seizures, and an elevated blood lactate with normal hearing.

The incidence of renal involvement in the MELAS syndrome is unknown, and the reported frequency of hearing loss is 75%. The MTTL1 gene mutations should be considered in patients presenting with renal insufficiency and hearing loss.

We agree with the authors in reference to the quality (yield and purity) of extracted RNA from the cortical tissue of pieces B. Thus, in our experience storing tissues in RNA later represents an optimal mean to preserve RNA from degradation, but does not warrant microdissection of the biopsy.

Dorella Del Prete, Monica Ceol, Giovanni Gambaro, Angela D’Angelo, and Franca Anglani

Correspondence to Dorella Del Prete, Division of Nephrology, University of Padua, Padova, Italy.
E-mail: dorella.delprete@unipd.it

REFERENCES

Gene expression analysis in microdissected renal biopsy

To the Editor: Microdissection of renal biopsy may be necessary to analyze gene expression in glomeruli and tubulointerstitium [1], but this procedure is delicate because RNA degradation may occur. The Munich group [2, 3, 4] recently reported the possibility of microdissecting biopsies stored in RNA later®, a commercial RNase inhibitor. We completely agree that control of RNAase activity is crucial during microdissection; nevertheless, we obtained different results that may be worthy of discussion.

The cortical tissue from five kidney biopsies taken from sites remote from tumor-bearing tissue was immediately divided under the stereomicroscope into three randomly allocated pieces: A and B were stored in RNA later® following the protocol instructions to investigate microdissection feasibility and evaluate RNA extraction, respectively; C was kept in saline containing 100 U of RNAsin® at 4°C. After 1 hour of storing in RNA later®, pieces A were microdissected; but although our experience includes over 150 renal biopsies, we had trouble separating glomeruli from the tubulointerstitium. Indeed, fragments of a homogeneous yellowish color appeared at the stereomicroscope, glomeruli could be hardly recognized, and specimens appeared compact and stiff, resembling fixed tissues. On the contrary, from pieces C it was possible to collect easily 10 to 20 glomeruli each.

Can error in GFR formulas explain their poor performance in transplant patients?

To the Editor: In a recent paper by Mariat et al [1], the performance of several glomerular filtration rate (GFR) equations was assessed against inulin clearance in renal transplant patients. One of the GFR estimate equations used was the Nankivell formula, which was printed as the following:

\[
\text{GFR (mL/minute)} = 6.7/\text{serum creatinine} + 0.25 \times \text{weight} - 0.5 \times \text{urea} - 0.01 \times \text{height}^2 + 35(25 \text{ for woman}).
\]

However, on review of Dr. Nankivell’s original article [2], the original formula derived was:

\[
\text{GFR (mL/minute)} = 6.7/\text{creatinine (mmol/L)} + \text{BW(kg)/4 - urea(mmol/L)/2 - 100/height(m)^2} + 35 (25 \text{ for woman}).
\]

If this was not a printing error and this formula was applied to the data, this may account for the relative decreased accuracy of the Nankivell formula when compared with the other GFR calculation equations.

In addition, the Levey formula (Mariat et al [1]) was printed as:

\[
\text{GFR (mL/minute)} = 170 \times \text{serum creatinine}^{-0.999} \times \text{age}^{-0.1} \times 0.762 \times 1.180 \times (\text{if patient is black})
\]

Correspondence to Dorella Del Prete, Division of Nephrology, University of Padua, Padova, Italy.
E-mail: dorella.delprete@unipd.it

REFERENCES

To the Editor: Microdissection of renal biopsy may be necessary to analyze gene expression in glomeruli and tubulointerstitium [1], but this procedure is delicate because RNA degradation may occur. The Munich group [2, 3, 4] recently reported the possibility of microdissecting biopsies stored in RNA later®, a commercial RNase inhibitor. We completely agree that control of RNAase activity is crucial during microdissection; nevertheless, we obtained different results that may be worthy of discussion.

The cortical tissue from five kidney biopsies taken from sites remote from tumor-bearing tissue was immediately divided under the stereomicroscope into three randomly allocated pieces: A and B were stored in RNA later® following the protocol instructions to investigate microdissection feasibility and evaluate RNA extraction, respectively; C was kept in saline containing 100 U of RNAsin® at 4°C. After 1 hour of storing in RNA later®, pieces A were microdissected; but although our experience includes over 150 renal biopsies, we had trouble separating glomeruli from the tubulointerstitium. Indeed, fragments of a homogeneous yellowish color appeared at the stereomicroscope, glomeruli could be hardly recognized, and specimens appeared compact and stiff, resembling fixed tissues. On the contrary, from pieces C it was possible to collect easily 10 to 20 glomeruli each.
× blood urea nitrogen$^{-0.170}$ × serum albumin concentration$^{-0.318}$

On review of the original article by Dr. Andrew Levey [3], the formula was printed as:

\[
\text{GFR (mL/minute)} = 170 \times [\text{Pcr}]^{-0.999} \times [\text{age}]^{-0.176} \times [0.762 \text{ if patient is female}] \times [1.180 \text{ if patient is black}] \times [\text{SUN}]^{-0.170} \times [\text{Alb}]^{+0.318}
\]

Again, we wonder whether the discrepancy in the ± 0.318 was a printing error.

Dharmapaul L. Raju, Vaneeta Kaur Grover, and Ahmed Shoker
Saskatoon, Canada

Correspondence to Dharmapaul Raju, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
E-mail: dharmapaul.raju@saskatoonhealthregion.ca

REFERENCES

Reply from the Authors

Thank you for bringing to light the discrepancies between the formulas printed in our article [1] and the original ones from B. Nankivell [2] and from A. Levey [3], respectively.

Of course, we have carefully checked our original records, and all the calculations were correct and done with the appropriate formulas. So clearly, it was a printing error done in the initial original manuscript.

Note that if the Nankivell and Levey formulas were used as written in our manuscript, they would both give a particularly poor estimate of the glomerular filtration rate (GFR). In our study population, the mean inulin clearance (± SD) is 49 ± 20 mL/min per 1.73 m² [1]. By using these incorrect Nankivell and Levey formulas, we obtain a predicted GFR of 93 ± 17 mL/min per 1.73 m² and 18 ± 7 mL/min per 1.73 m², respectively.

We sincerely apologize for any inconvenience and potential confusion (see page 2466 for correct equations).

Christophe Mariat, for the authors
Loire, France

Correspondence to Christophe Mariat, Department of Nephrology, Hopital Nord CHU de Saint-Etienne, Loire, France.
E-mail: christophe.mariat@univ-st-etienne.fr

REFERENCES