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a b s t r a c t

Proteolytic processing is a pervasive and irreversible post-translational modification that expands the
protein universe by generating new proteoforms (protein isoforms). Unlike signal peptide or prodomain
removal, protease-generated proteoforms can rarely be predicted from gene sequences. Positional pro-
teomic techniques that enrich for N- or C-terminal peptides from proteomes are indispensable for a
comprehensive understanding of a protein's function in biological environments since protease cleavage
frequently results in altered protein activity and localization. Proteases often process other proteases and
protease inhibitors which perturbs proteolytic networks and potentiates the initial cleavage event to
affect other molecular networks and cellular processes in physiological and pathological conditions. This
review is aimed at researchers with a keen interest in state of the art systems level positional proteomic
approaches that: (i) enable the study of complex proteaseeprotease, protease-inhibitor and protease-
substrate crosstalk and networks; (ii) allow the identification of proteolytic signatures as candidate
disease biomarkers; and (iii) are expected to fill the Human Proteome Project missing proteins gap. We
predict that these methodologies will be an integral part of emerging precision medicine initiatives that
aim to customize healthcare, converting reactive medicine into a personalized and proactive approach,
improving clinical care and maximizing patient health and wellbeing, while decreasing health costs by
eliminating ineffective therapies, trial-and-error prescribing, and adverse drug effects. Such initiatives
require quantitative and functional proteome profiling and dynamic disease biomarkers in addition to
current pharmacogenomics approaches. With proteases at the pathogenic center of many diseases, high-
throughput protein termini identification techniques such as TAILS (Terminal Amine Isotopic Labeling of
Substrates) and COFRADIC (COmbined FRActional DIagonal Chromatography) will be fundamental for
individual and comprehensive assessment of health and disease.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. The human proteome project on the verge of precision
medicine

After the publication of the first draft of the human genome in
2001 by the Human Genome Organization (HUGO) and before its
official completion in 2003 [1,2], the Human Proteome Organiza-
tion (HUPO; www.hupo.org) was founded to promote the field of
proteomics and to gain a comprehensive understanding of human
biology through mapping of the human proteome. In 2010, the
Human Proteome Project (HPP) was announced at the 9th World
HUPO Conference in Sydney, Australia, and launched the year after
at the World Congress in Geneva, Switzerland. The main goal of the
HPP is to identify and characterize at least one proteoform of each
of the ~20,000 humanprotein-coding genes, as well as their co- and
post-translational modifications (PTMs). The HPP is organized in a
chromosome-centric (C-HPP) manner with each of the 23 human
chromosomes and the mitochondrial genome managed by indi-
vidual member countries to further understand the functions and
localization of individual proteins in the human body [3,4]. The
biology/disease-centric pillar of the HPP (B/D-HPP) aims to analyze
the proteomes of each major human disease to identify and char-
acterize protein perturbations on a systems level [5]. All HPP efforts
(Fig. 1A) are assisted by the targeted proteomics resource SRMAtlas
[6] and the publicly accessible compendium of identified peptides
PeptideAtlas [7], both hosted by the Institute for Systems Biology in
Seattle, USA.

Concurrently, the Human Protein Atlas (HPA) program, funded
by the non-profit Knut and Alice Wallenberg Foundation, was
started in 2003 at the Royal Institute of Technology in Stockholm,
Sweden [8]. To date, antibody-based profiling of 44 different tis-
sues, 46 cell lines, and 20 cancer types is completed (Protein Atlas
version 13) and complemented by RNA-seq data from 32 different
tissues (www.proteinatlas.org). In total, over 13 million manually
annotated immunofluorescence-based confocal microscopy images
are available, bolstering our knowledge of individual protein
expression in human cell lines (The Cell Line Atlas), tissues (The
Tissue Atlas), and cancers (The Cancer Atlas), with partial subcel-
lular localization data (The Subcellular Atlas) [9]. Furthermore, in
2014 two mass spectrometry-based drafts of the human proteome
were published [10,11], both covering more than 80% of the pre-
dicted human proteome, tremendously expanding our current
catalogue of expressed proteins in human specimens. But despite
squillions of high quality mass spectrometry datasets and a myriad
of confocal immunofluorescence microscopy images, more than
2700 protein-coding genes still lack solid evidence at the protein
level (neXtProt release 2015-04-28) [12]. Memorably in his 2015
State of the Union Address, US President Barack Obama announced
an ambitious plan to invest hundreds of millions of dollars in
cutting-edge biomedical research, to launch a new era of medicine,
“one that delivers the right treatment at the right time” (Fig. 1B).
However, precision medicine, often referred to as personalized or
molecular medicine, will be only possible if we know which pro-
teins or more importantly which proteoforms are present and
where in the human body during distinct biological events. Thus,
further collaborative efforts including “outside of the box” ap-
proaches such as positional proteomics will be necessary to set the
stage for successful precision medicine initiatives.

