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Abstract

One of the applications of linear programing is to get solutions for fully fuzzy linear
system (FFLS) when the near-zero fuzzy number is considered. This usage could be
applied to interpret the nature of FFLS solution according to the nature of FFLS
solution in the work of Babbar et al. (Soft Comput. 17:1-12, 2012) and Kumar et al.
(Advances in Fuzzy Systems 2011:1-8, 2011). This paper shows that the nature of FFLS
solutions must not depend upon the nature of linear programming (LP) solutions,
because LP is not enough to obtain all the exact solutions for FFLS which contradicts
the claims of researchers. Counter examples are provided in order to falsify those
claims. Numerically, we confirm that the nature of the possible way of solving FFLS is
completely different from that of the linear system. For instance, FFLS may have two
unique solutions which contradict the uniqueness that can be obtained through only
one unique solution.

Keywords: Fully fuzzy linear system; Fuzzy number; Near-zero fuzzy number; Linear
programing
Introduction
Linear system of equations is the simplest framework and the most beneficial mathem-

atical model for many problems considered by applied mathematics. In practice, unfor-

tunately, the accurate values of coefficients of these systems are not available and not

well defined in many applications. This uncertainty may either be probabilistic or non-

probabilistic in nature. Accordingly, mathematical tools were developed to represent

and deal with vagueness and fuzziness. The response is the fuzzy theory, which pro-

vides a widely appreciated tool and representation of these uncertain data in many

fields.

Zadeh was the pioneer in the field of fuzzy sets and systems in [1,2]. The application

of this theory, in linear system of equations where the elements of the matrix are crisp

numbers and the elements of vector are fuzzy numbers, leads to a new system called

fuzzy linear system (FLS). On the other hand, it is called fully fuzzy linear system

(FFLS), when the all elements are fuzzy numbers. The problem for solving the fuzzy

systems is that, we must use methods without using inverse operators, because the ex-

tended operation on fuzzy numbers, subtraction and division of fuzzy numbers are not

the inverse operations to addition and multiplication, respectively [3,4].
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Buckley and Qu in [5,6] discussed the theoretical features of the existence of a solu-

tion of fuzzy systems, they provided categories of solution for FFLS as the classical so-

lution XC, the vector solution XJ, and the marginal solutions XE and XI. Their methods

were generalized in [7] to a fuzzy system of equations A1x + b1 =A2 x + b2, where A1,

A2, b1, and b2 are fuzzy matrices of fuzzy numbers.

The first achievable approach of FLS was obtained in [8], where they proposed a gen-

eric model for solving an n × n FLS by employing the embedding approach. The most

available study of FFLS was obtained in [9]; they studied a special case, where all coeffi-

cients and parameters are positives. In their study, they declared that there are infinite

numbers of scenarios and states that can be constructed from an FFLS. The methods

of finding a solution for these scenarios of FFLS create new scenarios of fuzzy system

which are based on these actual scenarios of FFLS [10].

Dehghan and his colleagues in [11-13] found the solution for FFLS where the coeffi-

cient and parameters are positive; their methods were based on the positivity case in

the approximate arithmetic operators on LR fuzzy numbers in [14]. Furthermore,

scholars in [15-18] and [19-23] proposed new methods for solving FFLS in a similar

case to Dehghan and his colleagues. In [24-27], researchers generalized methods for

solving FFLS where the coefficients and the parameters are not only positive, but they

also restrict the signs of coefficient or parameters only to positive or negative in one

side of FFLS in an attempt to avoid the near-zero triangular fuzzy numbers in both

sides of FFLS. In [28], Kumar et al. obtained an exact and infinite positive solution for

positive FFLS; moreover, they employed a similar technique to find a positive solution

for negative FFLS in [29]. In [30], Malkawi et al. proposed new matrix methods for

solving a positive FFLS, the necessary and sufficient condition to have a positive solu-

tion was discussed, and their methods and results were also capable of solving left-right

fuzzy linear system (LR-FLS) and FLS.

In [31], they found approximate solution for FFLS; the near-zero fuzzy numbers are

not included. They proposed a numerical method founded by a fuzzy neural network

denoted by FNN. The method was restricted by many constraints. The method can

solve only when the system has a unique fuzzy solution and the matrix has to be

squares which prevent extension of the method to solve a rectangle matrix ~A . To over-

come the shortcomings in previous methods, the researchers relied heavily on linear

programming (LP) to propose methods that can consider the near-zero triangular fuzzy

numbers in both sides of FFLS in [32,33]. The authors in the two studies declared that

the nature of the solutions of the FFLS depends on the nature of the solutions of the

LP, i.e., the possible way of solution for FFLS may not be a single unique solution but

infinitely many solutions.

Unfortunately, LP can give answers to the linear system but not in FLS and FFLS. The LP

technique cannot obtain all feasible solutions for FLS and FFLS. Kumar and his colleagues

illustrated examples of one solution while it has two unique fuzzy solutions or infinite num-

ber of solutions as will be illustrated through examples in this paper. Also, they added many

restrictions to the systems. These restrictions required many steps and longer time to reach

the ultimate solution; moreover, their examples did not exceed fuzzy matrix ~A of size n = 2.

However, all examples in the literature do not exceed fuzzy matrix ~A of size 2 × 3, if the

near-zero LR fuzzy number appears in both hand sides for FFLS.
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In this paper, we show that the nature of the solutions of the FFLS is completely dif-

ferent from the nature of the solutions of the LP and that it is insufficient to obtain all

exact solutions for FFLS, using numerical examples. We employed the results from this

survey as examples for LP methods in specific studies in [32,33] to declare that the

consistency or possible solution for FFLS is not similar to the known consistency con-

cept in the linear system. For instance, the FFLS may yield two unique solutions or

many infinite solutions despite that it is constructed by only one equation. Also, the

number of solutions in non-square FFLS does not depend on the number of equations

compared with the number of parameters.

