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The removal of uremic toxins
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The removal of uremic toxins. Three major groups of uremic SMALL WATER-SOLUBLE COMPOUNDS
solutes can be characterized: the small water-soluble compounds, Guanidinesthe middle molecules, and the protein-bound compounds.
Whereas small water-soluble compounds are quite easily re- The guanidines are structural metabolites of arginine
moved by conventional hemodialysis, this is not the case for and urea. They cause several pathophysiologic alter-
many other molecules with different physicochemical charac- ations, such as inhibition of neutrophil superoxide pro-
teristics. Continuous ambulatory peritoneal dialysis (CAPD) duction (abstract; Hiravama et al, J Am Soc Nephrolis often characterized by better removal of those compounds.

8:238A, 1997), induction of seizures [2, 3], and suppres-Urea and creatinine are small water-soluble compounds and
sion of natural killer cell response to interleukin-2 [4].the most current markers of retention and removal, but they

do not exert much toxicity. This is also the case for many other Arginine is the substrate of nitric oxide (NO) produc-
small water-soluble compounds. Removal pattern by dialysis tion. Some of the other guanidines, as arginine ana-
of urea and creatinine is markedly different from that of many logues, are strong competitive inhibitors of NO synthase,
other uremic solutes with proven toxicity. Whereas middle mole- resulting in vasoconstriction [5, 6], hypertension [7], is-cules are removed better by dialyzers containing membranes

chemic glomerular injury [8], immune dysfunction [9],with a larger pore size, it is not clear whether this removal is
and neurological changes [10].sufficient to prevent the related complications. Larger pore size

Dialytic removal of the individual guanidino com-has virtually no effect on the removal of protein-bound toxins.
Therefore, at present, the current dialytic methods do not offer pounds is characterized by a substantial variability that
many possibilities to remove protein-bound compounds. Nutri- cannot be explained by their molecular weight or isoelec-
tional and environmental factors as well as the residual renal tric point [11]. Protein binding, or more probably multi-
function may influence the concentration of uremic toxins in

compartmental distribution, plays a role in this kineticthe body fluids.
behavior. Despite their approximately similar molecular
weight as urea, the dialytic kinetics may be quite different
for some of the guanidines.

Uremic syndrome can be defined as the deterioration Because of their specific characteristics, some guani-
of many biochemical and physiological functions, in par- dines (creatinine and asymmetric NGNG dimethylargi-
allel with the progression of renal failure [1]. This article nine) are discussed separately.
summarizes the present state of knowledge of the bio-
chemical, physiologic, and/or clinical impact of the most Asymmetric dimethylarginine
prevalent uremic retention solutes, divided according to Asymmetric dimethylarginine (ADMA) is significantly
their physicochemical characteristics: small water-solu- increased in end-stage renal disease (ESRD) [12] and
ble compounds, larger (middle) molecules, and protein- has been implicated in the development of hypertension
bound compounds. This analysis is followed by remarks [13–15]. In hemodialysis (HD) patients, predialysis plas-
about their specific intradialytic behavior, as summarized ma ADMA concentrations are sixfold higher than those
in Table 1. For each item, groups of solutes are first dis- in control subjects, whereas in peritoneal dialysis (PD)-
cussed, followed by a discussion of individual substances. treated patients, plasma ADMA levels are similar to

those in control subjects [16]. The increase in symmetricFinally, the dialytic removal of these compounds, the
dimethylarginine (SDMA) is, however, more pro-ways to optimize this effort, and alternative options that
nounced, but this compound is biologically less active.could lead to a decrease of their serum levels will be
ADMA is the most specific guanidine with inhibitoryexamined.
effects on NO synthesis. In the brain, ADMA causes
vasoconstriction and inhibits acetylcholine-induced va-
sorelaxation [17].Key words: hemodialysis, peritoneal dialysis, CAPD, dialysis efficiency,

body fluid toxicity, renal disease. In spite of its low molecular weight, removal by HD
is only in the range of 20 to 30% [12]. 2000 by the International Society of Nephrology
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Table 1. Uremic toxins: Characteristics and dialytic removal

Dialytic removal
Type Hydrophobic Protein bound parallel with urea

Small water-soluble molecules
Guanidines 2 2 2
Purines 2 2 6
Oxalate 2 2 1
Phosphorus 2 2 2
Urea 2 2

Middle molecules
Cystatin C, Clara cell protein, leptin 2 2 2
Advanced glycosylation end products 6 6 2
Oxidation products 6 6 2
Peptides (b-endorphin, methionine-enkephalin,

b-lipotropin, GIP I, GIP II, DIP, adrenomedullin) 2 2 2
b2-microglobulin 2 2 2
Parathyroid hormone 2 2 2

