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Abstract

Spiral separators are used globally in the ®ne coal and heavy mineral processing industries as gravity-concentration

devices. Consisting of an open trough that spirals vertically downwards in helix con®guration about a central axis, a

slurry mix of particles and water is fed to the top of the concentrator. Particles are then separated radially on the basis

of density and size as they gravitate downwards. To enhance performance, the geometric design has evolved historically

by experimental trial-and-error investigations to develop a prototype suited to the given industrial application. This

approach has proved somewhat prohibitive for design purposes however, and researchers have accordingly turned to

numerical techniques in an attempt to develop a fully predictive and reliable model for use in the design process.

Towards this end, the present paper uses Computational Fluid Dynamics (CFD) analysis to simulate ¯uid and dilute

particulate ¯ows on one operational spiral unit. The free-surface Volume-of-Fluid (VOF) algorithm, isotropic RNG

k±e turbulence model and Lagrangian method have been used for this purpose. Satisfactory predictions have been

obtained with respect to a collaborative experimental program, and the model forms the basis for future examination of

the two-way ¯uid-particle coupling processes and inter-particle e�ects. Ó 1998 Elsevier Science Inc. All rights re-

served.
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1. Introduction

The generic geometry of spiral concentrators consists of an open trough that spirals vertically
downwards in helix con®guration about a central axis. Employed in the ®ne coal and heavy
mineral processing industries, a slurry mix of ®ne particles (75±3000 lm) is fed to the top of the
spiral and, as it gravitates downwards, particles are segregated radially across the trough by the
centrifugal force. Separation occurs as light suspended particles travel to the outer trough regions
whilst heavy particles settle and tend to move inwards towards the central column. Historically,
evolution of the design has been almost exclusively based on empirical development of the ap-
propriate geometry. However, because this approach has proven to be expensive, time-con-
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suming and hence somewhat prohibitive, optimal designs have not been necessarily achieved.
The past decade has therefore seen developments in theoretical ¯ow investigations, of which
Computational Fluid Dynamics (CFD) has particular bene®t because the detailed ¯ow and
particulate interactions in complex domains can be solved using only the fundamental governing
equations.

Following the analytical study of Holland-Batt [1], researchers of concentrator ¯ows have
employed numerical techniques in response to the continuing rapid advance of computer hard-
ware in recent years. Although providing valuable insights into the mechanisms of spiral con-
centrator operation, the analytical approaches are limited for predictive purposes because they
require signi®cant empirical input. Following Wang and Andrews [2], who used CFD to deter-
mine the ¯ow ®elds for simpli®ed rectangular spiral sections, Jancar et al. [3] examined the ¯uid
¯ow on the coal-concentrating LD9 spiral using their locally developed code. As part of an on-
going research program, the present paper further examines the ¯ow on the LD9 unit using,
instead, the commercial CFD program, FLUENT, and the more robust Volume-of-Fluid (VOF)
method for modelling the free surface transport. This paper extends the preliminary qualitative
¯uid ¯ow study of Matthews et al. [4] in which laminar solutions were presented. Quantitative
¯uid ¯ow predictions have now been enabled using the RNG k±e turbulence model and partic-
ulate ¯ow analyses have also been conducted at dilute concentration.