The structure of this paper is organized as follows: in the ‘Preliminaries’ section, the

basic definitions of the fuzzy set theory are provided. In the ‘Fully fuzzy linear system’

section, we intend to illustrate the concept of FFLS, and hence, a brief summary on

solving the FFLS using LP technique is provided. The dissection is contained in the

‘Numerical examples’ section where the problems in LP technique are pointed out nu-

merically. In this section, many examples are solved by other methods in the literature

or directly by an associated system; however, the verifications of numerical examples

are provided. Since the verification of the solutions may be obtained also using distance

metric function [34], some examples are verified by distance metric function. We pro-

vide the final result without considering the used methods because the aim of this

paper is to show the weakness of the LP method to detect all exact feasible solutions,

and we want to confirm that the nature of solution for LP which has been gained by

optimal solution cannot explain the nature of the solution for FFLS. In the ‘Conclusion’

section, we conclude the paper.
Preliminaries
In this section, basic definitions and notions of fuzzy set theory are reviewed

([14,35,36]).

Definition 1. Let X be a universal set. Then, we define the fuzzy subset ~A of X by

its membership function μ~A xð Þ : ℝ→ 0; 1½ � which assigns to each element x ∈ X a real

number μ~A xð Þ in the interval [0,1], where the value μ~A xð Þ represents the grade of

membership of x in ~A.

A fuzzy set A is written as ~A ¼ x; μ~A xð Þ� �
; x∈X; μ~A xð Þ∈ 0; 1½ �� �

.

Definition 2. A fuzzy set ~A in X =ℝn is convex fuzzy set if

∀x1; x2∈X;∀λ∈ 0; 1½ �;

μ~A λx1 þ 1−λð Þx2ð Þ≥min μ~A x1ð Þ; μ~A x2ð Þ� �
:

Definition 3. Let ~A be a fuzzy set defined on the set of real numbers ℝ. Ã is called
normal fuzzy set if there exists x ∈ ℝ such that μ~A xð Þ ¼ 1:

Definition 4. A fuzzy number is a normal and convex fuzzy set, with its membership

function μ~A xð Þ defined in real line ℝ and piecewise continuous.

Definition 5. (Left-right fuzzy number) A fuzzy number ~m is called left-right fuzzy

number, abbreviated as LR fuzzy number, where its membership function satisfies
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μ ~m xð Þ ¼

L
m−x
α

� �
; for x ≤m; α > 0;

R
x−m
β

� 	
; form ≤ x; β > 0;

8>>>>><
>>>>>:

ð1Þ

where m, α, β ∈ ℝ

and the function L(.) is called a left shape function if the following hold:

1. L(x) = L(−x)

2. L(0) = 1, L(1) = 0

3. L is non-increasing on [0, ∞]

Also, the definition of function R(.) which called right shape is similar to that of L(.).

It is symbolically written as ~m ¼ m; α; βð ÞLR, where m symbolizes the mean value, while

α and β are left and right spreads, respectively. We denote the set of LR fuzzy numbers

F(ℜ).

The sign of ~m ¼ m; α; βð ÞLR is classified as follows:

� ~m is called positive (negative) iff m − α ≥ 0 (β +m ≤ 0).

� ~m is called zero if (m = 0, α, β = 0).

� ~m is called near zero iff m − α < 0 < β +m.

Definition 6. Two fuzzy numbers ~n ¼ n; γ; δð ÞLR and ~m ¼ m; α; βð ÞLR are called

equal, iff (n =m, γ = α, δ = β).

Definition 7. (Arithmetic operations on LR fuzzy numbers) We will represent arith-

metic operations for two LR fuzzy numbers ~m ¼ m; α; βð ÞLR and ~n ¼ n; γ; δð ÞLR as

follows:

� Addition:

m; α; βð ÞLR⊕ n; γ; δð ÞLR ¼ mþ n; αþ γ; βþ δð ÞLR ð2Þ

� Opposite:
− m; α; βð ÞLR ¼ − m; α; βð ÞLR ¼ −m; β; αð ÞRL ð3Þ

� Subtraction:

m; α; βð ÞLR⊖ n; γ; δð ÞRL ¼ m−n; αþ δ; βþ γð ÞLR ð4Þ

Definition 8. A popular LR fuzzy number is a triangular fuzzy number (abbreviated

TFN), where L = R =max(0, 1 − x); consequently, using (1), its membership function is

given by
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μ~A xð Þ ¼
1−

m−x
α

;m− α ≤ x < m; α > 0;

1−
x−m
β

;m ≤ x < mþ β; β > 0:

0 otherwise:

8>>><
>>>:

ð5Þ

It is symbolically written as a triangular fuzzy number ~m ¼ m; α; βð Þ.

Example 1. The membership function of the near-zero triangular fuzzy number ~m ¼
3; 5; 4ð Þ (Figure 1) is

μ ~m xð Þ ¼

0; x < −2;

2þ x
5

; −2≤ x ≤ 3;

7−x
4

; 3 ≤ x ≤ 7;

0; otherwise:

8>>>>>>>><
>>>>>>>>:

Note 1. The triangular fuzzy number can be represented in another form; it is derived

if we suppose

a ¼ m−α; b ¼ m; c ¼ mþ β: ð6Þ

In this case, it is symbolically written as ~a′ ¼ a1; a2; a3ð Þ; or ~a′ ¼ a; b; cð Þ:

Then, the membership function for this form is

μ~a′ xð Þ ¼

x−a
b−a

; a ≤ x ≤ b;

c−x
c−b

; b ≤ x ≤ c;

0; otherwise:

8>>>><
>>>>:

ð7Þ

The TFN for ~m ¼ 3; 5; 4ð Þ in Example 1 is written from (a, b, c) as

~m′ ¼ 3−5; 3; 3þ 5ð Þ ¼ −2; 3; 7ð Þ:
In this paper, we used triangular fuzzy number (TFN) in the form (m, α, β), and when
a method used the other form (a, b, c), the example rewrites in two forms.