Protein bound compounds
Indoles (indoxyl sulfate) 1 1 2
Carboxy-methyl-propyl-furanpropionic acid (CMPF) 1 1 2
Hippuric acid 6 1 2
P-cresol 1 1 2
Polyamines (spermine, spermidine, putrescine, cadaverine) 1 1 2

Creatinine Oxalate

Creatinine, an end-product of muscle breakdown, is Secondary oxalosis in ESRD patients not suffering
retained during the progression of renal failure and has from primary hyperoxaluria is characterized by deposi-
been held responsible for only a few side effects, such tion of calcium oxalate in myocardium, bone, articula-
as chloride channel blocking [2, 3] and the reduction of tions, skin, and blood vessels [32]. Nowadays, this occurs
the contractility of cultured myocardial cells [18]. It is a less frequently, provided there is no excessive intake of
precursor of methylguanidine [19]. Creatinine diffuses oxalate precursors (ascorbic acid) [33] or no inflamma-
from red blood cells to plasma during transit of the blood tory bowel disease [34].
through the dialyzer, hence, creatinine is mainly ex- Oxalate clearance by PD is only 8% of the normal
tracted from the plasma during dialysis [20]. renal clearance. As a result, plasma oxalate levels are

higher in PD patients than in controls [35]. Since oxalate
Purines

is a small water-soluble compound, removal by efficient
The best known purines retained in uremia are uric modern HD is usually adequate enough to prevent in-

acid, xanthine, hypoxanthine, and guanosine. Both xan- tratissular deposition.
thine and hypoxanthine induce vasocontraction, inhibit
platelet-induced vasorelaxation [21], and disturb the en- Phosphorus
dothelial barrier [22]. The purines are involved in distur- A high level of organic phosphates is related to pruri-
bances of calcitriol production and metabolism [23–25],

tus and hyperparathyroidism [36]. Phosphorus excess in-
and possibly could take part in the calcitriol resistance

hibits the production of calcitriol by 1a-hydroxylase [37].that has been observed in experimental renal failure and
At least in animals, phosphate restriction has an attenu-in the presence of uremic biological fluids [26, 27]. The
ating effect on the progression of renal failure. The re-immune response to calcitriol, as illustrated by the ex-
sults are less compelling in humans [38].pression of the lipopolysaccharide receptor CD14 on the

The blood phosphorus concentration is the result ofmonocyte membrane, is blunted in the presence of uric
protein catabolism and intake of protein or other phospho-acid, xanthine, and hypoxanthine [28].
rus-rich dietary sources. Restriction of oral protein in-In spite of a markedly diminished urinary secretion of
take increases the risk of protein malnutrition [36], whichuric acid in renal failure, the rise in plasma uric acid
can be avoided by the administration of oral phosphatelevels is only moderate, because of intestinal secretion
binders [39]. Their effect, however, is often insufficient,[29]. Uric acid is a small water-soluble compound that
especially in subjects with high phosphorus intake. Newis removed from the plasma by HD in a similar way as
phosphate binders (for example, lanthanumcarbonate,urea [30]. However, its removal from the intracellular
polynuclear iron hydroxide, cross-linked poly-allylamine-compartment is less efficient [31]. Dialytic removal of
hydrochloride, calcium hydroxy-methylbutyrate), whichxanthine and hypoxanthine shows no correlation with

the removal of urea and creatinine [30]. presumably will be more efficient, have recently been
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developed. However, the results of large scale control molecules (high-flux membranes) have been related to
lower morbidity and mortality of dialysis patients [50–53];trials should be awaited before a definite opinion can be

proposed. Phosphate is easily removed by HD, but the however, these highly efficient membranes at the same
time are often less complement activating than their coun-clearance from the intracellular component is consider-

ably less substantial [40]. Consequently, dialytic removal terpart in many studies, which is usually unmodified cellu-
lose. This might as well have an impact on clinical outcome.is not always predictable, and substantial postdialytic

rebound may annihilate much of the intradialytic removal. Molecules with a molecular weight of more than 12
kD might display a comparable kinetic behavior. Serum