2. Positional proteomics to fill the missing proteins gap

Even thoughmodern state of the art mass spectrometers such as
the Bruker UHR-QqTOF Impact II [13] and the Thermo Orbitrap
Fusion Lumos Tribrid [14] have detection and quantitation limits in
the low attomole range, protein concentrations in biological sam-
ples span more than 10 orders of magnitude in dynamic range,
which hampers the identification of low abundance proteins by
conventional shotgun proteomics [15]. In such bottom-up ap-
proaches, proteome samples are digested by a highly specific
endopeptidase such as trypsin or GluC, and the resulting peptide
mixture is analyzed by liquid-chromatography tandem mass
spectrometry (LC-MS/MS). Thereby the numerous peptides from
abundant proteins such as albumin in plasma, collagen in connec-
tive tissue, keratin in skin, or hemoglobin from red blood cells
frequently overshadow low abundance peptides typically origi-
nating from low abundance proteins, such as cytokines and other
cellular mediators. This caveat can be partly overcome by pre-
clearing samples (e.g. using immunodepletion kits [16]), protein
enrichment (e.g. BIO-RAD ProteoMiner [17]), offline sample frac-
tionation [18], or combinations thereof, but these strategies run the
risk of losing the low abundance proteins.

Another hurdle is that peptides from some proteins are just not
amenable to conventional shot-gun proteomicsdpeptides are
either too short (<7 aa), too long (>30 aa), ionize poorly, or are too
hydrophilic or too hydrophobic impeding their handling and online
reversed phase (C18) chromatographic separation. Thus shotgun
proteomics using a single endopeptidase for proteome digestion is
frequently insufficient to comprehensively and unambiguously
characterize the human proteome [19]. Positional proteomics
techniques such as TAILS (Terminal Amine Isotopic Labeling of
Substrates; Fig. 2A) and COFRADIC (COmbined FRActional DIagonal
Chromatography; Fig. 2B) not only deplete internal endopeptidase-
generated peptides and thus simplify the peptide-mixture, but also
focus on protein N- or C-terminal peptides and protease-cleaved
neo-termini with altered physicochemical, m/z, ionization, and
fragmentation properties compared to their shot-gun counterparts
since they are semi-specific, i.e. unlike shot-gun peptides, they only
have one terminus corresponding to the chosen endopeptidase
cleavage site (e.g. trypsin KR) [20,21]. Thus terminomics is the
perfect complement to conventional shot-gun proteomics to fill the
missing proteins gap, especially when specialized cells (e.g. plate-
lets, erythrocytes) or rare human specimens (e.g. dental pulp, heart)
are targeted [20,21]. More than 12% of canonical human proteins
have yet to be detected by mass spectrometry (neXtProt release
2015-04-28), an astonishing and somewhat surprisingly high
number considering the tremendous efforts of the proteomics
community in the last 10 years. Hence new approaches are needed
to take on the challenge, e.g. by using TAILS N-terminomics on
human dental pulp, we identified >4000 different proteins,
including 174 proteins that had not been identified by any other
proteomics approach before [22].