2. Governing equations

2.1. Fluid ¯ow

Spiral concentrator ¯ows possess a free-surface, have shallow depths of <1 cm typically, and
display laminar to increasingly turbulent behaviour radially outwards with velocities reaching
3 m/s [1,5]. A secondary circulation current in a plane perpendicular to the mainstream ¯ow
direction, induced by the spiral curvature and resultant centrifugal force, travels outwards near
the free-surface and back inwards towards the central column near the trough base. To model this
¯ow, the ¯uid phase is considered Newtonian, to possess constant physical properties and to be
governed by the Reynolds-averaged turbulent Navier±Stokes equations. The steady-state equa-
tions for the conservation of mass and momentum in generalised curvilinear form, are respectively
given by:
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where q is the ¯uid density, leff the e�ective (molecular l plus turbulent lt) viscosity, P the static
pressure, and uij, and gi the mean velocity and gravitational acceleration, respectively. To consider
the e�ects of turbulence, the isotropic eddy viscosity concept and dynamic renormalisation group
theory (RNG) based k±e turbulence model [6] have been employed. This model contains very few
empirically adjustable parameters and is therefore applicable to a wide range of ¯ow situations.
The local level of turbulence kinetic energy (k) and energy dissipation rate (e) are solved using the
following transport equations:
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where Pk is the turbulence production and R an additional rate of strain term. According to the
RNG theory, the constants in the turbulent transport equations are given as
C1 � 1:42; C2 � 1:68; C3 � 0:012; g0 � 4:38; and Cl � 0:085: The turbulence is more sensitive
to the mean rate-of-strain than the standard k±e model because of R in the e transport equation
(4). The RNG formulation, by theoretical derivation, naturally accounts for the laminar, tran-
sitional and turbulent ¯ow regions. Moreover, ak and ae are variables determined locally
throughout the ¯ow, enabling the e�ects of streamline curvature to be considered in the analysis.
The equation for leff expressed in approximate algebraic form is given by:
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2.2. Particulate ¯ow

In this paper, the Lagrangian method has been used to simulate the particulate ¯ow at dilute
concentration on the LD9 spiral. The trajectory of an individual dispersed particle is calculated by
integration of the force balance on the particle to equate its inertia and, in curvilinear non-
orthogonal form, this balance may be expressed by [7]:
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Strictly, this equation describes the forces acting on a particle (p) by the undisturbed ¯ow and is
applicable to a rigid sphere smaller than the characteristic eddy size of the turbulent motion [7].
The term on the left-hand-side is the particle inertia, de®ning the force required to accelerate the
sphere of diameter Dp through the ¯uid. The forces on the right-hand-side of Eq. (7) represent
respectively, the pressure gradient in the ¯uid, virtual mass required to accelerate the ¯uid sur-
rounding the particle, Stokes steady-state viscous drag, and buoyancy due to gravity. Rep is the
particle Reynolds number and CD the drag coe�cient given by:
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in which a1, a2 and a3 are coe�cients dependent upon Rep and given by Morsi and Alexander [8].
To predict the turbulent dispersion of particles, the mean ¯uid velocity and instantaneous value of
the ¯uctuating component has been employed using a stochastic Continuous Random Walk
model [9]. In this model, the reduced time available for interaction between a particle and an eddy,
by the ``crossing trajectory'' e�ect of gravity has also been considered. Because particles have been
investigated at dilute concentrations they are assumed to have negligible in¯uence upon the ¯uid
¯ow ®eld.
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3. Boundary conditions

To solve Eqs. (1)±(9), appropriate boundary conditions must be employed in the ¯ow domain.
At the spiral inlet all ¯uid velocity components have been speci®ed and the distribution of F
de®ned to give a desired ¯ow rate (see following sub-section). At the exit, mainstream gradients
of the velocity components have been set to zero and no-slip conditions imposed at solid sur-
faces. For next-to-wall cells placed at y�-values P 11.6, the wall function approach has been
used to link the ¯ow with the near wall pro®les of velocity and turbulence parameters. For cells
placed at y� < 11.6, the laminar stress condition has been employed instead. Special consider-
ation of the boundary conditions at the free surface and during a particle-wall collision is
provided below.