Urea concentrations of cystatin C (13.3 kD, a cystein-protein-
ase inhibitor) and Clara cell protein (CC16; 15.8 kD, anDespite extensive study, the number of reports in

which an adverse impact of urea has been reported is immunosuppressive a-microprotein) [54] are elevated in
renal failure. High-flux membranes remove up to 50%low. Johnson et al demonstrated that dialysis against

high urea dialysate worsens clinical symptoms, but glob- of cystatin C, whereas Clara cell protein is not eliminated
by HD [54].ally, the differences were not impressive and not consis-

tent in every patient [41]. This study was not controlled. Leptin, a 16 kD plasma protein suppressing appetite
[55], and inducing weight reduction in mice [56], is re-Lim, Gasson, and Kaji have shown that urea inhibits

NaK2Cl cotransport [42], which is an ubiquitous process tained in renal failure [57]. Leptin levels in uremia are
positively correlated to body fat [58]. Therefore, the bio-that maintains cell volume and influences extrarenal po-

tassium regulation. The presence of urea in blood has chemical role of leptin in renal failure remains inade-
quately defined.been held responsible for a decreased affinity of oxygen

for hemoglobin [43]. Urea inhibits macrophage inducible Leptin is not removed by conventional HD with modi-
fied cellulose [57]. In contrast, dialysis with high-fluxNO synthesis at the post-transcriptional level (abstract;

Prabhakar et al, J Am Soc Nephrol 8:24A, 1997). membranes lowers leptin levels [59].
Several other uremic solutes conform with the defini-Urea is one of the only solutes that has been correlated

tion of middle molecules [parathyroid hormone (PTH),with clinical outcome of HD [44]. Low reduction rates
b2-microglobulin (b2m), peptides, advanced glycosyla-rather than high serum concentrations are related to
tion end product (AGEs)] and are discussed separatelyincreased mortality [45]. In this way, urea can be con-
in what follows.ceived as a marker of uremic toxin removal, rather than

being a toxin itself.
Advanced glycosylation end productsHowever, one might question the validity and repre-

Glucose and other reducing sugars react nonenzymati-sentativity of urea as a marker for the retention and
cally with free amino groups to form stable Amadorieven for the removal of other solutes. Even if dialytic
products. Through a series of chemical rearrangements,removal from the plasma is identical, the shift from the
some Amadori products are converted to AGEs [60].intracellular compartment to the plasma might be differ-
Several of the AGEs in ESRD are peptide-linked degra-ent, as is the case for creatinine and uric acid [30, 31]. For
dation products (molecular weight, 2000 to 6000 D) [61],various other solutes, for example, the protein-bound
which show strong cross-linking activity with long-livingcompounds [46] or the larger molecules in case of con-
body proteins.ventional low-flux dialysis, no or only a weak correlation

Advanced glycosylation end products are involved inbetween urea and these molecules can be expected.
modification of tissue structures and in functional alter-
ations of enzymes. AGEs induce inflammatory reaction by

LARGE (MIDDLE) MOLECULES monocytes [62]. AGE-modified b2m may play a role in the
Middle molecules (molecular weight range of 300 to formation of dialysis-associated amyloidosis [63]. Protein-

12,000 D) have been held responsible for at least some bound AGEs can react with and chemically inactivate
aspects of the uremic syndrome: Chromatographic frac- NO [64], a potent endothelium-derived vasodilator, anti-
tions between 1 and 5 kD extracted from human uremic aggregant, and antiproliferative factor. AGEs may also
ultrafiltrate inhibit appetite and suppress food intake in be related to oxidative protein modification [65]. Their
animals [47]. This effect was obtained only after concen- accumulation was recently attributed to increased plasma
tration of the samples by a factor of 25. A 500 to 2000 concentrations of small reactive carbonyl precursors re-
D subfraction of uremic serum inhibits apolipoprotein sulting from increased oxidation of carbohydrates and
(apo) A-I secretion [48]. Andress, Howard, and Birn- lipids or inadequate inactivation of these compounds [66].
baum described an inhibitor of osteoblast mitogenesis Removal of AGEs by conventional HD is ineffective.
originating from uremic plasma, with a molecular weight Elimination is significantly higher with high-flux dialysis
in the range between 750 and 900 D [49]. [67]; however, despite this more efficient removal, levels

remain still far above normal [67].Dialysis membranes with a capacity to remove middle
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Oxidation products Cuprophane membranes do not remove b2m, whereas
large-pore membranes do. Some of the large-pore dia-Enhanced oxidative capacity in uremia results in struc-
lyzer membranes, such as polyacrilonitrile, adsorb sub-tural modification and irreparable damage, with albumin
stantial amounts of b2m [84]. It has been suggested thatand low-density lipoprotein (LDL) being its major tar-
the use of these high permeability membranes lessens thegets [65, 68, 69]. Oxidized LDL is claimed to play a role
likelihood for development of dialysis amyloidosis [85].in atherogenesis [70]. Several smaller molecular com-

pounds might also result from oxidation [71]. Organic Complement factor D
chloramines originate from the chemical binding of hy-

