. It follows that

∑
℘∈Sρ,z\Tz

n℘v℘

(
Φρ,n(z)

)
� CD|Sρ,z|2ν(n)

(
deg(n)

)3/2
.

Finally, for ℘ ∈ Tz

v℘

(
Φρ,n(z)

) =
∑
m|n

μ

(
n

m

)
v℘

(
ρm(z)

)

=
∑
m|n

μ

(
n

m

){−δ℘(z)|m|r + O(1)
}

= −ϕr(n)δ℘(z) + O
(
2ν(n)

)

where

ϕr(n) = |n|r
∏
p|n

(
1 − 1

|p|r
)

.

Consequently,

∑
℘∈Tz

n℘v℘

(
Φρ,n(z)

) = −ϕr(n)ĥρ(z) + O
(
2ν(n)

)
.

Combining our computation above, we conclude that
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∑
℘∈Mk

n℘v℘

(
Φρ,n(z)

)
� −ϕr(n)ĥρ(z) + 2ν(n)

(
CD|Sρ,z|

(
deg(n)

)3/2 + O(1)
) + D deg(n).

However, given any real number 0 < γ < r , there exists a positive constant dγ such that

2ν(n)

ϕr (n)
� dγ

|n|γ .

Thus,

0 =
∑

℘∈Mk

n℘v℘

(
Φρ,n(z)

)
� ϕr(n)

(
−ĥρ(z) + dγ

|n|γ
[
E deg(n)3/2 + O(1)

])

for some constant E. The inequality will give a contradiction if deg(n) becomes large. Therefore,
there exists a constant N such that if deg(n) > N then n = n℘ for some ℘ ∈ MK \ Sρ,z. �
5.2. Finite A-characteristic

We assume that K is of A-characteristic p. Then

ρp = hf dτf d + · · · + hrdτ rd , hf d �= 0,

for some integer 0 < f � r . For the case where f = r (the supersingular case), the order d℘

of z (mod ℘) is prime to p. As it is not difficult to modify our argument below to this case
(see Remark 5), we omit the proof for the supersingular case. We will assume that f < r from
now on. Following Section 3 we put Hρ = hf d . Note that every root of ρn(X) is of multiplicity
|pf |ordp(n). Thus, ρn(X) is a separable polynomial if and only if n is prime to p. The primitive
nth division polynomial Φρ,n(X) of the Drinfeld module ρ is defined as follows:

Φρ,n(X) =
∏
m|n

ρm(X)μ( n
m

)|pf |ordp(n/m)

.

Note that if n is prime to p then the definition of Φρ,n(X) is the same as in the case of generic
A-characteristic.

Lemma 5.4. Let n ∈ A+ be given and let Φρ,n(X) be the primitive nth division polynomial of ρ.

(a) Φρ,n(X) is a polynomial in X with coefficients in K whose roots have multiplicities
|pf |ordp(n).

(b) ρn(X) = ∏
m|n Φρ,m(X)|pf |ordp(n/m)

.

(c) Let α ∈ K̄ . Then Φρ,n(α) = 0 if and only if ρn(α) = 0 and ρm(α) �= 0 for any proper divisor
m of n.

(d) If ρ has good reduction at finite place ℘ of K , then all the coefficients of Φρ,n(X) are
℘-integral with the leading coefficient a ℘-unit.
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Proof. Let f (X) ∈ K(X) be a rational function with coefficients in K . As usual, the vanishing
order of f (X) at a ∈ K̄ is denoted by orda(f (X)). Let α ∈ ρ[n] be a given n-torsion, then

ordα

(
Φρ,n(X)

) =
∑
m|n

μ

(
n

m

)∣∣pf
∣∣ordp(n/m)

ordα

(
ρm(X)

)
.

Assume that, as a torsion of the Drinfeld module ρ, α is of order a then

ordα

(
Φρ,n(X)

) =
∑

a|m|n
μ

(
n

m

)∣∣pf
∣∣ordp(n/m)∣∣pf

∣∣ordp(m)

=
∑

a|m|n
μ

(
n

m

)∣∣pf
∣∣ordp(n)

=
{

|pf |ordp(n) if n = a,

0 otherwise.

Now (a) and (c) follows from the above computation of the vanishing order of Φρ,n at α ∈ ρ[n].
The proof of (b) is a straightforward application of the Möbius inversion formula, we omit it
here. The proof of (d) is the same as that of Lemma 5.2(d). �
Proposition 5.5. Let ℘ be a place of K where ρ has good reduction and v℘(Hρ) = 0. Let z ∈O℘

be a non-torsion point of ρ. Let n ∈ A+ be a monic polynomial. Then v℘(Φρ,n(z)) > 0 if and
only if n is the order of z̄℘ ≡ z (mod π℘) in ρF℘ .