3. High-throughput terminomics techniques

COFRADIC was the first positional proteomics technique to use
negative selection and a series of orthogonal liquid chromato-
graphic separations to enrich for protein N-termini prior to MS/MS
analysis [23]. After reduction and alkylation of cysteine side chains
and acetylation of all primary amines (N-terminal a-amines and
lysine ε-amines) at the intact protein level, proteome samples are
digested with trypsin or any other highly specific endopeptidase to
generate (i) N-terminally acetylated original protein N-termini, and
(ii) internal peptides exhibiting free a-amines. Peptides repre-
senting protein N- and C-termini are enriched by a strong cation
exchange chromatography (SCX) step and recovered in the flow-
through due to their experimentally introduced or inherently
lower basicity, respectively, whereas internal peptides interact with
the resin and elute later corresponding to their positive charge and/
or higher basicity [24]. Next, two orthogonal reversed-phase liquid
chromatography (RP-HPLC) runs are performed with 2,4,6-
trinitrobenzenesulfonic acid (TNBS) treatment of the fractions
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Fig. 1. “Precision Medicine” rests upon genomics, proteomics, metabolomics, and bioinformatics. (A) Collaborative efforts providing the foundation for proteomics-based precision
medicine initiatives are highlighted. Data repositories such as Peptide Atlas and knowledgebases like neXtProt and TopFIND are key to disseminate data and knowledge to the
broader scientific community, providing the foundation for the development of diagnostic, prognostic, therapeutic, and preventive medical applications. HUPO: the Human
Proteome Organization represents and promotes proteomics to gain a deeper understanding of human disease and all other aspects of human well-being. C-HPP: the aim of the
chromosome-based Human Proteome Project is to characterize all ~20,000 protein-coding genes to generate a human proteome map as a resource to elucidate biological and
molecular functions and to advance disease diagnosis and treatment. B/D-HPP: the Biology/Disease Human Proteome Project aims to expand our current understanding of the
human proteome and to provide a spectrum of research tools for studying the proteins of relevance in specific areas of biology or disease. The Human Protein Atlas explores the
human proteome using a combined antibody-transcriptomics approach. In the current version (v13), transcriptomes of 213 tissues and cell lines and proteome analyses based on
>24,000 antibodies are publically available. PeptideAtlas is a publically available, multi-organism compendium of peptides identified in a large set of proteomics experiments, all
analyzed in a uniform manner. SRMAtlas focuses on targeted proteomic assays to detect and quantify proteins in complex biological samples by selected/multiple reaction
monitoring (SRM/MRM). neXtProt serves as a comprehensive human-centric discovery platform, expanding SwissProt protein information by adding high quality data from a
variety of high-throughput approaches such as microarrays, antibody screens, and proteomics. TopFIND3.0 is the go-to knowledgebase and analysis resource for protein termini and
proteolytic processing, covering more than 290,000 protein N- and C-termini, with more than 33,000 annotated protease cleavage sites. (B) Future medicine is envisioned as
personalized, predictive, preventive, and participatory (P4 medicine), and thus relies on individual molecular profiles assembled from genomics, proteomics, and other omics-based
approaches. Current P4 initiatives build mostly on pharmacogenomics (Tier 1), but due to the inherent static nature of genomic information, dynamic processes simply cannot be
monitored. Thus proteomics and terminomics-oriented approaches (Tier 2) gain importance and are facilitated by large-scale collaborative efforts such as the Human Proteome
Project (HPP) and The Human Protein Atlas. Other omics-techniques such as metabolomics and microbiomics (Tier 3) complement the molecular profiles.
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between runs to increase the hydrophobicity of co-enriched C-
terminal and internal peptides, thus dramatically changing their
retention time and allowing their depletion. Only fractions con-
taining peptides representing original protein N-termini are then
analyzed by LC-MS/MS (Fig. 2B). A recent variation of this technique
(ChaFRADIC) has improved efficiency of peptide identification and
requires less protein for analysis [25].