Complement factor D accumulates because of a de-pochlorite moieties, produced after leukocyte activation,
crease in its renal removal [86–88]. Its protease activityto retained organic compounds [65]. They increase endo-
is highly specific for its natural substrate, complementthelial permeability [72] and affect liver function and
factor B. An increased level of complement factor Dhepatic perfusion pressure [73].
activates the alternative pathway of complement [89],
which could, in part, be responsible for the inflammatoryPeptides
status in chronic renal disease. Some dialysis membranesThe opioid peptides b-endorphin, methionine-enkeph-
(for example, AN69) adsorb complement factor D [86].alin, and b-lipotropin are elevated in dialyzed patients

[74], and opioids influence the endocrine function and Parathyroid hormone
vasopressor response. Granulocyte-inhibiting protein I

Parathyroid hormone (PTH), a middle molecule with(GIP I) affects various functions of the polymorphonu-
a molecular weight of 69000 D, is generally recognizedclear cell and shows structural analogies with the k light
as a major uremic toxin, although its increased levelchains [75]. Another peptide with granulocyte-inhibitory
during ESRD is merely attributable to enhanced glandu-effect (GIP II) has partial homology with b2m [76]. A
lar secretion, rather than to decreased removal by thedegranulation-inhibiting protein (DIP), identical to angi-
kidneys. Excess PTH gives rise to an increase in intracel-ogenin, was isolated from plasma ultrafiltrate [77]. A
lular calcium, resulting in disturbances in the functionvariant of ubiquitin inhibits polymorphonuclear chemo-
of virtually every organ system [90–94]. Hyperparathy-taxis [78]. Adrenomedullin, a 52-amino acid hypotensive
roidism is also related to uremic pruritus.peptide, activates inducible NO synthase [79].

The increased PTH concentration in uremia is the
Most peptides are larger molecules that are supposed

consequence of a number of compensatory homeostatic
to have multicompartmental behavior during dialysis.

reactions in response to phosphate retention, decreased
They are only removed by dialyzers with a large pore

production of calcitriol [1,25(OH)2vitamin D3] and/or
size or are not removed at all. Even if removal is present,

hypocalcemia.
plasma levels far above normal are reached. During HD, PTH concentrations are mainly depen-

dent on intradialytic changes of ionized calcium; in addi-b2-microglobulin
tion, dialysis membranes with a large pore size remove

b2-microglobulin (molecular weight of about 12,000 D) PTH. Differences in plasma concentrations at the end
is a component of the major histocompatibility antigen. of the dialysis session are subtle, however, and can be
Dialysis-related amyloid, as found in amyloid bone dis- expected to be compensated by homeostatic adaptations
ease and carpal tunnel syndrome after long-term dialysis, in glandular secretion [95].
is to a large extent composed of b2m. This amyloidosis
sometimes develops as early as one to two years follow-

PROTEIN-BOUND COMPOUNDSing the start of dialysis [80, 81].
Advanced glycosylation end products (discussed pre- The molecular structure of some of the most important

viously in this article) and b2m are closely connected. AGE- protein-bound uremic toxins are illustrated in Figure 1,
modified b2m has been identified in amyloid of hemo- together with their molecular weight and protein bind-
dialyzed patients [82]. AGE-modified b2m enhances ing. Figure 2 illustrates their specific elution pattern dur-
monocytic migration and cytokine secretion [63], sug- ing high-performance liquid chromatography (HPLC),
gesting that foci containing AGE-b2m may initiate an with a gradient from hydrophilic to lipophilic. As they
inflammatory reaction, leading to bone/joint destruction. all elute in the lipophilic range, there seems to be a
On the other hand, AGE modification is not essential relationship between protein binding and lipophilicity.
for b2m-related tissue destruction (abstract; Bailey and

IndolesMoe, J Am Soc Nephrol 8:227A, 1997). b2m amyloidosis
is not more prevalent in diabetic renal failure patients, Indoles are found in various plants and are produced
although AGE modification in these patients should be by the intestinal flora. Indoxyl sulfate (discussed later in

this article), tryptophan, melatonin, and indole-3-aceticsubstantial [83].
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Fig. 1. Protein-bound uremic toxins: Chemi-
cal formula, molecular weight, and percent pro-
tein binding.