Definition 9. (Kaufmann's approximation for multiplication of TFN) Let ~m ¼ m; α; βð Þ
and ~n ¼ n; γ; δð Þ be two unrestricted triangular fuzzy numbers
Figure 1 Triangular fuzzy number m = (3,5,4).
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~m⊗ ~n ¼ mn; f 1; f 2ð Þ; ð8Þ

Where
f 1 ¼ mn−minf m−αð Þ n−γð Þ; mþ βð Þ n−γð Þ; mþ βð Þ nþ δð Þ;
m−αð Þ nþ δð Þg;

and

f 2 ¼ max m−αð Þ n−γð Þ; mþ βð Þ n−γð Þ; mþ βð Þ nþ δð Þ; m−αð Þ nþ δð Þf g−mn:

Definition 10. A vector ~X ¼ ~x1; ~x2;…; ~xnð ÞT is called a fuzzy vector if

~xi∈F ℜð Þ; ∀i ¼ 1; ::; n:

Definition 11. Let ~A ¼ ~aij
� �

and ~B ¼ ~bij
� �

be two m × n and n × p, respectively. We

define ~A⊗~B ¼ ~C ¼ ~cij
� �

which is the m × p matrix, where

~cij ¼
X⊕

k¼1;…;n

~aik⊗~bkj: ð9Þ

In this paper, if ~A is the fuzzy matrix written in the form (m, a, β), then ~A′ is the
symbol in the form (a, b, c).

Example 2. Let ~A; ~B be two fuzzy matrices in the form (m, a, β), where

~A ¼
−3; 5; 7ð Þ 2; 0; 1ð Þ 2; 3; 1ð Þ
−5; 4; 4ð Þ 5; 3; 1ð Þ 5; 6; 1ð Þ
6; 6; 6ð Þ −7; 2; 1ð Þ 0; 0; 0ð Þ
0; 0; 0ð Þ 1; 0; 3ð Þ 2; 2; 1ð Þ

0
BB@

1
CCA;

~B ¼
−3; 2; 1ð Þ −2; 0; 1ð Þ
−5; 1; 4ð Þ 3; 3; 1ð Þ
4; 5; 1ð Þ −2; 2; 5ð Þ

0
@

1
A:

Find

1. ~A⊗
~
B (in the form (m, a, β)).

2. ~A ′⊗
~
B ′ (in the form (a, b, c)).

Solution

1. ~A⊗
~
B ¼ ~

C; (in the form (m, a, β))

−3; 5; 7ð Þ 2; 0; 1ð Þ 2; 3; 1ð Þ
−5; 4; 4ð Þ 5; 3; 1ð Þ 5; 6; 1ð Þ
6; 6; 6ð Þ −7; 2; 1ð Þ 0; 0; 0ð Þ
0; 0; 0ð Þ 1; 0; 3ð Þ 2; 2; 1ð Þ

0
BB@

1
CCA⊗

−3; 2; 1ð Þ −2; 0; 1ð Þ
−5; 1; 4ð Þ 3; 3; 1ð Þ
4; 5; 1ð Þ −2; 2; 5ð Þ

0
@

1
A

¼
7; 50; 46ð Þ 8; 28; 29ð Þ
10; 50; 63ð Þ 15; 38; 45ð Þ
17; 71; 37ð Þ −33; 27; 33ð Þ
3; 30; 11ð Þ −1; 11; 26ð Þ

0
BB@

1
CCA

:
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2. ~A ′⊗
~
B ′ ¼ ~

C ′; (in the form (a, b, c))

−8;−3; 4ð Þ 2; 2; 3ð Þ −1; 2; 3ð Þ
−9;−5;−1ð Þ 2; 5; 6ð Þ −1; 5; 6ð Þ
0; 6; 12ð Þ −9;−7;−6ð Þ 0; 0; 0ð Þ
0; 0; 0ð Þ 1; 1; 4ð Þ 0; 2; 3ð Þ

0
BB@

1
CCA⊗

−5; −3;−2ð Þ −2; −2; −1ð Þ
−6; −5;−1ð Þ 0; 3; 4ð Þ
−1; 4; 5ð Þ −4; −2; 3ð Þ

0
@

1
A

¼
−43; 7; 53ð Þ −20; 8; 37ð Þ
−40; 10; 73ð Þ −23; 15; 60ð Þ
−54; 17; 54ð Þ −60;−33; 0ð Þ
−27; 3; 14ð Þ −12;−1; 25ð Þ

0
BB@

1
CCA

:

Remark 1. For determining the distance between two fuzzy vectors, the metric pro-

posed in [37] for triangular fuzzy number is used.

If ~a ¼ a; α; βð Þ and ~b ¼ b; γ; ηð Þ are two triangular fuzzy numbers, then Ming et al. in

[37] introduced the distance function

D2
2 ~a; ~b
� � ¼ 1

2

� 	
4 a−bð Þ2 þ α−γð Þ2 þ β−ηð Þ2� �þ a−bð Þ γ þ η−α−βð Þ:

For two LR fuzzy vectors ~X ¼ ~x1; ~x2;…; ~xnð Þ; ~Y ¼ ~x1; ~x2;…; ~xnð Þ defined as

D2
n

~X ; ~Y
� � ¼Xn

i¼1
D2

n ~a; ~b
� �

: ð10Þ

Fully fuzzy linear system
A brief summary on solving of fully fuzzy linear system using LP technique is provided

in this section.

Definition 12. (Fully fuzzy linear system) Consider the n × n linear system,

~a11~x1 þ ~a12~x2 þ :::::::þ ~a1n~x ¼ ~b1
~a21~x þ a22~x2 þ ::::::::þ ~a2n~xn ¼ ~b2

⋮
⋮

~an1~x1 þ ~an2~x2 þ ::::::: þ ~ann~xn ¼ ~xn

:

8>>>><
>>>>:

ð11Þ

where ∀~aij; ~bj ∈ F ℜð Þ: This system is called a fully fuzzy linear system (FFLS).

The matrix ~A ¼ ~aij
� �n

i;j¼1 and the vector ~B ¼ ~bj
� �n

j¼1 may be represented as

~A⊗~X ¼ ~B ð12Þ

The vector ~X ¼ ~xj
� �n

is called exact fuzzy solution if ∀~xj∈F ℜð Þ; j ¼ 1; 2;…; n:
j¼1

Otherwise, it is called non-fuzzy solution.

Linear programming (LP) of solving FFLS, pioneered by Dehghan et al. in [12], is

used to solve non-square FFLS for positive coefficients and parameters where the FFLS

is not square, or where the size system is n ≥ 5.

In the prior studies, LP technique was employed heavily to solve unrestricted FFLS,

where at least one coefficient or parameter is near the zero TFN, because in LP we can

add constraints for the system when the proposed method got certain limitations

[12,32,33,38].