TAILS N-terminomics was initially designed for protease sub-
strate discovery [26,27] and subsequently adapted to monitor
in vivo proteolytic processing and perturbations of the protease



Fig. 2. Schematic representation of the two most prominent N-terminal negative enrichment strategies in positional proteomics: (A) TAILS and (B) COFRADIC. N-terminal peptides
are enriched by selective removal of internal and C-terminal peptides following primary amine protection at the protein level and sample digestion e.g. by trypsin. Importantly,
negative enrichment strategies also enrich for naturally blocked a-amines, and thus allow the study of in vivo protein acetylation profiles. Please refer to main text or more methods
oriented reviews [36,38] for details.
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web in health and disease [28e30]. Cysteine side chains and pri-
mary amines are blocked at the protein level before proteome
digestion, typically by trypsin or GluC, allowing the analysis of both
natural N-termini and in vivo generated neo-N-termini. As form-
aldehyde or isobaric tags are used for amine blocking, naturally
blocked N-termini can easily be differentiated from internal, typi-
cally trypsin-generated peptides, and acetylation profiles of protein
N-termini can be studied on a systems level [20,21]. Following
protein digestion with trypsin or any other highly specific endo-
peptidase, the peptide mixture is incubated with a commercially
available, water-soluble, aldehyde-derivatized (HPG-ALD) 100-kDa
polymer (http://flintbox.com/public/project/1948/). HPG-ALD
polymer covalently binds trypsin (or GluC) generated internal
peptides that have reactive free a-amines. As naturally and exper-
imentally blocked N-termini are unreactive, they are easily sepa-
rated from the polymer-bound internal peptides by ultrafiltration
prior to LC-MS/MS analysis [26,31]. For academic users, the HPG-
ALD polymer is currently available for USD350 per 20 mg
(retrieved 2015-10-23), which allows TAILS analysis of a total of
4 mg proteome (4e8 TAILS experiments) (Fig. 2A).

Recently two similarly elegant N-terminomics approaches were
published based on charge reduction [32] or charge reversal [33] of
internal peptides in combination with SCX, and additionally, there
are positive enrichment methods such as N-CLAP (N-terminomics

http://flintbox.com/public/project/1948/
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by Chemical Labeling of the a-Amine of Proteins) [34] or
subtiligase-based approaches [35]. Although the latter approaches
cannot assess natural N-terminal modifications as a free a-amine is
needed for tagging and pullout, both are suited to analyze protease-
generated neo-N-termini [36e39].

C-terminomics is inherently complicated due to the low
chemical reactivity of carboxyl groups. Nevertheless, modified
TAILS [40] and COFRADIC [41] protocols allow for high-content
analysis of protein C-termini [37,42]. Due to more complex and
labor-intensive workflows and lower success rates, C-terminomic
approaches are less frequently used than their N-terminomic
counterparts. However, improved protocols are in development
with simplified chemistry and improved depletion polymers that
will allow the scientific community to adopt C-terminomics into
their day-to-day proteomics repertoire [37]. In addition to the
lower chemical reactivity, both natural and neo-C-termini lack a
basic residue after trypsin digestion and hence are often missed by
LC-MS/MS analysis. To counter this, we added the trypsin-
mirroring metalloprotease LysargiNase from the thermophilic
archaeaMethanosarcina acetivorans to the proteomics tool box [43]:
C-termini generated by LysargiNase carry a N-terminal lysine or
arginine, resulting in high quality, b-ion dominated MS/MS spectra.
In addition, LysargiNase cleaves before mono-, di- and trimethy-
lated lysine and arginine residues facilitating detection of epige-
netic histone modifications, and increases proteome coverage
especially when used in combination with trypsin. Crystallization-
grade LysargiNase is available for less than USD400 per mg of
protease (http://www.ibmb.csic.es/LysargiNase/; retrieved 2015-
10-23), bringing the costs of a typical 100 mg proteome digest to less
than a dollar.