Fig. 2. Elution pattern of uremic ultrafiltrate
with HPLC. The elution pattern is such that the
gradient goes from hydrophilic (left on the chro-
matogram) to hydrophobic (right). Identified
protein-bound uremic solutes: a, indoxyl sul-
fate; b, tryptophan; c, hippuric acid; d, indole-
3-acetic acid, e, CMPF; f, internal standard.

acid all are indoles; however, the concentrations of tryp- of the major inhibitors of drug protein binding [98]. It
causes a decrease in renal excretion of various com-tophan and melatonin are not increased in uremia. Some
pounds, which are removed via the para-aminohippuricindoles are carcinogens [96], whereas others are tumor
acid (PAH) pathway. CMPF inhibits hepatic glutathi-growth inhibitors [97]. As a protein-bound compound,
one-S-transferase [99], deiodination of T4 by culturedindole-3-acetic acid enhances drug toxicity by competi-
hepatocytes [100], and ADP-stimulated oxidation oftion for drug protein binding and inhibition of tubular
NADH-linked substrates in isolated mitochondria [101].secretion [98].
Because CMPF is strongly bound to albumin, its remov-Removal of the protein-bound compounds during HD
ability during HD is hampered. Even high-flux dialysisis only limited and is not enhanced during treatment
removes no CMPF [46, 101]. This is illustrated in Fig-with high-flux membranes (Fig. 3) [46].
ure 3. In contrast, predialysis plasma concentrations of

3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid CMPF decrease significantly when albumin-permeable
3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid membranes are used [102, 103]. Also, in continuous am-

bulatory PD (CAPD), a significant amount of albumin is(CMPF) is a strongly lipophilic uremic solute and one
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Fig. 3. Percentage change in serum concen-
trations of uremic toxins after correction for
hemoconcentration during dialysis with low-
flux polysulfone (A), high-flux polysulfone
(B), and high-flux cellulose triacetate (C ).
Symbols are: j, creatinine; h, urea; , in-
doxyl sulfate; , p-cresol; , CMPF. High
flux polysulfone or high-flux cellulose tri-ace-
tate vs. low-flux polysulfone. Symbols are: NS,
not significant; •, P , 0.05 vs. urea; ••, P ,
0.01 vs. urea; *, P , 0.05 vs. creatinine; **,
P , 0.01 vs. creatinine.

lost into the dialysate. Hence, in CAPD patients, CMPF Hcy levels can be reduced by folic acid, vitamin B6,
levels are more than three times lower than in HD pa- and/or vitamin B12 administration [120, 121]. The ESRD
tients, pointing to a better removal by CAPD [104]; how- population may require higher quantities of vitamins
ever, this may also be the consequence of a higher resid- than the nonuremic population [122]. To our knowledge,
ual renal function than in HD. direct clinical proof of the benefit of such a treatment

in uremia is not available.
Hippuric acid Homocysteine is partly bound to albumin so that re-

Environmental or toxicologic contact with toluene is a moval by HD is hindered [123].
source of hippuric acid [105]. Toluene is transformed to

Indoxyl sulfatebenzyl alcohol, benzoic acid, and after glycination, to hip-
puric acid. Benzoic acid is also widely used as a food pre- Indoxyl sulfate is metabolized by the liver from indole,
servative and is a product of phenylalanine metabolism. which is produced by the intestinal flora as a metabolite

Hippuric acid, as a protein-bound compound, may en- of tryptophan. As a strongly protein-bound organic com-
hance toxicity of protein-bound drugs and uremic solutes pound, it enhances drug toxicity by competition with
by competition for protein binding [106, 107] and inter- acidic drugs at the protein-binding sites [106] and inhibits
ference with tubular organic acid secretion [98]. Hippuric the active tubular secretion of the same compounds [98].
acid has been related to insulin resistance and glucose Indoxyl sulfate inhibits deiodination of T4 [100]. The
intolerance [108]. Hippuric acid is easily removed by oral administration of indole or of indoxyl sulfate to
HD, with a 60% decrease of the free fraction [109]. uremic rats causes a progressive deterioration of renal
However, because of its protein binding, during HD hip- function and an enhancement of glomerular sclerosis
puric acid behaves like a larger molecule [110]. The re- [124]. Removal by dialysis is reduced because of protein
moval of hippuric acid is more pronounced by hemodia- binding (Fig. 3). Alternative removal procedures such
filtration compared with HD [31].

as intestinal adsorption or hemoperfusion should be con-
sidered.Homocysteine

Homocysteine (Hcy) is a sulfur-containing amino acid P-cresol
that is produced by the demethylation of methionine.