3.1. Free-surface treatment

A wide range of methods have been developed to model the transient motion of free surfaces.
Each technique possesses strengths and weaknesses that limit them to speci®c types of ¯ow, al-
though Eulerian methods have been the most widely used and comprise ®xed-grid and adaptive-
grid formulations [10]. For modelling spiral concentrator ¯ows, Jancar et al. [3] have successfully
employed an Eulerian adaptive-grid technique in which the computational grid is adjusted locally
as part of the solution process to follow the free-surface. The interface is a well-de®ned contin-
uous curve upon which boundary conditions can be accurately implemented and small distortions
detected between nodes on the mesh. However, di�culties can arise in adjusting the grid to follow
interfaces that are highly deformed and, for this reason, the Jancar model has encountered nu-
merical instabilities when resolving concentrator ¯ows of high curvature [4].

For the purposes of design, a more robust method for simulating the free-surface transport has
therefore been sought by the authors. Indeed, a ®xed-grid Eulerian method, the Volume-of-Fluid
(VOF) formulation devised by Hirt and Nichols [11] has been preferred. In this method, the
interface between two phases (water and air) is tracked on a mesh that remains ®xed so that the
interface does not usually coincide with a grid line. Numerical stability is generally easily obtained
because the ¯ow ®eld calculations are not coupled with identi®cation of the free surface location.
The VOF method has been successfully employed in other applications, including axisymmetric
¯ows [12], the splashing of droplets [13], the sloshing of ¯uid in containers [14], and ¯ows in
pressure vessels and piping systems [11].

The philosophy behind the VOF method is to de®ne a function F throughout the computa-
tional domain whose value is unity at any point occupied by the ¯uid of interest, and zero oth-
erwise. The average value of F in a cell represents the fractional volume of that cell occupied by
the ¯uid, with values between zero and one containing the free surface. Evolution of the F ®eld is
governed by the following transport equation:
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A single momentum equation (2) is solved throughout the domain, and the resulting velocity ®eld
is shared by the two phases. The momentum equation is dependent upon the volume fraction F
through the properties q and l. These properties are de®ned in each cell using the following
relations, in which the subscripts w and a refer to the water and air phases, respectively:

qcell � F qw � �1ÿ F �qa;

lcell � F lw � �1ÿ F �la: �11�
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Computationally, the VOF method is economical because the free-surface location is neither
directly calculated nor stored during the solution process. Instead, the interface is reconstructed
whenever necessary by using a straight line through each relevant cell, the location and slope of
which are determined by both the cell value and local gradients of F. This process is less accurate
than the direct methods of calculation employed by adaptive grid techniques. After the free
surface location has been determined, the velocities and pressure in cells that contain the interface
are then assigned to ensure satisfaction of the complete free surface stress conditions [15]. As-
suming that viscous stresses in air are several orders of magnitude smaller than stresses in the
liquid, and that the curvature of the free surface is small, the normal and tangential stress con-
ditions can be expressed as:
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in which P denotes the required free surface pressure, P0 the ambient air pressure, un the normal
free surface velocity component, and ut1 and ut2 the tangential free surface velocity components.
At steady-state, the interface is at ambient pressure and behaves as a symmetry plane with normal
gradients of all variables equal to zero. Although viscous stresses and surface tension cannot be
simulated accurately because the interface within each cell is not located precisely, these forces
have been justi®ably neglected as Froude numbers across the trough are >1.0. Moreover, al-
though details of the interface smaller than the grid size cannot be resolved using the VOF
technique, this limitation has been largely overcome by using very ®ne meshes.

3.2. Particulate±wall interaction

As discussed by Brauer [16], a large number of factors in¯uence the dynamics of a particle±wall
collision. Some of the important parameters include the collision angle, particle translational and
rotational velocities, properties of the particle and wall materials, particle shape, and wall
roughness. Too little experimental information exists to allow detailed realistic modelling of a
collision and so assumptions generally need to be made of the dynamics involved [17]. The ap-
proach used here is that outlined by Matsumoto and Saito [18] and subsequently employed by
Tsuji et al. [19], Oesterle [20] and Sommer®eld [17]. Speci®cally, impulse equations describing the
interaction between smooth walls and spherical particles are used to determine the particulate
translational velocities after impact. Two types of collision are distinguished by the presence or
not of sliding at the point of contact. A collision without sliding takes place when the following
condition is satis®ed:

uT;1 ÿ Dp

2
x1

� ����� ���� < 7

2
/0�1� e�uN;1; �14�

in which uT;1 is the particulate tangential velocity to the wall immediately prior to the collision, Dp

the particle diameter, x the angular velocity, /0 the static coe�cient of wall friction, e the par-
ticulate restitution coe�cient describing the elasticity or otherwise of the collision, and uN;1 the
initial normal velocity to the wall of the particle. Eq. (14) reveals that at acute impact angles (a),
sliding will usually predominate but the rotation of the particle and friction at the wall must also
be considered. Following Sommer®eld [17], it is useful to represent Eq. (14) graphically by
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relating a, x, /0 and Dp to the type of collision. This is demonstrated in Fig. 1 for uT;1 velocities
characteristic for the LD9 unit of 0.3, 0.5, 1.0, and 2.0 m/s, and particle sizes of 100, 200, 500 and
1000 lm. Having assumed values for e and /0 of 1.0 and 0.2, respectively, values below each curve
indicate sliding upon impact whilst values above are indicative of non-sliding.

It can be observed in Fig. 1 that for smaller particle sizes and greater approach velocities,
higher values of x are required to prevent sliding. Additionally, the critical angular velocity re-
duces as the impact angle increases. Rotational velocities of particles have not been measured on
spiral concentrators so it is necessary to provide an estimate in the present analysis. If it is as-
sumed that zero slip occurs, then x can be approximated by the velocity divided by Dp [21].
Characteristic values of x within the inner, mid and outer trough regions for particle sizes of 100,
200, 500 and 1000 lm are given in Table 1. Except for the largest particles occurring within the
inner radial regions, impact angles have been found to be su�ciently acute (a < 10°) so that
sliding collisions predominate (c.f. Fig. 1). Moreover, the estimates of x given in Table 1 are
probaly maximum values as signi®cant slip could be expected on the hydraulically smooth ®-

Fig. 1. In¯uence of particle rotation on the type of collision for particle diameters of 0.1±1.0 mm and tangential impact

velocities of 0.3±2.0 m/s. Values above and below each curve re¯ect non-sliding and sliding upon impact, respectively.

Table 1

Estimated rotational velocities (revs/s) for 100±1000 lm particles within the inner (0.05 m radius), mid (0.15 m) and

outer (0.25) trough regions on the LD9 unit

Radial position Particle diameter (lm)

100 200 500 1000

Inner 3400 (0.34) 1800 (0.36) 780 (0.39) 410 (0.41)

Mid 6000 (0.60) 4000 (0.80) 1800 (0.90) 1000 (1.00)

Outer 9000 (0.9) 6000 (1.20) 2800 (1.40) 1600 (1.60)

Bracketed values represent mainstream ¯uid velocities (m/s) used to calculate x.
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breglass walls of the concentrator, particularly at the high impact velocities and acute incidence
angles typically encountered. Moreover, realistic non-spherical particles will rotate less than
spheres and have a preferred orientation within the ¯ow.

Accordingly, rotational velocities are assumed to play a minor role in the collision dynamics,
and the translational velocity components immediately after sliding (indicated by subscript 2) are
then given as [18]:

uN;2 � ÿeuN;2; �15�
uT;2 � uT;1 ÿ /d�1� e�uN;1Z0� �; �16�

Z0 � sign uT;1 ÿ Dp

2
x1

� �� �
; �17�

in which Eq. (17) serves as a lower limit for uT;2 where the velocity cannot be reduced below that
due to the assumed rotational velocity (Table 1); it also accounts for particles that have settled to
the trough base and are rolling downstream. In the above equations, the only empirical values are
the coe�cients of restitution (e) and dynamic friction (/d). Although e is dependent upon the
impact velocity and material properties of the particle and wall, at low values of a (<15°) the
restitution coe�cient is not particularly sensitive to variations of these parameters [16]. Moreover,
although the normal coe�cient (en) is related to the deformation of the wall material whilst the
tangential component (et) is related separately to the friction coe�cient, at a < 20° en � et � e
[16]. The dependence of e upon the impact angle is assumed to follow the relation obtained by
Grant and Tabako� [22] for quartz sand impacting on Aluminium alloy:

e � 0:993ÿ 1:76a� 1:56a2 ÿ 0:49a3; �18�
where a is expressed in radians. Although this relationship reveals that for a� 90°, e is 0.18, at
high impact angles the restitution coe�cient is known to vary substantially depending upon the
particular combination of materials considered [16]. However, the value of 0.18 is similar to the
equivalent measurements for coal and waste rock samples [23] and also the value of 0.2 used by
Beck and Holtham [24] in their computational simulations of coal strati®cation in a batch jig. The
employed value for /d of 0.1 is the same as that used by [24] and is consistent with values obtained
for spheres impacting upon smooth plates [25].

4. De®nition of domain and numerical procedure

The LD9 computational domain uses a single block, structured, curvilinear 3D grid (Fig. 2).
For computing purposes, the spiral has been divided into 35° sections with the computed outlet
solution speci®ed as the inlet conditions for the next downstream sector. The domain is bounded
by four walls and the ¯ow is essentially a duct ¯ow that includes an interface between water and
air. The model irrelevantly calculates the air ¯ow solution but because grid cells are stretched in
the depth-wise direction toward the spiral base, the computing time to do this is minimised.
Because of its greater inertia, and because no surface shear is speci®ed at the free surface, the
liquid ¯ow is not in¯uenced by the air ¯ow.

The equations have been solved using a ®nite volume method on a non-staggered grid. The
primitive ¯ow ®eld and VOF distributions were solved implicitly in which convective ®rst de-
rivatives were calculated using a second to third order QUICK discretisation scheme; three point
symmetrical formulae were used to discretise the second derivatives. The velocity ®elds were
determined from Eq. (2) using the iterative Line±Gauss±Seidel scheme and a velocity potential
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correction introduced to satisfy continuity (1) and to upgrade the pressure ®eld using the SIMPLE
algorithm.

After the volume fraction F had been calculated and the free surface position located, boun-
dary conditions at the interface were used to determine the pressure and velocities within the
surface cells (Eqs. (12) and (13)). The primitive ¯ow variables were then updated and the process
repeated until neither the ¯ow ®eld nor the free surface pro®le changed. For this purpose, all
residuals were reduced to below 3 ´ 10ÿ4 before transfer of the outlet results to the inlet plane of
the next downstream sector. Typically, CPU times of 4 h were required to reach the fully-
developed state and a further 2 h needed to transfer the results downstream on one 120 MHz
processor of a Hewlett±Packard K210 Unix server.

Use of only the QUICK scheme in the solution process would have led to progressive smearing
of the F function and loss of de®nition of the interface by dissipative and dispersive terms oc-
curring in the truncation error. Accordingly, the Donor±Acceptor method [11] was used to
compute F explicitly using a time-marching scheme after convergence in each sector. Typically, 50
time-steps of 0.001 s were needed for the interface to be convected from the inlet to outlet plane.
In the Donor±Acceptor method, sharper resolution is attained by limiting the amount of ¯uid
that can be convected across a cell face to the minimum of two values: the ®lled volume of the
phase in the donor cell; or the free volume available in the acceptor cell.

The trajectories of individual particles were calculated in the fully-developed ¯uid ¯ow do-
mains for six complete spiral turns. Step-wise integrations over discrete time-steps were conducted
using the fourth-order Runge±Kutta method. Integration of Eq. (7) yielded the velocity of the
particle at each point along the trajectory and a further integration in time predicted the trajectory
itself. The ¯uid velocity at the precise particulate position, estimated by a Taylor series expansion
about the value stored at the cell-centre, was employed. Instantaneous values of the ¯uid velocity
were also used and the trajectories of 100 particles with the same density and size calculated to
account for the random e�ects of turbulence.

