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Abstract Ability to make yield prediction before harvest using satellite remote sensing is important

in many aspects of agricultural decision-making. In this study, canopy reflectance band and differ-

ent band ratios in form of vegetation indices (VI) with leaf area index (LAI) were used to generate

remotely sensed pre-harvest empirical rice yield prediction models. LAI measurements, spectral

data derived from two SPOT data acquired on August 24, 2008 and August 23, 2009 and observed

rice yield were used as main inputs for rice yield modeling. Each remotely sensed factor was used

separately and in combination with LAI to generate the models. The results showed that green spec-

tral band, middle infra-red spectral band and green vegetation index (GVI) did not show sufficient

capability as rice yield estimators while other inputs such as red spectral band, near infrared spectral

band and vegetation indices that are algebraic ratios from these two spectral bands when used

separately or in combined with leaf area index (LAI) produced high accurate rice yield estimation

models. The validation process was carried out using two statistical tests; standard error of estimate

and the correlation coefficient between modeled and predicted yield. The validation results indi-

cated that using normalized difference vegetation index (NDVI) combined with leaf area index

(LAI) produced the model with highest accuracy and stability during the two rice seasons. The

generated models are applicable 90 days after planting in any similar environmental conditions

and agricultural practices.
� 2013 Production and hosting by Elsevier B.V. on behalf of National Authority for Remote Sensing and

Space Sciences.
0405188.
gmail.com (M.A. Aboelghar).
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1. Introduction

Crop yield forecasts a few months before harvest can be of

paramount importance for timely initiating food trade secure
the national demand and timely organize food transport with-
in countries (Bastiaanssen and Ali, 2003). Forecasting enables

planners and decision makers to determine how much to im-
port (in shortfall case) or optionally, to export (in surplus
ational Authority for Remote Sensing and Space Sciences.
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case). Traditionally, crop yield estimation depended upon data
collection technique from ground-based field visits. Such tech-
nique is often subjective, costly and is prone to large errors,

leading to poor crop assessment and crop area estimation
(Reynolds et al., 2000). Also, the obtained data may become
available too late for appropriate action to be taken to avert

food shortage. At the same time, no yield prediction models
unless developed or tested locally are suitable for local use
(Shresthan and Naikaset, 2003); this view may be due to soil

attributes variation, climatic conditions, plant species varieties
and agricultural practices from one area to another. Recently,
with successful launching of various satellites, a lot of efforts
are made to use remote sensing for yield forecasting. Whereas,

remote sensing data have the potential to provide timely, sys-
tematically high quality spatial and accurate information
about land features including environmental impacts on crop

growth (Liu and Kogan, 2002). So, the temporal dynamics
of remote sensing data and their close relation with plant char-
acteristics could play a crucial role in establishing an effective

pre-harvest yield estimation method.
The most multi spectral satellite systems measure varies

spectral bands within the visible to mid-infra red region of

the electro magnetic spectrum (Shwetank and Bhatia, 2010).
The spectral absorption normally occurs from 670 to 780 nm
wave length range of the electro magnetic spectrum
(Kempeneers et al., 2004). In this concern, leaf chlorophyll

has a strong absorption at 0.45 lm and 0.67 lm, and a high
reflectance at near infrared (0.7–0.9 lm). Near infrared is very
useful for vegetation surveys and mapping because such a

steep gradient at 0.7–0.9 lm is produced only by vegetation
(Murai, 1996). Moreover, healthy plants have a high normal-
ized difference vegetation index (NDVI) value because of their

high reflectance of infrared light, and relatively low reflectance
of red spectrum (Moore and Holden, 2003). The modeling
process is based on vegetation indices (VI) which could be

observed and collected from remote sensing satellite data as
well as remotely sensed ground observation tools. Vegetation
indices are optical measures of vegetation canopy ‘‘greenness’’.
They give a direct measure of photosynthetic potential result-

ing from the composite property of total leaf chlorophyll, leaf
area, canopy cover, and structure. In this concern, (NDVI)
was linked to many plant parameters, which are closely related

to crop yield. It has a direct correlation with LAI, biomass and
vegetation cover (Wiegand et al., 1990, 1992; Tucker, 1979;
Holben et al., 1980; Ahlrichs and Bauer, 1983; Nemani and