4. Proteolytic signatures as candidate biomarkers and
positional proteomics for precision medicine

4.1. Proteolysisda many-faced phenomenon

With over 560 human proteases, it is not surprising that pro-
teolysis plays a pivotal role in most physiological and pathological
processes. Unlike other PTMs such as protein glycosylation or
phosphorylation, proteolysis is an irreversible mechanism for
achieving precise cellular control of biological processes [44]. But
reversible exceptions exist: A few proteases, such as the aspar-
aginyl endopeptidase legumain, have tightly controlled dual pro-
teaseeligase activities, complicating the picture by reversing their
initial cleavages, or by engaging in in cis or in trans protein splicing
and thus generating even more proteoforms [45]. Most secreted
proteins undergo proteolytic signal peptide removal in the endo-
plasmic reticulum (ER) before they are released to the extracellular
space. Many proteases are synthesized as inactive zymogens that
require proteolytic activation to prevent inadvertent activity as
well as having activity blocked by endogenous inhibitor binding.
For example, matrix metalloproteinases (MMPs) are central
players in a myriad of physiological processes and signaling events
especially in the extracellular matrix of connective tissues, and
thus require regulation at all levels during their lifetime. Thus,
besides their tight control at the transcriptional level and their
expression as proenzymes, MMPs are also actively controlled by
the endogenous tissue inhibitors of metalloproteinases (TIMPs) 1
to 4 [46,47].

Bioinformatic protease web analysis recently verified that reg-
ulatory crosstalk occurs between proteasesdeither by direct
cleavage or by targeting the corresponding inhibitors, independent
of protease class or classical biochemical cascades [28]. Conse-
quently, proteases cannot be viewed in isolation and must be
examined together with their modulators and substrates (Fig. 3):
For example, MMP8 cleaves the elastase inhibitor a1-antitrypsin,
releasing the brake fromneutrophil elastase and thus triggering the
activating cleavage of CXC chemokine 5 (CXCL5, LIX) by elastase
in vivo. N-terminally processed CXCL5 binds to its cognate receptor
CXCR2, enhancing intracellular calcium mobilization and neutro-
phil chemotaxis. On the contrary, MMP12 cleavage inactivates
CXCL5 and shuts down the neutrophil response [28,48].

Another example of the interplay between endogenous in-
hibitors and MMPs in the protease web is described for the
complex activation of MMP2 by membrane-type 1 MMP (MT1-
MMP, MMP14) at the cell surface, which requires appropriate
stoichiometric concentrations of furin-activated MT1-MMP and
TIMP2 to form a 1:1 complex [49]. This inactive complex then
recruits proMMP2 from the extracellular space to the cell surface
to form a ternary complex, in which MMP2 interacts via its C-
terminal hemopexin domain with the C-terminal domain of
TIMP2. An adjacent uninhibited MT1-MMP molecule then
partially activates the complexed proMMP2 by cleaving between
Asn66 and Leu67. Further processing in trans by an active MMP2
molecule between Asn109 and Tyr110 produces fully activated
MMP2 that is released from the complex to the extracellular
space or sequestered at the cell surface by binding to a mem-
brane docking protein such as the vitronectin receptor aVb3 or
collagen [50]. However, if the concentration of TIMP2 is high,
both MMP2 and MT1-MMP are inhibited and no MMP2 activation
occurs [49]. Due to its pleiotropic roles, MMP2 has been
described as both a drug target and anti-target, depending on the
cellular context, tissue, disease type and duration, and the stage
of immune cell infiltration [51]. Thus, in most cases, neither an
individual protease activity nor a single substrate cleavage will
delineate the health state of a tissue or patient - instead, an
ensemble of protein cleavages and associated protein neo-N-
termini that forms a “proteolytic signature”, will likely provide
the required complexity, sensitivity, and robustness to compre-
hensively define a patient's condition.