Fig. 2. Computational domain for two turns of the LD9 concentrator unit, with reduced cells for clarity.
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5. Results

Analyses have been performed by examining the fully-developed free-surface ¯ow on the LD9
unit at industrial ¯ow rates of 4, 6 and 8 m3/h. Substantial empirical data is available for vali-
dation of the model [5,26]. In the present study, the 35° section of the ¯ow domain (Fig. 2)
consists of a mesh with 20 ´ 39±46 ´ 208 control volumes in the mainstream, depth-wise and
radial directions, respectively. The number of cells in the depth-wise direction has been varied
according to the ¯ow rate and these cells have been clustered toward the spiral base so that in the
region of maximum water depth, 22±37 of the 39±46 cells contain water. The thin nature of the
¯ow implied that the occurrence of high aspect ratios with respect to the cross-stream direction
could not be avoided. Ratios of up to 15 existed in the domain but because depth-wise gradients
of the ¯ow variables were generally much greater than those in the other directions, the widely
accepted limits of 5±10 were tolerably exceeded.

The cross-stream ¯uid ¯ow pro®le at 6 m3/h and fully-developed state is depicted in Fig. 3.
Induced by the centrifugal force, the water accumulates to the outer 20% of the concentrator and
smoothly increases its depth (0±7.8 mm) outwards across the trough. Predicted and measured
depths against radial distance (4 and 8 m3/h) are plotted in Fig. 4. Overall, satisfactory agreement
is observed between the experimental and numerical results. The extent of water movement along
the outer trough wall is predicted satisfactorily, and the inner radial depths (1±2 mm) are found to
vary negligibly between ¯ow rates. The greatest variation in depth between ¯ow rates occurs in the
outer regions, although the maximum predicted values of 5.5, 7.8 and 10.3 mm are less than those
measured of 6.5, 9.0, and 14.0 mm [5].

The method of depth measurement employed by Holtham [5] consisted of conductivity probes
immersed in the ¯uid. The probes were progressively lifted at small increments until conductivity
ceased and the depths were considered accurate to the nearest 0.5 mm. Although this error cannot
explain the signi®cant discrepancy within the outer regions (Fig. 4), Holtham did observe the
presence there of ®nely dispersed entrained air. Presumably, the presence of air pockets occurs as
turbulent eddies are able to protrude above the free surface, entrapping air as they return as
droplets to the medium [27]. In turbulent channel ¯ow, the entrapped air increases the depth
which at Froude numbers of 7±9 for the outer regions on the LD9 unit, translates empirically to

Fig. 3. Predicted transverse ¯uid pro®le and mainstream velocity distribution at 6 m3/h.
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an excess depth of approximately 15±20% [28]. Signi®cantly, the apparent numerical and
experimental discrepancy can then be explained by air entrainment which is currently unac-
counted for by the model.

As the depth increases radially outwards, the trough wall has progressively less in¯uence on the
¯ow and the velocity increases. Accordingly, the ¯ow moves from the laminar, transitional and
fully turbulent regimes outwards across the trough. Holtham [5] attempted to calculate the
boundaries of these ¯ow regimes by using the relationship for Reynolds number, Re, in open
channel ¯ow, given by: Re � qhVM=l in which h is the local mean ¯ow depth (Fig. 3) and VM the
mean velocity. Values of VM for eight radial streams were determined by dividing the spiral into
sections using vertical splitter plates, measuring the ¯ow rates in each stream and estimating their
cross-sectional area. Assuming that the transition from laminar to turbulent ¯ow occurs in the
range 400 < Re < 2000, the transition supported by the injection of dye traces, was found to
occur at 0.08±0.16 m radius with estimated error bounds of �30%. Similarly, the computational
equivalent of Re at 4 m3/h predicts the transition to occur at 0.04±0.14 m from the central column
(Fig. 5).