Running, 1989). These driving parameters are largely influ-
enced by variations in soil fertility (Hinzman and Bauer,
1986) soil moisture (Daughtry et al., 1980; Tucker et al.,
1980; Teng, 1990, planting date (Crist, 1984) and crop density

(Aase and Siddoway, 1981). Most studies have observed a cor-
relation between NDVI and green biomass yield, therefore
NDVI can be used to estimate yield before harvesting

(Rasmussen, 1997). The other key for the proposed modeling
process is leaf area index (LAI) as a biophysical and major
parameter for determining crop growth. It gives a measure

of the density of foliage and is closely linked to the photosyn-
thetic and evapotranspiration capacities of plants. It can be re-
garded as the principle morphological parameter of the

vegetation canopy linking the satellite-derived vegetation index
and photosynthesis (Bach, 1998). Moreover, VI and LAI have
a strong correlation with plant physiological conditions and
crop productivity under a different dimension and growth
stage with multi-source remote sensing data.
2. Materials and methods

2.1. Field experiment

Yield prediction modeling of rice crop was carried out using
the collected data from Sakha experiment station, Agriculture

Researcher Center, Ministry of Agriculture, Egypt. The exper-
imental field was situated in the rice belt region which includes
Kafr El-Sheikh Governorate. It is located between 31� 060 4000

and 31� 060 000 North and 30� 540 3000 and 30� 550 6000 East
(Fig. 1). The total area of rice observation site was 2.4 ha during
the growing seasons of 2008 and 2009, cultivated by the variety

Sakha 104. The region that includes the study area is defined as
Pro-Deltaic Alluvial Plain. This Pro-Delta is characterized by
clayey soil of high clay fraction and high water saturation per-
centages. These clayey soils are characterized as Vertisols of Ty-

pic Haplotonerts, fine, and thermic (Afify et al., 2011). Rice was
sown in May 24th and 23rd in the 1st and 2nd seasons, respec-
tively. At 90 days from sowing (maximum vegetative growth

stage), sixty measurements were collected from sixty parcels
of the rice field in each season based on the grid system
(Fig. 2). Each parcel covers 400 m2 (20 · 20 m) that represents

a single SPOT pixel that was fixed as one plot of measurements.
The location of the center square meter of each plot was re-
corded using global positioning system (GPS). Out of this num-

ber, fifty random samples were selected for themodeling process
and ten samples were selected for validation. Three types of data
were used as inputs for generating rice yield prediction models:
the direct spectral data collected from SPOT imagery (reflec-

tance values of green, red and near infrared bands), six calcu-
lated vegetation indices values, as well as the values of
observed rice yield and LAI.

2.2. Satellite data

Four spectral reflectance data were released from the different

SPOT bands: green (0.50–0.59 lm), red (0.61–0.68 lm), near
infrared (0.78–0.89 lm) and middle infrared (1.58–1.75 lm) ac-
quired during the rice seasons in August of 2008 and 2009. In
this respect, two satellite imageries of SPOT4 were acquired to

cover rice field within the same indexed projection of K111/
J287 including multispectral data. The acquisition dates of
these images were in August 24, 2008 and August 23, 2009.

The images were geometrically, radiometrically and atmo-
spherically corrected. FLAASH model under ENVI software
was used for atmospheric correction. It provides accurate,

physics-based derivation of apparent surface reflectance
through derivation of atmospheric properties such as surface
albedo, surface altitude, water vapor column, aerosol and

cloud optical depths, surface and atmospheric temperatures
from HSI data. FLAASH operates in the 0.4–2.5 lm spectral
range. First, MODTRAN simulations of spectral radiance
are performed for various atmospheric, water vapor, and view-

ing conditions (solar angles) over a range of surface reflectance
to establish lookup tables for the atmospheric parameters of
column water vapor, aerosol type, and visibility for subsequent



Figure 2 Cell grid system for collecting samples in rice field.