4.2. Biomarker discovery

We recently proposed protein termini as new prospects for
biomarker discovery [52], as even though thousands of shot-gun
proteomics-derived biomarkers have been suggested for cancer
and other diseases, their translation into the clinic has been un-
expectedly disappointing [52,53]. Disease-specific proteolytic pro-
cessing occurs inmost pathologies including inflammation [29] and
cancer [54], and importantly, perturbations of the protease web are
often associated with disease initiation and change upon disease
progression and manifestation [55,56]. Ensembles of characteristic
protein termini with qualitative differences in both intact and neo-
termini form a highly informative proteolytic signaturedthey
reflect themechanistic state of bioactive proteins and inmany cases
their cellular localization, potentially allowing the discrimination
between health and disease and even disease stages [52]. A
prominent example of the importance of protein N-termini are
chemokines: After proteolytic signal peptide removal in the ER and
secretion into the extracellular space, chemokines create a hapto-
tactic gradient and induce directed chemotaxis in nearby respon-
sive cells. However, precise proteolytic processing by MMPs
modulates chemokine receptor specificities and/or turns receptor
agonists into antagonists and vice versa, manipulating the cellular
response [57,58]. Similarly, chemokine regulation has been recently
observed by cysteine cathepsins, which activate ELR-positive CXC
chemokines (e.g. interleukin-8), but inactivate non-ELR chemo-
kines such as SDF-1 (stromal cell-derived factor 1, CXCL12) [59].
Thus, it is of tremendous importance to know a chemokine's N-
terminus before assessing the health state of a patient. Similarly,

http://www.ibmb.csic.es/LysargiNase/


Fig. 3. Proteolytic networks determine the fate of bioactive molecules. Proteolytic enzymes are regulated on several levels: (i) Typically synthesized as inactive zymogens, pro-
teolytic cleavage is needed for activation; (ii) after activation endogenous inhibitors control their activity; (iii) inhibitor cleavage by another protease relieves the inhibition and
initiates downstream proteolysis; (iv) removal of protein interaction or localization-mediating accessory domains from a protease can alter the substrate repertoire and thus the
biological effects of that protease, explaining why many proteases are found as both drug targets and anti-targets depending on the disease and tissue context; (v) inactivating
cleavages accelerate the degradation of proteases to remove these from the proteolytic network when their task is over. For simplicity reasons, the figure only shows the regulatory
levels for one protease (protease of interest; shown in red), but similar checkpoints are in place for all other indicated proteases.
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proteolytic processing removes the first two alpha-helices of 14-3-3
proteins that are indispensable for dimerization, rendering them
monomeric and altering their function [20,60]; or in case of the
endogenous serine and cysteine protease inhibitors, serpins and
cystatins, only the identification of either natural or neo-N-termini
discloses if the inhibitor is active or proteolytically inactivated
respectively [29,61].

N-terminal modifications [37] are as important as neo-N-
termini in assessing the bioactive state of molecules, and thus
will be valuable contributors to proteolytic signatures. For example,
pyroglutamate formation and acetylation can be crucial for protein
function: N-terminal pyroglutamate formation in beta-amyloid
increases its hydrophobicity and resistance to aminopeptidases,
resulting in more aggregation and plaque formation in Alzheimer's
disease; N-terminal acetyltransferases have been implicated as
both oncogenes and tumor suppressors in human cancer survival
and proliferation since N-terminal acetylation modulates pathways
in apoptosis, cell-cycle arrest, and autophagy in a cancer-
dependent manner [62e64].

In 2014, a circulating proteolytic signature of cell death was
discovered in plasma samples from cancer patients by N-termi-
nomics [56], allowing the monitoring of chemotherapy treatment
and its efficacy. Despite its complex nature and the high abundance
of albumin, plasma is still the biological fluid of choice in clinical
applications as it is easily obtained, shows lower variability than
serum due tominimal sample handling, and provides a reflection of
a patient's health [15,53,65]. As many proteolytic processes occur in
the extracellular environment, both neo-N and neo-C-termini are
traceable in plasma. However, other clinically accessible fluids, such
as urine or saliva, may be of advantage in certain cases and should
be tested in parallel during biomarker development [52,66]. Even
though clinical evaluation of proteolytic signature biomarkers will
take place in readily available biofluids, their initial characterization
will most likely originate from in depth comparisons of patholog-
ically affected versus healthy tissues, which are then translated in
Multiple Reaction Monitoring (MRM) type assays into the clinic
[52]. Along these lines, we recently published a targeted MS/MS
method based on Proteolytic Signature Peptides (PSPs), which
include the tryptic peptide spanning the cleavage site in the intact
protein, and the semi-tryptic peptides representing the respective
neo-N- and neo-C-terminus after in vivo cleavage [67]. Thus, gen-
eration of cleaved neo-termini is mirrored by a reduction in the
amount of the spanning tryptic peptide in the uncut protein. Once
these proteolytic signature peptides are established, the amount of
proteolytic processing can even be quantified using chemically
synthesized and isotopically-labeled counterparts as internal
standards (Fig. 4). Such peptides can also be translated as SWATH-
detected peptides [68e70] in contemporary high throughput, high
content approaches.
4.3. Precision medicine: present and future