Kumar et al. in [33] utilized LP to solve FFLS where the coefficients or parameters are un-

restricted in positivity, while Babbar et al. in [32] introduced some methods in order to obtain
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the solution for some states of FFLS, and they used LP to solve the unrestricted parameters,

where the coefficients are positive; the LP technique is similar to Kumar et al.'s in [33].

In both studies, the authors use LP to interpret the nature of FFLS solutions; the pos-

sible solution for FFLS may be no solution, unique, or many infinite solutions. To in-

validate that, we take some of the numerical example in these studies and resolve it by

original associated linear system for FFLS, and then we find further exact solutions.

Remark 2. The natures of the solutions of the FFLS depend on the nature of the solu-

tions of the LP, i.e., the possible way of solution for FFLS may be no solution or unique,

or infinitely many solutions [32,33].

Because the methods depend on LP, with added further constraints of subject in

order to get optimal solution, this leads to more limitations in the final solution. These

algorithms find an optimal solution that is an exact solution where the objective func-

tion goes to zero. In the following examples, we will show that optimal solution is not

necessarily a unique solution like in the linear system, because some or infinite solu-

tions may be omitted and they do not appear in these algorithms.

Moreover, to the best of the researchers' knowledge, all examples which consist near-

zero TFN (unrestricted FFLS) in the literature are limited by size to n = 2, but in this

paper, we provide two examples of size n = 3.

Numerical examples
In order to show the insufficiency in LP in solving FFLS, some examples in this section

are discussed. We used the LP technique in Babbar et al. in [32] to obtain the algorithm

for solving a 1 × 1 FFLS. We find only one solution obtained by the LP technique, while

the FFLS has many infinite solutions which is contrary to Remark 2.

Assuming 1 × 1 FFLS,

m1;1
a; α1;1

a; β1;1
a

� �
⊗ m1

x; α1
x; β1

xð Þ ¼ m1
b; α1

b; β1
b� � ð13Þ

where (m1, 1
a , α1, 1

a , β1, 1
a ) is a non-negative triangular fuzzy number and ~x1 ¼

m1
x; α1x; β1

xð Þ is an arbitrary triangular fuzzy number.

According to algorithms in [32], to obtain the solution for the following FFLS, we

have to minimize the �Z ,

�Z ¼ Z1 þ Z′
1 þ Z1 ð14Þ

and subject to

m1;1
am1

x þ Z1 ¼ B1;

m1;1
a−a1;1a

� �
L′1− m1;1

a þ β1;1
a

� �
L″1 þ Z′

1 ¼ mb
1−a

b
1;

m1;1
a þ β1;1

a
� �

R′
1− m1;1

a−a1;1a
� �

R″
1 þ Z″

1 ¼ mb
1 þ βb1;

mx
1−L

′
1 þ L″1≥0;

R′
1−R

″
1−m

x
1≥0:

Z1; Z′
1; Z

″
1 ; L

′
1; L

″
1 ; R

′
1; R

″
1≥0:

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð15Þ
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Then, the solution is obtained as follows:

~x1 ¼ m1
x; α1

x; β1
xð Þ ¼ m1

x;m1
x−L′1 þ L″1 ;R

′
1−R

″
1−m1

x
� �

: ð16Þ

The system meets the necessary and sufficient conditions for possibility of a feasible

fuzzy solution, when it satisfies

L′1 L
″
1 ¼ R′

1R
″
1 ¼ �Z ¼ 0: ð17Þ

In order to show the limitations in LP method, the algorithm is applied in the follow-
ing numerical examples.

Example 3. Consider the following 1 × 1 FFLS, (written in the form (m, a, β)),

5; 5; 12ð Þ⊗ m1
x; α1

x; β1
xð Þ ¼ 10; 10; 25ð Þ; ð18Þ

where ~x1 ¼ m1
x; α1x; β1

xð Þ is an arbitrary triangular fuzzy number.

Solution

Clearly, the (5, 5, 12) is a non-negative LR fuzzy number. According to [32], we can

apply their method to solve the system with no restrictions on the solution.

Now, let

m1;1
a ¼ 5; α1;1

a ¼ 5; β1;1
a ¼ 12;

m1
b ¼ 10; α1

b ¼ 10; β1
b ¼ 25:

Then, minimization of problem in (14) is
5m1
x þ Z1 ¼ 10:

The subject in (15) is
−17L″1 þ Z′
1 ¼ 0;

17R′
1 þ Z″

1 ¼ 35;

m1
x−L′1 þ L″1≥ 0;

R′
1−R

″
1−m1

x≥ 0;

Z1;Z′
1;Z

″
1 ; L

′
1; L

″
1 ;R

′
1;R

″
1≥ 0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð19Þ

On solving the above LP, the following solution is obtained:

m1
x ¼ 2; L′1 ¼ 2; L″1 ¼ 0;R′

1 ¼
35
17

;R″
1 ¼ 0; ð20Þ

Also, the objective function in (14) is zero since
Z1 ¼ Z′
1 ¼ Z″

1 ¼ 0; then �Z ¼ 0:

Similarly, in (17), the right-hand side is zero,

L′1 L
″
1 ¼ R′

1R
″
1 ¼ �Z ¼ 0: ð21Þ

Hence, the system has feasible fuzzy solution, using (16) and (20)
m1
x; α1

x; β1
xð Þ ¼ 2; 2−0þ 0;

35
17

− 0− 2

� 	
: ð22Þ
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Then the solution of FFLS in (18) becomes

~Xk ¼ ~x1 ¼ m1
x; α1

x; β1
xð Þ ¼ 2; 0;

1
17

� 	
: ð23Þ

However, the following general form solution confirms that the system has many in-
finite solutions which are not detected using previous algorithm by LP,

m1
x; α1

x; β1
xð Þ ¼ 2; ω;

1
17

� 	
; ð24Þ

where ω ∈ [0, 2].

Thus, the solution ~Xk obtained by the algorithm in [32] using LP is a particular solu-

tion only where ω = 0, in (24).