P-cresol is a phenolic, volatile compound with a molec-Its retention results in the cellular accumulation of
ular weight of 108.1 D. It is produced by intestinal bacte-S-adenosyl Hcy (AdoHcy), an extremely toxic com-
ria, as a result of the metabolization of tyrosine andpound that inhibits methyltransferases [111]. Moderate
phenylalanine [125]. Environmental sources are toluene,hyperhomocysteinemia is an independent risk factor for
cigarette smoke, and menthofuran, which is present incardiovascular disease [112, 113].
several herbal medicines, flavoring agents, and psyche-Patients with chronic renal failure have total serum
delic drugs [126].Hcy levels that are twofold to fourfold above normal.

P-cresol is strongly toxic for hepatocytes, inducingThe serum concentration depends not only on the degree
LDH leakage from rat liver slices [127], and inhibitsof kidney failure, but also on nutritional intake (methio-
various metabolic processes related to the production ofnine), vitamin status (folate), genetic factors, and renal
active free radicals by phagocytic leukocytes [128]. Bothmetabolism [114–117].
hepatocyte aluminum uptake and the toxic effect of alu-Hcy increases the proliferation of vascular smooth
minum on hepatocytes are increased [129].muscle cells, one of the most prominent hallmarks of

Prevention of the intestinal absorption of p-cresol byatherosclerosis [118]. Hcy also disrupts several vessel wall-
administration of oral sorbents decreases its serum con-related anticoagulant functions, resulting in enhanced

thrombogenicity [119]. centration in rats [130]. Removal by HD is markedly
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lower than for urea and creatinine [131] because of the are applied. The larger the surface area of the dialyzer
membrane, the larger the expected clearances will be.lipophilicity and its protein binding (Fig. 3).
However, the drawback of large surface membranes is

Polyamines the increased bioincompatibility [138]. The duration of
dialysis is one of the most problematic variables in dial-The best known polyamines (spermine, spermidine,

putrescine, and cadaverine) have a high affinity for cells ysis efficiency. Increasing dialysis time asks efforts from
both the dialysis center and the patient. Barriers to in-and proteins and inhibit erythroid colony growth in a

dose-dependent way [132]. Several polyamines interact crease time are multiple in nature.
Organization of the dialysis center. When three ses-with the N-methyl-d-aspartate (NMDA) receptor [133],

which plays a role in channel conductance and Ca11 sions daily have to be performed on the same monitor,
the duration of one session can hardly exceed four hours.permeability of brain cells. Spermine also reduces intra-

cellular free calcium in permeabilized pancreatic islets Organization of patient transport. Dialysis patients
share common transportation, even with patients dia-[134] and inhibits NO synthase [135].

One of the problems with the polyamines is the rela- lyzed in different centers; hence dialysis schedules need
to be tailored to one another.tive impermeability of the cell membrane for these com-

pounds. Their preferential intracellular storage and pro- Lack of motivation of the patient. Most patients do
not want to dialyze for more than four hours becausetein binding results in a multicompartmental behavior

and a deceivingly low removal during dialysis. they are not convinced that the efforts and discomfort
of a longer dialysis are compensated by a better outcome.
A promising alternative is overnight dialysis over six to

OBJECTIVATION AND OPTIMALIZATION OF
eight hours, resulting in a better removal of toxins and

HEMODIALYTIC REMOVAL OF UREMIC TOXINS
water, even with lower blood and dialysate flows than

Obviously, small solutes with urea as marker molecule conventionally applied.
are not the main and certainly not the only culprits of One of the major disadvantages of Kt/V urea is the
uremic toxicity. Nevertheless, urea is used as a standard fact that it reflects only on urea. As previously stated,
to describe delivered dose of dialysis. Kt/Vurea, as well as uremic toxicity is not only or not at all mediated by
urea reduction rate (URR), is generally used for that urea accumulation. Furthermore, the removal patterns
purpose. Urea can easily be determined in blood, and of other potential uremic solutes are different from those
evidence is found in the literature that increasing Kt/Vurea of urea; for example, the use of high-flux membranes
and/or URR is associated with a better outcome both increases the removal of middle molecules, AGEs or
for morbidity and mortality. Held et al, for example, b2m, but not of urea. Therefore, to quantitate efficiency
demonstrated that a 0.1 increase in Kt/V resulted in a of high-flux dialysis, a marker for middle molecules
7% reduction in mortality [136]. and/or protein bound should be found: The marker,