Genomics is without a doubt the current key technology in
personalized medicine (Fig. 1B). The newest generation Illumina
sequencer [71] allows for complete genome sequencing in less
than a day, and individual genome sequencing for less than 1000
USD, an incredible cost reduction considering that the first
sequenced human genome in 2003 came with a price tag of
around 3 billion USD. But in order to obtain a thorough under-
standing of how certain genes or gene sets really correlate with
health and disease, thousands and thousands of 1000 USD ge-
nomes will have to be sequenced with follow-up data analysis at a
combined cost of >10 billion dollars [71,72]. Despite these enor-
mous efforts, there is some doubt whether classical genomics
alone will ever be able to explain non-monogenic and thus more
complex diseases such as type 2 diabetes, cancer, or allergic and
autoimmune disorders, as the genetic sequence per se does not
change over time. However, proteomes constantly respond to all
kind of changes, whether they are small (e.g. dietary) or large (e.g.
viral infection) [73,74]. In fact many of today's top selling drugs



Fig. 4. Proteolytic Signature Peptides (PSPs) characterize bioactive molecules. Proteomics, but especially N-terminomics, allows for the identification and quantification of pro-
teolytic processing by targeting: (i) and (iii) a tryptic peptide spanning a potential protease cleavage site that has not been cut - designated a “spanning peptide”; (ii) and (iv) the
corresponding N- and C-terminal semi-tryptic peptides which have been cutdthus differentiating between the intact protein and the proteolytically processed variant. Thus, PSPs
can delineate inactive vs. active or membrane-bound vs. soluble proteoforms of membrane-bound proteins such as matrix metalloproteinases e.g. Mt1-MMP (MMP14), or can
distinguish CXC chemokine receptor agonists from antagonists. By implementing isotopically-labeled counterparts as internal standards, absolute quantitation of in vivo proteolytic
processing is possible. SP, signal peptide; PD, prodomain; TM, transmembrane domain.
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help less than 25% of patients and in case of the cholesterol-
lowering HMG-CoA reductase inhibitors, as few as 2% of patients
actually benefit from the drug treatmentdhighlighting the
pressing need for personalized approaches [75]. Without a doubt,
genetic analysis and pharmacogenomics [76e80] are an important
step in the right direction, but we are convinced that proteomic
insights and quantitative protein biomarkers will be needed to
reliably characterize and longitudinally monitor individuals, their
disease courses and therapeutic responses. Collaborative proteo-
mic efforts are already creating a flux of “big data” and knowledge
on life-threatening diseases (Fig. 1A). But most likely, only a
combination of cumulative single person studies following the
same study design and well-designed mobile applications
enabling people to monitor their personal health in between
doctor's visits will allow true precision medicine with proteomics
as the central diagnostic tool [75,81]. Positional proteomics will
add the extra layer of information needed to understand and
interpret the dynamic proteolytic networks underlying health and
disease, eventually permitting the prescription of the right drug at
the right time and dose to the individual patient.

4. Conclusion

Since the launch of the Human Proteome Project in 2011, pro-
teomics has been established together with pharmacogenomics as
the future direction for precision medicine, and positional prote-
omics is now poised to make a unique contribution for earlier and
improved diagnoses, personalized drug prescriptions, reduced
inappropriate therapeutic interventions, and a better health care
system. The importance of properly adjusted proteolytic networks
cannot be overestimated in health. Therefore, attention should be
paid to perturbations and the resolution of proteolytic status quo
when monitoring disease initiation, progression and therapeutic
responses.
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