The following are some solutions using (24),

~x1 ¼ m1
x; α1

x; β1
xð Þ ¼ 2; 2;

1
17

� 	
;

~x2 ¼ m1
x; α1

x; β1
xð Þ ¼ 2; 1;

1
17

� 	
;

~x3 ¼ m1
x; α1

x; β1
xð Þ ¼ 2;

3
2
;
1
17

� 	
;

~x4 ¼ m1
x; α1

x; β1
xð Þ ¼ 2;

1
2
;
1
17

� 	
:

It is clear that the system has infinitely many feasible fuzzy solutions, which is con-

trary to the nature of possible way solution for the linear system, where every linear

system in order 1 × 1 must have a unique solution.

On the other hand, the following Example 4 gives us a different result from Example

3, because it is non-square FFLS, where the number of equations is more than the pa-

rameters, and the system has a unique solution.

Example 4. Consider the following 2 × 1 FFLS (written in the form (m, α, β)):

3; 1; 1ð Þ⊗ m1
x; α1x; β1

xð Þ ¼ 0; 24; 12ð Þ;

2; 1; 0ð Þ⊗ m1
x; α1x; β1

xð Þ ¼ 0; 12; 6ð Þ;

8<
:

where ~X ¼ ~x1 ¼ m1
x; α1x; β1

xð Þ; is an arbitrary TFN.

Solution

The FFLS may be written in matrix form ~A⊗~X ¼ ~B;

3; 1; 1ð Þ

2; 1; 0ð Þ

0
@

1
A⊗ ~x1ð Þ ¼

0; 24; 12ð Þ

0; 12; 6ð Þ

0
@

1
A:

The system has a unique solution,

~X ¼ m1
x; α1

x; β1
xð Þ ¼ 0; 6; 3ð Þ:
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Verification for the solution:

3; 1; 1ð Þ⊗ 0; 6; 3ð Þ ¼ 0; 24; 12ð Þ;

2; 1; 0ð Þ⊗ 0; 6; 3ð Þ ¼ 0; 12; 6ð Þ:

8<
:

The following non-square FFLS has many infinite solutions where the number of
equations is less than the number of parameters, the result contrary to the result in Ex-

ample 4.

Example 5. ([33]) Consider the following 2 × 3 FFLS (written in the form (a, b, c)):

1; 2; 3ð Þ⊗ a1x; b1
x; c1xð Þ⊕ −2;−1;−1ð Þ⊗ a2x; b2

x; c2xð Þ

⊕ 2; 3; 4ð Þ⊗ a3x; b3
x; c3xð Þ ¼ −7; 0; 8ð Þ;

−3;−2;−1ð Þ ⊗ a1x; b1
x; c1xð Þ ⊕ 2; 4; 5ð Þ⊗ a2x; b2

x; c2xð Þ

⊕ 3; 4; 5ð Þ⊗ a3x; b3
x; c3xð Þ ¼ −26;−10;−4ð Þ;

8>>>>>>>>>><
>>>>>>>>>>:

ð25Þ

where ~xi
′ ¼ aix; bi

x; cixð Þ; i ¼ 1; 2; 3; are arbitraries triangular fuzzy numbers.

Solution

The system may be written in matrix form ~A′⊗~X ′ ¼ ~B′;

1; 2; 3ð Þ −2;−1;−1ð Þ 2; 3; 4ð Þ

−3;−2;−1ð Þ 2; 4; 5ð Þ 3; 4; 5ð Þ

0
@

1
A⊗

~x1
′

~x2
′

~x3
′

0
BBBB@

1
CCCCA ¼

−7; 0; 8ð Þ

−26;−10;−4ð Þ

0
@

1
A; ð26Þ

where

~Xk
′ ¼

~x1
′

~x2
′

~x3
′

0
BBBB@

1
CCCCA ¼

a1x; b1
x; c1xð Þ

a2x; b2
x; c2xð Þ

a3x; b3
x; c3xð Þ

0
BBBB@

1
CCCCA:

According to Kumar et al. in [33], the system has one solution, since LP technique
produces one optimal solution; for that the fuzzy vector, ~Xk
′
is provided as a particular

solution:

~Xk
′ ¼

a1x; b1
x; c1xð Þ

a2x; b2
x; c2xð Þ

a3x; b3
x; c3xð Þ

0
BBBB@

1
CCCCA ¼

1; 1; 2ð Þ

−2;−1; 0ð Þ

−2;−1;−1ð Þ

0
BBBB@

1
CCCCA:

By solving the associated linear system, we provide the general form solution, which
cannot be obtained by LP, and then some particular solutions are produced:
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~XG′ ¼

a1x; b1
x; c1xð Þ

a2x; b2
x; c2xð Þ

a3x; b3
x; c3xð Þ

0
BBBBBBBB@

1
CCCCCCCCA

¼

1;
1
7

15þ 8δð Þ; 2
� 	

−2; δ; 0ð Þ

−2;
1
3

δ−
2
7

15þ 8δð Þ
� 	

;−1
� 	

0
BBBBBBB@

1
CCCCCCCA
; ð27Þ

where δ ∈ −1;− 1
8


 �
Thus, the solution ~Xk′ obtained by the algorithm in Kumar et al. [33] using LP is a

particular solution only where δ = − 1, in (27).

Some particular solutions:

� Let δ ¼ − 1
8, then

~X 1′ ¼

a1x; b1
x; c1xð Þ

a2x; b2
x; c2xð Þ

a3x; b3
x; c3xð Þ

0
BBBBBB@

1
CCCCCCA

¼

1; 2; 2ð Þ

−2;−
1
8
; 0

� 	

−2;−
11
8
;−1

� 	

0
BBBBBB@

1
CCCCCCA
:

Verification for the solution:
1; 2; 3ð Þ⊗ 1; 2; 2ð Þ⊕ −2;−1;−1ð Þ⊗ −2;−
1
8
; 0

� 	
⊕ 2; 3; 4ð Þ⊗ −2;−

11
8
;−1

� 	

¼ 1; 4; 6ð Þ⊕ 0;
1
8
; 4

� 	
⊕ −8;−

33
8
;−2

� 	
¼ −7; 0; 8ð Þ;