Since the introduction of the Kt/V concept in 1985 whether or not with clinical relevance, should be easy
[137], several methods have been developed to measure to measure. For that purpose, Leypoldt et al measured
Kt/V, from single pool to multicompartmental, from the vitamin B12 clearance [139].
measurements on the bloodside to measurements on Besides the uremic toxins with large molecular weight,
spent dialysate, and from postdialysis urea values deter- toxins can have an impaired removal because of pro-
mined immediately after dialysis to urea measurements nounced protein binding. An alternative method that
after a 30-minute equilibration time. enables the dialyzability of protein-bound toxins from

Multicompartment models have been introduced be- plasma is the use of a high-flux membrane in combination
cause of the slow movement of solutes from the tissues with an albumin-enriched dialysate [140]. For lipid-solu-
to the blood compartment, resulting in solute disequilib- ble toxins, even a liposome-enriched dialysate has been
rium. This delayed equilibration is responsible for a re- proposed. These are, however, labor intensive and ex-
duced dialysis efficiency since solutes withheld in tissues pensive strategies. Alternatively, adsorptive systems re-
are not dialysable. moving protein-bound or lipophylic uremic toxins might

Only a limited number of factors can be influenced to be considered.
increase HD efficiency: time of dialysis treatment, blood
flow, dialysate flow, ultrafiltration rate, membrane char-

REMOVAL OF UREMIC TOXINSacteristics such as surface of dialyzer, diffusion, adsorp-
BY PERITONEAL DIALYSIStion, and convection capacity. Increasing blood flow

leads to an enhanced clearance of small solutes, but can Removal of toxins by PD differs in many aspects from
that by HD, the most important difference being theinduce hemolysis. Above a certain threshold, increases

in clearance are relatively disappointing. Increasing dial- CAPD and continuous cycling PD (CCPD) or nearly
continuous [nightly intermittent PD (NIPD)] nature ofysate flow above 500 mL/min is useful if high blood flows
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Fig. 4. Weekly BUN profiles for hemodialy-
sis and CAPD.

the treatment, the lower efficiency per unit of time, and Apart from kinetic explanations for the similar out-
come between HD and PD despite a lower amount ofthe use of a “personalized” membrane that is unique for

every patient. urea removal for PD, another hypothesis could be that
urea by itself is not toxic, whereas its removal is notThe continuous nature of the treatment results in a

stable plasma concentration of uremic toxins, and this representative for those compounds with proven toxicity,
such as the middle molecules and the protein-boundin contrast with the sawtooth pattern seen in HD, as

illustrated in Figure 4. It is based on this difference that compounds.
Compared with a conventional artificial membrane, itKeshaviah, Nolph, and Van Stone, using the peak con-

centration hypothesis, explained why CAPD patients appears that an average peritoneal membrane has fewer
pores, but with a greater radius [143, 144]. This implicatessuffer a minor degree of uremic toxicity at Kt/V values

being associated with overt uremic complaints in HD that the removal of middle molecules will be higher in
PD compared with HD. Consequently, in patients onpatients [141]. The peak concentration hypothesis states

that not the time-averaged urea, but rather the peak PD with a comparable weekly removal of small uremic
toxins as HD patients, the removal of middle moleculesconcentrations of urea are responsible for toxicity. When

a PD and a HD patient have the same time-averaged will be superior. As the removal of middle molecules is
independently associated with mortality risk [145], thisconcentration of urea during one week, the urea levels

in the HD patient will, because of the intermittent nature higher removal may explain the better survival of pa-
tients on PD, at least in the first three to four years afterof the treatment, be above that average for half of the

week. Therefore, HD patients need lower time-averaged start of renal replacement therapy [145, 146]. After this
period, residual renal function has deteriorated in mosturea concentrations in order to maintain their urea levels

at peak heights lower than those of PD patients. For the cases, often resulting in an inadequate clearance for both
small and middle molecules, explaining the increasedsame reason, Kt/V levels in patients on NIPD must be

somewhat higher than in CAPD patients. mortality [147]. Also, protein-bound molecules are lower
in the serum of PD patients, either because of betterThe continuous nature of PD also makes the applica-

tion of “urea kinetics” to describe the adequacy of PD removal or higher residual renal function [148].
The better removal of protein-bound molecules mightnot only somewhat contradictory, but also complicated.