Fig. 4. Fluid depth pro®les: experiment (Holtham, 1990) versus CFD model at ¯ow rates of 4 and 8 m3/h.

Fig. 5. Predicted Reynolds number versus radial distance at 4 m3/h.

974 B.W. Matthews et al. / Appl. Math. Modelling 22 (1998) 965±979



Fig. 6. Predicted and measured mainstream velocities at 6 m3/h: 1 mm depth (top); 3 mm depth (mid); 5 mm depth

(bottom). Curves are mean numerical predictions. Measured points are instantaneous values.
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The instantaneous values of the mainstream velocity (v) on the LD9 unit have been measured
experimentally by Golab et al. [26] using Particle Image Velocimetry (PIV). The measurements are
estimated to have reasonably small error (<�20%), allowing the value of any given predictive
model to be rigorously assessed. Similar to the empirical analysis, the model predicts the main-
stream velocity to smoothly increase in magnitude outwards across the trough; the velocity dis-
tribution at 6 m3/h is depicted in Fig. 3. In general, the maximum velocity at any given radius
occurs at the free surface and for the three ¯ow rates investigated, increases from approximately
0.4 m/s in the innermost trough region, to its highest value near the outermost point of movement
along the outer wall. Encouragingly, the maximum predicted values of 2.0, 2.4 and 2.6 m/s at
respectively, 4, 6 and 8 m3/h are similar to the equivalent PIV measurements of 2.0, 2.3 and 2.2 m/s.

The validity of the model can perhaps be most rigorously tested by comparing the predicted
distributions of v with the equivalent experimental measurements at arbitrary radii and depths
within the ¯ow. Simulations of the mean mainstream velocity and the comparative measured
instantaneous values at 6 m3/h for depths of 1, 3 and 5 mm are plotted in Fig. 6. Qualitatively, the
model seems to have predicted satisfactorily the mean pro®les of velocity, the curves of which
generally bisect the experimental values. Signi®cant variation of the empirical data observed in
Fig. 6 probably re¯ects a number of causes, including the genuine turbulent nature of the ¯ow
and error associated with the PIV technique in being able to resolve depths to only 0.5 mm [26].

The secondary circulation ¯ow (u) on spiral concentrators occurs normal to the mainstream
¯ow direction. Induced by the curvature of the channel, the centrifugal force (proportional to v2

and hence maximum at the free surface and zero at the wall) tends to convey water radially
outwards. Opposing forces due to gravity and pressure gradient are reasonably uniform over the
full depth at any given radius so that the ¯ow returns inwards near the trough base. Where these
forces are equal and opposite at some fractional depth within the ¯ow, u is zero. The model is able
to capture the secondary motion, the structure of which in the outer region of the spiral is de-
picted in Fig. 7 at 8 m3/h. This classic structure extends to the innermost regions where depths are
less than 1.5 mm, and the ¯ow reversal occurs at fractional depths of 0.3±0.55.

Like its primary counterpart v, the strength of u increases with greater radius, is an order of
magnitude smaller than v, and has been found to vary downstream even after the onset of de-

Fig. 7. Secondary ¯ow in the outer trough at 4 m3/h. For clarity, the number of vectors has been reduced by respectively,

factors of two and four in the depth-wise and cross-stream directions.
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veloped ¯ow conditions. At ¯ow rates of 4, 6 and 8 m3/h respectively, mean values of u have been
found to vary from 0.05±0.13, 0.05±0.22, and 0.05±0.25 m/s; the maximum outward velocity exists
at the free surface and the comparative inward maximum at an approximate fractional depth of
0.1 (Fig. 7). These ®ndings are consistent with measurements using the injection of dye traces [5]
which demonstrate in particular that u is indeed an order of magnitude less than v. Although less
capable of capturing the mean secondary ¯ow behaviour, the PIV technique has also found u to
be distinctly unsteady with variations of at least the same order as the mean values [26].