−3;−2;−1ð Þ⊗ 1; 2; 2ð Þ⊕ 2; 4; 5ð Þ⊗ −2;−
1
8
; 0

� 	
⊕ 3; 4; 5ð Þ⊗ −2;−

11
8
;−1

� 	

¼ −6;−4;−1ð Þ⊕ −10;−
11
2
;−3

� 	
¼ −26;−10;−4ð Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:
� Let δ ¼ − 1
2, then

~X 2′ ¼

a1x; b1
x; c1xð Þ

a2x; b2
x; c2xð Þ

a3x; b3
x; c3xð Þ

0
BBBBBBBB@

1
CCCCCCCCA

¼

1;
11
7
; 2

� 	

−2;−
1
2
; 0

� 	

−2;−
17
14

;−1
� 	

0
BBBBBB@

1
CCCCCCA
:
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Verification for the solution:

1; 2; 3ð Þ⊗ 1;
11
7
; 2

� 	
⊕ −2;−1;−1ð Þ⊗ −2;−

1
2
; 0

� 	
⊕ 2; 3; 4ð Þ⊗ −2;−

17
14

;−1
� 	

¼ 1;
22
7
; 6

� 	
⊕ 0;

1
2
; 4

� 	
⊕ −8;

−51
14

;−2
� 	

¼ −7; 0; 8ð Þ; −3;−2;−1ð Þ⊗ 1;
11
7
; 2

� 	
⊕ 2; 4; 5ð Þ⊗ −2;−

1
2
; 0

� 	
⊕ 3; 4; 5ð Þ⊗ −2;−

17
14

;−1
� 	

¼ −6;−
22
7
;−1

� 	
⊕ −10;−2; 0ð Þ⊕ −10;−

34
7
;−3

� 	
¼ −26;−10;−4ð Þ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
� Let δ ¼ − 1
3, then

~X 3′ ¼

a1x; b1
x; c1xð Þ

a2x; b2
x; c2xð Þ

a3x; b3
x; c3xð Þ

0
BBBBBBBB@

1
CCCCCCCCA

¼

1;
37
21

; 2

� 	

−2;−
1
3
; 0

� 	

−2;−
9
7
;−1

� 	

0
BBBBBBB@

1
CCCCCCCA
:

Verification for the solution:

1; 2; 3ð Þ⊗ 1;
37
21

; 2

� 	
⊕ −2;−1;−1ð Þ⊗ −2;−

1
3
; 0

� 	
⊕ 2; 3; 4ð Þ⊗ −2;−

9
7
;−1

� 	

¼ 1;
74
21

; 6

� 	
⊕ 0;

1
3
; 4

� 	
⊕ −8;−

27
7
;−2

� 	

¼ −7; 0; 8ð Þ; −3;−2;−1ð Þ⊗ 1;
37
21

; 2

� 	
⊕ 2; 4; 5ð Þ⊗ −2;−

1
3
; 0

� 	
⊕ 3; 4; 5ð Þ⊗ −2;−

9
7
;−1

� 	

¼ −6;−
74
21

;−1
� 	

⊕ −10;−
4
3
; 0

� 	
⊕ −10;−

36
7
;−3

� 	
¼ −26;−10;−4ð Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

then

~A′⊗~Xi′ ¼ ~A′⊗~Xk′ ¼ ~B′; i ¼ 1;…; 3:

� Non-fuzzy solution

δ ∉ −1;− 1
8


 �
where δ ¼ − 3

2, then
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~Xe′ ¼

a1x; b1
x; c1xð Þ

a2x; b2
x; c2xð Þ

a3x; b3
x; c3xð Þ

0
BBBBBBBB@

1
CCCCCCCCA

¼

1;
3
7
; 2

� 	

−2;−
3
2
; 0

� 	

−2;−
11
14

;−1
� 	

0
BBBBBBB@

1
CCCCCCCA
:

Verification for the solution:

1; 2; 3ð Þ⊗ 1;
15
7
; 2

� 	
⊕ −2;−1;−1ð Þ⊗ −2; 0; 0ð Þ⊕ 2; 3; 4ð Þ⊗ −2;−

10
7
;−1

� 	

¼ 1;
30
7
; 6

� 	
⊕ 0; 0; 4ð Þ⊕ −8;−

30
7
;−2

� 	

¼ −7; 0; 8ð Þ −3;−2;−1ð Þ⊗ 1;
15
7
; 2

� 	
⊕ 2; 4; 5ð Þ⊗ −2; 0; 0ð Þ⊕ 3; 4; 5ð Þ⊗ −2;−

10
7
;−1

� 	

¼ −6;−
30
7
;−1

� 	
⊕ −10; 0; 0ð Þ⊕ −10;−

40
7
;−3

� 	
¼ −26;−10;−4ð Þ:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Although ~Xe′ satisfies the system,

~A′⊗~Xe′ ¼ ~B′:

But it is not a feasible solution, because b3
x ≰ c3

x, then ~Xk′ is not a fuzzy vector.
Now, the examples are converted to the form in this paper (m, α, β),

~A ¼
m1;1

a; a1;1a; β1;1
a

� �
m2;1

a; a2;1a; β2;1
a

� �
m3;1

a; a3;1a; β3;1
a

� �
m1;2

a; a1;2a; β1;2
a

� �
m2;2

a; a2;2a; β2;2
a

� �
m3;2

a; a3;2a; β3;2
a

� �
0
@

1
A ¼

2; 1; 1ð Þ −1; 1; 0ð Þ 3; 1; 1ð Þ
−2; 1; 1ð Þ 4; 2; 1ð Þ 4; 1; 1ð Þ

� 	

and

~B ¼
m1

b; a1b; β1
b� �

m2
b; a2b; β2

b� �
0
@

1
A ¼

0; 7; 14ð Þ

−10; 16; 14ð Þ

0
@

1
A;

then the system in (26) is equivalent to the following system:

2; 1; 1ð Þ −1; 1; 0ð Þ 3; 1; 1ð Þ
−2; 1; 1ð Þ 4; 2; 1ð Þ 4; 1; 1ð Þ

� 	
⊗

~x1

~x2

~x2

0
BBBB@

1
CCCCA ¼

0; 7; 14ð Þ

−10; 16; 14ð Þ

0
@

1
A; ð28Þ

Where

~X ¼

~x1

~x2

~x2

0
BBBB@

1
CCCCA ¼

m1
x; a1x; β1

xð Þ

m2
x; a2x; β2

xð Þ

m3
x; a3x; β3

x� �

0
BBBB@

1
CCCCA:
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The produced solution in [32]

~Xk ¼

m1
x; a1x; β1

xð Þ

m2
x; a2x; β2

xð Þ

m3
x; a3x; β3

x� �

0
BBBB@

1
CCCCA ¼

1; 0; 1ð Þ

−1; 1; 1ð Þ

−1; 1; 0ð Þ

0
BBBB@

1
CCCCA:

The general form solution is

~XG ¼

m1
x; a1x; β1

xð Þ

m2
x; a2x; β2

xð Þ

m3
x; a3x; β3

x� �

0
BBBBBBBB@

1
CCCCCCCCA

¼

1
7

15þ 8δð Þ
� 	

;−1þ 1
7

15þ 8δð Þ; 2þ 1
7

−15−8δð Þ

δ; 2þ δ;−δð Þ
1
3

δ−
2
7

15þ 8δð Þ
� 	

; 2þ 1
3

δ−
2
7

15þ 8δð Þ
� 	

;−1þ 1
3

−δþ 2
7

15þ 8δð Þ
� 	� 	

0
BBBBBBB@

1
CCCCCCCA
:

The particular solutions are
~X 1 ¼

m1
x; a1x; β1

xð Þ

m2
x; a2x; β2

xð Þ

m3
x; a3x; β3

x� �

0
BBBBBBBB@

1
CCCCCCCCA

¼

2; 1; 0ð Þ

−
1
8
;
15
8
;
1
8

� 	

−
11
8
;
5
8
;
3
8

� 	

0
BBBBBB@

1
CCCCCCA
;

~X 2 ¼

m1
x; a1x; β1

xð Þ

m2
x; a2x; β2

xð Þ

m3
x; a3x; β3

x� �

0
BBBBBBBB@

1
CCCCCCCCA

¼

11
7
;
4
7
;
3
7

� 	

−
1
2
;
3
2
;
1
2

� 	

−
17
14

;
11
14

;
3
14

� 	

0
BBBBBBB@

1
CCCCCCCA
;

~X 3 ¼

m1
x; a1x; β1

xð Þ

m2
x; a2x; β2

xð Þ

m3
x; a3x; β3

x� �

0
BBBBBBBB@

1
CCCCCCCCA

¼

37
21

;
16
21

;
5
21

� 	

−
1
3
;
5
3
;
1
3

� 	

−
9
7
;
5
7
;
2
7

� 	

0
BBBBBBB@

1
CCCCCCCA
:
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The non-fuzzy solution is

~Xe ¼

m1
x; a1x; β1

xð Þ

m2
x; a2x; β2

xð Þ

m3
x; a3x; β3

x� �

0
BBBBBBBB@

1
CCCCCCCCA

¼

3
7
;−

4
7
;
11
7

� 	

−
3
2
;
1
2
;
3
2

� 	

−
11
14

;
17
14

;−
3
14

� 	

0
BBBBBBB@

1
CCCCCCCA
:

Remark 3. The nature of uniqueness solution or infinity is completely different with
the nature of the linear system or linear programing because the number of feasible so-

lutions does not depend on the number of equations compared with number of

parameters.

The case of no solution is considered by the following example even when the system

has one equation with one parameter, contrary to Example 3 and Example 7.

Example 6. Consider the following 1 × 1 FFLS (written in the form (m, α, β)).

3; 1; 1ð Þ⊗ m1
x; a1

x; β1
xð Þ ¼ −36; 4; 18ð Þ: ð29Þ

where ~x1 ¼ m1
x; a1x; β1

xð Þ is an arbitrary TFN.

Solution

The exact solution of the system is a non-fuzzy solution because the right spread α1,1
x

is non-positive.

~x1 ¼ m1
x; a1

x; β1
xð Þ ¼ −12;−2; 3ð Þ:

The solution ~x1 satisfies the system, but it is not TFN, so it is not considered as a

feasible solution

Remark 4. The existence of feasible solution for FFLS is determined by condition of

TFN regardless of the existence of the associated system for FFLS.

In light of the previous results, we can declare that the possible ways of solution

(unique solutions, infinite solutions, no solution) in FFLS are not determined by the

number of equations compared with the number of parameters, or if the FFLS is square

or non-square, all possible ways may happen regardless of the number of equations and

parameters.

The following examples of FFLS in size n = 1 which is similar with the essential con-

cept of linear system, where the number of equation is equal to the number of parame-

ters, and they have a unique feasible solution.

Example 7. Consider the following 1 × 1 FFLS, written in the form (m, α, β),

5; 0; 12ð Þ⊗ m1;1
x; a1;1

x; β1;1
x

� �
¼ 10; 9; 25ð Þ; ð30Þ

where ~x ¼ m1
x; a1x; β1

xð Þ is an arbitrary triangular fuzzy number.

Solution

The FFLS has only one solution,

~x ¼ m1
x; a1

x; β1
xð Þ ¼ 2;

9
5
;
1
17

� 	
:

The following example is an FFLS and has also a unique solution, similar to Example
7, where the size of the coefficient matrix is n = 3.
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Example 8. Consider the following 3 × 3 FFLS (written in the form (m, α, β)).