Proof. Recall that the reduction map ρ �→ ρ̄℘ induces an injection of the torsion submod-
ule ρ[n] ↪→ ρ F̄℘ for n relatively prime to p. Moreover, it also follows from the assumption
v℘(Hρ) = 0 that (ignoring the multiplicities) the set of n-torsion points ρ[n] is mapped bijec-
tively to the set of n-torsion points ρ̄[n] for arbitrary n under the reduction map. Consequently,
two distinct roots of Φρ,n(X) remain distinct under the reduction map. The proposition now
follows. �

We now proceed to prove the main theorem for the finite A-characteristic case. Note that in
this case the results of Section 4 are not needed. The idea of the proof is the same as that of the
case of generic A-characteristic.

Proof of Theorem 2.3. (The case of finite A-characteristic and ρ is ordinary.) Let z ∈ ρK be
a given non-torsion point of ρ. We enlarge Sρ,z to include Tz and a finite set the places ℘ of K

such that v℘(Hρ) �= 0. Let us still denote it by Sρ,z.
Let n ∈ A+ be given and suppose that there is no ℘ ∈ MK \ Sρ,z such that n = d℘ . Then, by

Proposition 5.5,

∑
℘ /∈Sρ,z

n℘v℘

(
Φρ,n(z)

) = 0.

Let us now look at places ℘ ∈ Sρ,z. If ℘ ∈ Sρ,z \ Tz then by Corollary 3.5(ii), there is a b℘

depending only on z and ℘ such that
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v℘

(
ρn(z)

)
�

∣∣pf
∣∣ordp(n/b℘)

v℘

(
ρb℘

(z)
) +

{ |pf |ordp(n/b℘) − 1

|pf | − 1

}
v℘(Hρ). (12)

Consequently,

∣∣v℘

(
ρn(z)

)∣∣ � A℘

∣∣pf
∣∣ordp(n/b℘)

for some constant A℘ depending only on ρ,℘ and z. From this, we have

∣∣∣∣
∑

℘∈Sρ,z\Tz

n℘v℘

(
Φρ,n(z)

)∣∣∣∣ �
∑

℘∈Sρ,z\Tz

n℘

∣∣∣∣
∑
m|n

μ

(
n

m

)∣∣pf
∣∣ordp(n/m)

v℘

(
ρm(z)

)∣∣∣∣

� D|Sρ,z|Eρ,z2ν(n)
∣∣pf

∣∣ordp(n)

for some positive constant Eρ,z depending on ρ and z. On the other hand, for ℘ ∈ Tz

v℘

(
Φρ,n(z)

) =
∑
m|n

μ

(
n

m

)
v℘

(
ρm(z)

)

=
∑
m|n

μ

(
n

m

){−δ℘(z)|m|r + O(1)
}

= −ϕr(n)δ℘(z) + O
(
2ν(n)

)
,

and

∑
℘∈T℘

n℘v℘

(
Φρ,n(z)

) = −ϕr(n)ĥρ(z) + O
(
2ν(n)

)
.

By our assumption f < r , it follows that there is a positive constant dγ such that

2ν(n)|pf |ordp(n)

ϕr (n)
� dγ

|n|γ

for any given positive γ < r − f . Then,

0 =
∑

℘∈MK

n℘v℘

(
Φρ,n(z)

)
� ϕr(n)

(
−ĥρ(z) + dγ

|n|γ
[
D|Sρ,z|Eρ,z + o(1)

])

which again gives contradiction as the degree of n gets large. This concludes the proof of the
main theorem. �
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Remark 5. (a) For the supersingular case, we only consider those n ∈ A+ which are prime to p.
Then the inequality (12) reduces to

∣∣v℘

(
ρn(z)

)∣∣ � v℘

(
ρb℘

(z)
)
.

Now it is not difficult to modify the remaining arguments in the proof to deduce the result for the
supersingular case.

(b) For the number field case, let a be a non-zero element which is not a root of unity in an
algebraic number field F . Schinzel [15] proved that there is an effective computable bound n0(d)

depending on the degree d of a so that for every n > n0(d) there is a prime ideal P of F such
that n is the multiplicative order of a modulo ℘.

By a careful analysis, one can actually show that the constants appearing in Section 3 as well
as the constants involved at an infinite place can be effectively determined. Thus, the exceptional
orders n (that is, n �= d℘ for any ℘ ∈ MK ) for a given z can also be effectively determined. It is
an interesting question whether or not the exceptional order has a uniform bound depending on
K only.
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