To examine the hydrodynamic in¯uences on relative particulate separation, 100 particles have
been input into the ¯ow domain at 4 and 8 m3/h. Radial distributions across the trough were
determined after the particles had travelled six complete turns down the spiral. Representing their
positions of hydrodynamic equilibrium, analyses were performed for both coal particles
(qp� 1450 kg/m3) and quartz (qp� 2650 kg/m3). These particles re¯ect the extremes of density
processed on the LD9 unit, for which particle diameters of 100, 200, 500 and 1000 lm were
examined. The resultant radial distributions are given in Fig. 8 for ¯uid ¯ow rates of 4 and 8 m3/h;
as yet experimental results from the collaborative research program are not available for com-
parison.

The predicted distributions in Fig. 8 clearly demonstrate the classic pattern observed on spiral
separators, with ®ner and less dense particles migrating to the outer trough zones. Similarly to the
numerical investigation of Holland-Batt [1], outward migration diminished rapidly above 500 lm
for both particulate densities and ¯ow rates. Above this limit, the particles were found to settle to
the trough base and slide inwards toward the inner radii. Under all ¯ow conditions the ®nest
(100 lm) particles remained in suspension and migrated to the outer zones. Variations of ¯ow rate
and density were found to in¯uence particles in the somewhat narrow size range of
200 < Dp < 500 lm.

Initially, particles were injected at ®ve radial locations from the innermost to outermost regions
across the trough. Generally, particles migrated to their positions of hydrodynamic equilibrium

Fig. 8. Radial distributions of 0.1±1.0 mm diameter coal and quartz particles at ¯uid ¯ow rates of 4 and 8 m3/h (mph).
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within three to four turns of the spiral unit. Particles that did not remain in suspension were found
to saltate or bounce along the trough base, although the larger particles settled within the inner
regions and tended to roll downstream. In practice, particles at dilute concentration which do not
settle to form a bed, will tend to keep bouncing for longer distances than that predicted by the
model. Caused by deviations from particle sphericity and wall roughness, the reduced decay of
bouncing has been accounted for in other studies by employing irregular bouncing models [17,19].

Although the model has not yet investigated the particle dynamics at high concentration, the
results suggest that the LD9 unit could be improved as a separator of coal from waste rock. By
hydrodynamic processes, the concentrator should ideally segregate particles in the range of 100±
1500 lm with coal migrating to the outer radii, and quartz remaining within the inner regions
[1,5]. Moreover, although increasing the ¯ow rate appears to extend the upper extent of partic-
ulate separation from 200 to 500 lm (Fig. 8), no single de®nitive radial cut exists between the
desired product and waste material. For example at 8 m3/h, maximum separation for 200 lm
particles would be achieved at 0.27 m from the central column. Conversely, poor separation at
0.27 m would occur for particles of 500 lm diameter, for which segregation should be performed
at 0.12 m radius according to the analysis.

6. Conclusions

A commercial CFD code, FLUENT, has been used to model the ¯uid and dilute particulate
¯ow on the LD9 spiral used for ®ne coal processing. For a range of ¯ow rates, the free surface
¯ow has been simulated using a robust ®xed-grid VOF method and RNG k±e turbulence model.
Sound quantitative agreement with experimental data has been obtained with respect to ¯ow
depths and, most encouragingly, instantaneous mainstream velocities at arbitrary radii and
depths within the ¯ow. The secondary current has been able to be captured, the magnitudes of
which are of the same order as available experimental data. Particulate analyses using the La-
grangian method have displayed the correct qualitative ¯ow behaviour but have yet to be com-
pared quantitatively with the collaborative experimental program. Future developments of the
model will focus upon the particulate phase at progressively higher and hence more realistic feed
concentrations.
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