Figure 1 Field experiment location.
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use. Typically, the 1.13 lm water band is used to estimate
water vapor, and a ratio of in-band and out-of-band radiance

values allows estimation of absorption band depths for a range
of water vapor column densities. FLAASH also derives
pressure altitudes by applying the same method to the oxygen
0.762 lm absorption band. FLAASH offers the additional op-

tion of correcting for light scattered from adjacent pixels.
Spatially averaged reflectance is used to account for the
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‘‘adjacency effect’’ – radiance contributions that, because of
atmospheric scattering, originate from parts of the surface
not in the direct line of sight of the sensor (Adler-Golden

et al., 1999; Matthew et al., 2003). The SPOT image was
calibrated by resembling the original image based on the
mathematical model to leave the image’s spectral information

undisturbed.

2.3. Vegetation indices (VI)

Five vegetation indices were calculated from different forms of
algebraic ratios between red (R) and near-infrared bands:
(NIR) Ratio Vegetation Index (RVI), Infrared Percentage

Vegetation Index (IPVI), Difference Vegetation Index (DVI),
Normalized Difference Vegetation Index (NDVI) and Soil Ad-
justed Vegetation Index (SAVI), in addition to one vegetation
index was calculated through a ratio between green band

and near-infrared band: Green Vegetation Index (GVI). All
vegetation indices were calculated from SPOT 4 data. These
vegetation indices were calculated as follows:

1- GVI (Panda et al., 2010):

GVI ¼
qir � qg

qir þ qg

where: qir and qg are spectral reflectance from the green and
NIR band images, respectively.

2- RVI (Jordan, 1969):

RVI ¼ NIR

Red

3- IPVI (Crippen, 1990):

IPVI ¼ NIR

NIRþR

It is restricted to values between 0 and 1 and eliminates the

conceptual strangeness of negative values for vegetation indi-
ces.4- DVI (Richardson and Everitt, 1992):

DVI ¼ NIR�Red

5- NDVI (Rouse et al., 1973):

NKVI ¼ qir � qr

qir þ qr

where: qr and qir are spectral reflectance from the R and NIR

band images, respectively.6- SAVI

SAVI ¼ qir � qr

qir þ qr þ L

� �
� ð1þ LÞ

where qr and qir are spectral reflectance from the R and NIR
band images, respectively, and L is an optimal adjustment fac-
tor. Huete (1988) defined the optimal adjustment factor of L

= 0.25, 0.5 or 1.0 to be considered for higher, intermediate or
low vegetation density in the field, respectively. He suggested
that SAVI (L = 0.5) successfully minimized the effect of soil

variations in green vegetation compared to NDVI. Based on
our observations, we considered canopy cover of the rice crop
in the field as intermediately dense during the time of satellite
images acquisition in 2008 and 2009. Thus, the value of 0.5

was used as the L factor using the Huete strategy of selecting
the L factor, which is also supported by Thiam and Eastmen
(1999).
2.4. Leaf area index (LAI)

Leaf area index (LAI) and actual rice yield were measured. In
this concern, within each parcel, five LAI readings were
collected using LAI-2000 plant canopy analyzer, and then

the average was recorded. At the end of each rice season, a har-
vester was used to measure the yield of each parcel and the
average yield (ton/ha) was calculated. Finally, the whole data-
set was completed as sixty points for each rice season, LAI

measurements, and spectral variables including red and near
infrared bands represented as digital numbers and six vegeta-
tion indices. All generated models are site specific limited to

the area and the surrounding environment and could be appli-
cable under similar conditions in Egypt.