Indeed, the determination of the distribution volume also explain the slower decline in residual renal function
in PD patients. Motojima et al demonstrated that in“V” cannot be calculated from the urea kinetics between

dialysis sessions. A more elegant approach would be to subtotally nephrectomized rats treated with PD for 12
weeks, the glomerular filtration rate was higher com-use the “urea removal index,” as suggested by Chen et

al [142]. These authors calculated the total mass of urea pared with controls, whereas the progression of glomeru-
lar sclerosis, evaluated with light microscopy, was attenu-removed by dialysis. They found that this removal index

was the same in HD and PD patients, and this despite ated [149]. Niwa, Ise, and Miyazaki demonstrated that
this kind of glomerulosclerosis could be stimulated bydifferences in Kt/V.
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the administration to uremic rats of indole, a precursor fere with functions that directly affect the toxic action
of other solutes. The uremic milieu decreases the expres-of the uremic toxin indoxyl sulfate [150]. Intestinal bind-

ing of these compounds or their precursors by AST120 sion of PTH receptors and hence the cellular response
to PTH [158, 159]. On the other hand, uremic solutescould prevent progression of renal failure. The observa-

tion of Motojima et al and the better preservation of also blunt the response to 1,25-(OH)2vitamin D3 and
hence might increase the production of PTH [27]. Asresidual renal function in PD patients could thus possibly

be attributed to the removal of this kind of substances. a consequence of the inhibition of enzymatic actions,
metabolization and breakdown of toxic solutes may beAlso, the higher hematocrits and the lower need for eryth-

ropoietin in PD patients [151, 152] could be partially at- altered or hindered. The kidneys per se play an important
role in the metabolization of solutes; when renal masstributed to the better removal of some uremic toxins.

Substances like polyamines and CMPF have been identi- is lost, these metabolic processes are also restricted.
Most uremic patients are prescribed a host of drugs.fied as possible inhibitors of erythropoiesis, which are

removed by PD but not by conventional HD [148, 153]. The influence of drugs on uremic toxicity can be attrib-
uted to either interference of drugs with protein binding
and/or tubular secretion of uremic toxins or the produc-

NONDIALYTIC FACTORS AFFECTING UREMIC
tion of metabolites, which are not excreted by the failing

SOLUTE CONCENTRATION
kidneys, exerting their own toxicity.

Nutritional and environmental effects Medication may also interfere at the functional level.
For example, angiotensin-converting enzyme inhibitorsSeveral environmental sources in the generation of

uremic toxins too often have been disregarded. These might decrease the sensibility of erythrocyte progenitors
to erythropoietin [160]. On the other hand, drugs maysources include: (1) the presence in food of conserva-

tion agents, trace elements, AGEs and other precursors, be of help to reduce toxin concentrations. Allopurinol
decreases uric acid. Rhubarb tannins decrease the con-apart from the traditionally considered protein intake;

(2) the contact with volatile compounds such as toluene; centration of urea, creatinine, guanidino-succinic acid, and
(3) herbal medicines, quack remedies, and psychedelic methylguanidine in rats with acute renal failure [161].
drugs; and (4) environmental noxes imposed by dialysis, Biotin administration results in an improvement of ure-
because of the leaching from plastic devices or dialysate. mic neuropathy [162]. Vitamin C increases urinary CMPF
An additional problem could be that the contact risks excretion but does not alter plasma concentration in
are different for each individual; if specific toxins play hemodialyzed patients [103]. Hcy in uremic patients can
a role in each specific individual, they may go unrecog- be lowered by supplementation of folic acid, a compound
nized in the case mix of large random populations. favoring remethylation of Hcy to methionine [122, 163].

Several toxins are produced from protein breakdown
Residual renal functionor from metabolization of amino acids. Therefore, pro-

tein restriction could decrease toxicity were it not that The impact of residual renal function on uremic reten-
protein malnutrition might by itself increase morbidity tion should not be neglected. One should realize that
and mortality [45]. adding a creatinine clearance of 5 mL/min to the clear-

Most solutes with toxic capacity or their precursors ance imposed by dialysis means an increase in creatinine
enter the body through the gastrointestinal tract. Some removal by 650 to 100% [44]. This relative contribution
of them are produced by the intestinal flora. Inhibition is even more important for larger molecules and mole-
of intestinal absorption and modifications in the compo- cules with multicompartmental behavior, which are re-
sition of the intestinal flora could influence solute reten- moved less efficiently by dialysis procedures. Therefore,
tion [130, 154, 155]. A specific oral sorbent (AST120) the longer preservation of residual renal function with
has been demonstrated to decrease indoxyl sulfate and CAPD, compared with conventional HD, may be impor-
p-cresol in serum of uremic rats [124, 130, 156, 157]. tant. Uremic retention solutes have also been held re-
Other oral binders already in use today are several potas- sponsible for deterioration of renal function, and at least
sium and phosphate binders. Some of these compounds one of these compounds, indoxyl sulfate, is better re-
may exert their own toxicity, as is the case for the alumi- moved in CAPD patients [124].
num salts. In general, the possibilities to decrease intesti-
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