The separate bands and separate VI images of the test site

were transformed into ASCII format and MS-Excel macro
program is written to collect reflectance of all values. All veg-
etation indices values and LAI are considered for the regres-

sion analysis and integrated yield prediction models of the
two rice seasons. The explanatory power of the independent
variables in the model and eventual prediction accuracy of
the generated models were assessed with statistical parameters

i.e., standard error of estimate (SEE) and determination coef-
ficient (R2).The generated models were validated through two
main steps: The first step is the determination coefficient that is

released from the generated models while the second step is the
validation of the models through testing the yield that is calcu-
lated through the generated models (modeled yield) against the

yield that is observed from the technical office of Sakha Exper-
imental Station (observed yield). Testing modeled yield against
observed yield was carried out through two common statistical
tests i.e., the standard error of estimate between modeled yield

and observed yield as well as the determination coefficient for
a direct regression analysis between modeled and observed
yield for each generated model.

3. Results and discussion

3.1. Regression analysis

3.1.1. Simple regression analysis

Through studying the simple regression relationships and com-
puting coefficients of determination (R2) between rice yield, as

a dependent variable, and each of green band, red band, NIR
band, MIDIR band, GVI, DVI, IPVI, RVI, NDVI, SAVI and
LAI as independent ones, it is shown that the suitable mathe-
matical uniform is the linear one (Table 1).

According to regression equations, there is a distinctive
relation between rice yield either with red band, NIR band,
DVI, IPVI, RVI, NDVI, SAVI and LAI, while, green band,

mid-infrared and GVI models showed the lowest determina-
tion coefficient. From R2 value, of each, it is observed that
83–75%, 86–84%, 88–85%, 85–80%, 89–86%, 85–80%, 85–

80% and 83–81% of the changes in rice yield were attributed
to red band, NIR band, DVI, IPVI, RVI, NDVI, SAVI and
LAI, in 2008 and 2009 seasons respectively. Additionally,

regression equations predict that the more the NIR band,
DVI, IPVI, RVI, NDVI, SAVI and LAI increase as well as
red band decreases by one unit, the more the rice yield in-
creases by 0.11, 47.1, 2.52, 23.5, 18.8, 2.87 and 0.92 ton/ha.,

respectively as averages of the two studied seasons. The valida-



Table 1 Simple regression models for rice yield prediction in 2008 and 2009 seasons.

Forecaster 2008 Season 2009 Season

Model R2 Model R2

Green band Y= 3.474 + 0.159 · Green 0.11 Y= 6.106 + 0.097 · Green 0.04

Red band Y= 35.969–0.932 · Red 0.83 Y= 35.400–0.913 · Red 0.75

NIR band Y= �2.516 + 0.130 · IR 0.86 Y= �2.162 + 0.127 · IR 0.84

MIDIR band Y= 3.481 + 0.161 · MIDIR 0.24 Y= 3.869 + 0.154 · MIDIR 0.27

GVI Y= 4.554 + 13.954 · GVI 0.31 Y= 4.818 + 13.367 · GVI 0.33

DVI Y= 1.988 + 0.117 · DVI 0.88 Y= 2.233 + 0.115 · DVI 0.85

IPVI Y= �27.165 + 48.323 · IPVI 0.85 Y= �25.283 + 45.857 · IPVI 0.80

RVI Y= 1.039 + 2.537 · RVI 0.89 Y= 1.237 + 2.504 · RVI 0.86

NDVI Y= �.003 + 24.161 · NDVI 0.85 Y= �2.355 + 22.928 · NDVI 0.80

SAVI Y= �2.987 + 19.343 · SAVI 0.85 Y= �2.34 + 18.357 · SAVI 0.80

LAI Y= �0.386 + 2.753 · LAI 0.83 Y= �1.357 + 2.995 · LAI 0.81

R2: Determination coefficient.

Table 2 Determination coefficient (R2) and standard error of estimation (SEE) of actual and predicted rice yield of different spectral

bands obtained from satellite imagery, vegetation indices and LAI in 2008 and 2009 seasons.

Forecaster 2008 Season 2009 Season

R2 SEE R2 SEE

Green band 0.05 0.894 0.06 0.545

Red band 0.91 0.716 0.9 0.741

NIR band 0.92 0.727 0.91 0.755

MIDIR band 0.24 1.090 0.24 1.050

GVI 0.40 1.260 0.39 1.220

DVI 0.94 0.641 0.93 0.684

IPVI 0.93 0.706 0.92 0.722

RVI 0.95 0.578 0.94 0.624

NDVI 0.93 0.706 0.92 0.722

SAVI 0.92 0.760 0.92 0.722

LAI 0.85 0.900 0.85 0.989
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tion of these models was carried out using two statistical anal-
yses including regression analysis between actual and expected

yield for each model and R2 values as well as the standard er-
ror of estimation (SEE) as presented in Table 2. It is observed
in the 1st and 2nd seasons that green band, mid-infra-red and
GVI as predictors for rice yield prediction models are not

applicable as they showed low determination coefficient
(R2 = 0.4 in the best case). Contrarily, the other models were
adequate for predicting rice yield as they recorded higher than

0.8 of R2 for each. Such analysis almost agreed with the result
of the analysis of the SEE as shown in Table 2.

3.1.2. Multi-regression analysis

Multi-regression analysis and determination coefficient were
performed based on the combination between leaf area index
(LAI) as a measured biophysical parameter and each of differ-

ent spectral parameters that was obtained from satellite imag-
ery either in the form of spectral bands or vegetation indices in
2008 and 2009 seasons (Table 3).

Regarding the generated multi-regression formula and the
determination coefficient of each generated model, using more
than one variable for rice yield prediction increased the effi-

ciency of the accuracy of the generated models due to enhanc-
ing R2 values, except with the case of mid-infra-red model in
2008 season where its R2 was 0.24. As performed with the case
of simple regression, the validation process was performed
using regression analysis between actual and predicted yield

and calculating R2 values for the different models as well as
the standard error of estimation as shown in Table 4. All mod-
els revealed acceptable results and the accuracy of all models
was comparable to each other where relatively high values of

R2 and low values of SEE were recorded. However, it is not
recommended to use simple regression models based on green
and mid-infra-red bands, where they appeared to have low

accuracy and multi-regression model of mid-infra-red band
where it was not stable through the two studied seasons.

It is clear that the obtained predictors derived from satellite

imagery either in the form of spectral bands (red and NIR) or
vegetation indices (DV, IPVI and SAVI) are the more effective
spectral parameters for forecasting rice yield. These results

could be attributed to that red and NIR bands are the most re-
lated wavelengths for chlorophyll synthesis or chlorophyll light
absorption. In this concern, total chlorophyll content was lin-
early related to the reflectance in the red-edge (between 700

and 710 nm and NIR (between 750 and 800 nm) ranges using
the equation. The results of the generated models also agreed
with Gitelson et al., 2003; Bendict and Swindler, 1961; Thomas

and Oerther, 1972; Xiao et al., 2005 who found that chloro-
phyll of green leaves absorbed 80–90% of light in blue (about
0.45 lm) or red portion (about 0.68 lm) of spectrum. The



Table 3 Multi-regression models for rice yield prediction in 2008 and 2009 seasons.

Forecaster 2008 Season 2009 Season

Model R2 Model R2

Green band/LAI Y= 4.252 + 3.405 · LAI-.172 · GREEN 0.91 Y= 3.179 + 3.640 · LAI-0.170 · GREEN 0.90

Red band/LAI Y= 18.550 + 1.369 · LAI-0.192 · Red 0.85 Y= 9.383 + 2.184 · LAI-0.276 · Red 0.81

NIR band/LAI Y= �2.848 + 1.436 · LAI + 0.077 · IR 0.86 Y= �3.139 + 1.541 · LAI + 0.076 · IR 0.91

MIDIR band/LAI Y= �.539 + 2.586 · LAI + 0.118 · MIDIR 0.24 Y= �5.309 + 2.794 · LAI + 0.117 · MIDIR 0.96

GVI/LAI Y= �2.631 + 2.841 · LAI + 8.342 · GVI 0.93 Y= �3.189 + 2.658 · LAI + 7.899 · GVI 0.91

DVI/LAI Y= 0.092 + 1.310 · LAI + 0.073 · DVI 0.88 Y= �0.260 + 1.445 · LAI + 0.070 · DVI 0.91

IPVI/LAI Y= �6.889 + 1.418 · LAI + 28.003 · IPVI 0.85 Y= �15.569 + 1.684 · LAI + 24.917 · IPVI 0.88

RVI/LAI Y= �0.185 + 1.131 · LAI + 1.675 · RVI 0.93 Y= �0.486 + 1.269 · LAI + 1.619 · RVI 0.90

NDVI/LAI Y= 2.887 + 1.418 · LAI + 14.002 · NDVI 0.92 Y= �3.110 + 1.684 · LAI + 12.458 · NDVI 0.88

SAVI/LAI Y= �.882 + 1.418*LAI + 6.6226*SAVI 0.92 Y= �3.102 + 1.684 · LAI + 9.979 · SAVI 0.89

R2: Determination coefficient; SEE: Standard error estimation.

Table 4 Determination coefficient (R2) and standard error of estimation (SEE) of actual and predicted rice yield of LAI and each of

different spectral parameters obtained from satellite imagery either in form of spectral bands or vegetation indices in 2008 and 2009

seasons.

Forecaster 2008 Season 2009 Season

R2 SEE R2 SEE

Green band/LAI 0.95 0.581 0.95 0.625

Red band/LAI 0.89 0.559 0.89 0.873

NIR band/LAI 0.97 0.445 0.97 0.462

MIDIR band/LAI 0.96 0.489 0.96 0.518

GVI/LAI 0.96 0.549 0.96 0.514

DVI/LAI 0.97 0.449 0.97 0.466

IPVI/LAI 0.96 0.490 0.96 0.529

RVI/LAI 0.96 0.499 0.96 0.518

NDVI/LAI 0.96 0.490 0.96 0.529

SAVI/LAI 0.96 0.429 0.96 0.529
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results agreed also with Rouse et al. (1973) who found that red

band (0.63–0.70 lm) and near infrared band (0.75–1.0 lm)
were the most suitable portions from the Electro-Magnetic
Spectrum (EMS) that could be used for the assessment of crop

conditions and biomass as the red spectral interval corre-
sponds to region of maximum chlorophyll absorption while
the near infrared spectral interval corresponds to maximum

reflectance of incident light by living vegetation. The study also
confirmed the importance of LAI as a biophysical trait for
determining crop growth being a measure of the density of fo-
liage and is closely linked to the photosynthetic capacities of

plants and consequently their productivity. LAI as the princi-
ple morphological parameter of the vegetation canopy could
be used successfully to link the satellite-derived vegetation in-

dex and photosynthesis. It is expected that the generated mod-
els are applicable using SPOT data in any area with similar
environmental conditions. Applying these models using other

types of satellite imagery may not give the same accuracy.
The reason of this could be the difference in the spectral band
ranges of the other data. This will make a difference in the val-
ues of the vegetation indices.
4. Conclusion

In the current study, after observing the results of all generated

models for rice yield prediction for the two seasons of 2008 and
2009 and the validation analysis for the generated models, it
could be concluded that using multi-regression model of LAI

as one input factor and NDVI or any other vegetation index
that is calculated from red and near infrared spectral reflec-
tance under normal environmental conditions and common

agricultural practices during the period of the maximum
vegetative growth could be the best methodology of rice yield
forecasting using satellite imagery. Using high resolution

satellite imagery is necessary to be able to isolate rice
cultivation especially in the intensive agricultural lands of Nile
Delta in Egypt and it is also necessary to apply these models
over national scale. All generated models are empirical models

limited to environmental conditions and applicable under sim-
ilar conditions.
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