8; 2; 1ð Þ⊗ m1
x; a1x; β1

xð Þ⊕ 2; 1; 1ð Þ⊗ m2
x; a2x; β2

xð Þ

⊕ 7; 2; 2ð Þ⊗ m3
x; a3x; β3

x� � ¼ 0; 55; 69ð Þ;

2; 1; 0ð Þ⊗ m1
x; a1x; β1

xð Þ⊕ 4; 1; 1ð Þ⊗ m2
x; a2x; β2

xð Þ

⊕ 2; 1; 1ð Þ⊗ m3
x; a3xβ3

x� � ¼ 4; 51; 36ð Þ;

5; 1; 2ð Þ⊗ m1
x; a1x; β1

xð Þ⊕ 9; 2; 3ð Þ⊗ m2
x; a2x; β2

xð Þ

⊕ 0; 0; 0ð Þ⊗ m3
x; a3x; β3

x� � ¼ −1; 123; 45ð Þ;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð31Þ

Where ~xi ¼ mi
x; aix; β

x� �
; i ¼ 1; 2; 3 are arbitrary triangular fuzzy numbers.
i

Solution

The system may be written in matrix form ~A⊗~X ¼ ~B;

8; 2; 1ð Þ 2; 1; 1ð Þ 7; 2; 2ð Þ

2; 1; 0ð Þ 4; 1; 1ð Þ 2; 1; 1ð Þ

5; 1; 2ð Þ 9; 2; 3ð Þ 0; 0; 0ð Þ

0
BBBB@

1
CCCCA⊗

m1
x; a1x; β1

xð Þ

m2
x; a2x; β2

xð Þ

m3
x; a3x; β3

x� �

0
BBBB@

1
CCCCA

¼

0; 55; 69ð Þ

4; 51; 36ð Þ

−1; 123; 45ð Þ

0
BBBB@

1
CCCCA;

ð32Þ

Where
~X ¼

~x1

~x2

~x3

0
BBBB@

1
CCCCA ¼

m1
x; a1x; β1

xð Þ

m2
x; a2x; β2

xð Þ

m3
x; a3x; β3

x� �

0
BBBB@

1
CCCCA:

The system has a unique feasible solution:
~X ¼

~x1

~x2

~x3

0
BBBB@

1
CCCCA ¼

m1
x; a1x; β1

xð Þ

m2
x; a2x; β2

xð Þ

m3
x; a3x; β3

x� �

0
BBBB@

1
CCCCA ¼

−2; 2; 1ð Þ

1; 9; 3ð Þ

2; 15ð Þ

0
BBBB@

1
CCCCA:
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Verification for the solution:

8; 2; 1ð Þ⊗ −2; 2; 1ð Þ⊕ 2; 1; 1ð Þ⊗ 1; 9; 3ð Þ⊕ 7; 2; 2ð Þ⊗ 2; 1; 5ð Þ ¼

−16; 20; 10ð Þ⊕ 2; 26; 10ð Þ⊕ 14; 9:49ð Þ ¼ 0; 55; 69ð Þ

2; 1; 0ð Þ⊗ −2; 2; 1ð Þ⊕ 4; 1; 1ð Þ⊗ 1; 9; 3ð Þ⊕ 2; 1; 1ð Þ⊗ 2; 1; 5ð Þ ¼

−4; 4; 3ð Þ⊕ 4; 44; 16ð Þ⊕ 4; 3; 17ð Þ ¼ 4; 51; 36ð Þ;

5; 1; 2ð Þ⊗ −2; 2; 1ð Þ⊕ 9; 2; 3ð Þ⊗ 1; 9; 3ð Þ⊕ 0; 0; 0ð Þ⊗ 2; 1; 5ð Þ ¼

−10; 18; 6ð Þ⊕ 9; 105; 39ð Þ⊕ 0; 0; 0ð Þ ¼ −1; 123; 45ð Þ:

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

In the rest of this paper, we will show new facts of the nature of the FFLS solution,

which is the unique case that may be assigned two different feasible solutions on the

contrary case of uniqueness in the linear system. For that, the LP does not interpret the

uniqueness of the FFLS case.

To support that, we take an example from Kumar et al. in [33] and obtain further dif-

ferent feasible solutions, while in the proposed method, only one solution is assigned.

The triangular fuzzy number in [33] is formed in (a, b, c), so Example 9 and Example

10 are rewritten in both forms.

Example 9. ([33]) Consider the following 2 × 2 FFLS (written in form (a, b, c))

−2; 3; 4ð Þ⊗ a1x; b1
x; c1xð Þ⊕ −2; 2; 3ð Þ⊗ a2x; b2

x; c2xð Þ ¼ −13; 8; 14ð Þ;
1; 2; 2ð Þ⊗ a1x; b1

x; c1xð Þ⊕ 4; 4; 5ð Þ⊗ a2x; b2
x; c2xð Þ ¼ −14; 8; 14ð Þ:

�
ð33Þ

Solution

The system may written in matrix form ~A′⊗~X ′ ¼ ~B′,

−2; 3; 4ð Þ −2; 2; 3ð Þ
1; 2; 2ð Þ 4; 4; 5ð Þ

� 	
⊗

~x1
~x2

� 	
¼ −13; 8; 14ð Þ

−14; 8; 14ð Þ
� 	

; ð34Þ

where

~X ¼ ~x1
′

~x2
′

� 	
¼ a x

1 ; b x
1 ; c x

1

� �
a x
2 ; b x

2 ; c x
2

� �� 	
:

~X ′
i ¼ a x

i ; b x
i ; c x

i

� �
; i ¼ 1; 2 are arbitrary triangular fuzzy numbers.

The solution in Kumar et al. [33] is unique and is as follows:

~Xk
′ ¼ ~x1

′

~x2
′

� 	
¼ a x

1 ; b x
1 ; c x

1

� �
a x
2 ; b x

2 ; c x
2

� �� 	
¼ 1; 2; 2ð Þ

−3; 1; 2ð Þ
� 	

:

While the solution, ~Xg
′
represents further solution which cannot be determined through

the LP method.

~Xg
′ ¼ ~x1

′

~x2
′

� 	
¼ ax1; b

x
1; c

x
1

� �
ax2; b

x
2; c

x
2

� �� 	
¼

−
23
14

; 2; 2

� 	

−
15
7
; 1; 2

� 	
0
BB@

1
CCA;
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Verification for the solution:

−2; 3; 4ð Þ⊗ −
23
14

; 2; 2

� 	
⊕ −2; 2; 3ð Þ ⊗ −

15
7
; 1; 2

� 	

¼ −
46
7
; 6; 8

� 	
⊕ −

45
7
; 2; 6

� 	
¼ −13; 8; 14ð Þ;

1; 2; 2ð Þ⊗ −
23
14

; 2; 2

� 	
⊕ 4; 4; 5ð Þ⊗ −

15
7
; 1; 2

� 	

¼ −
23
7
; 4; 4

� 	
⊕ −

75
7
; 4; 10

� 	
¼ −14; 8; 14ð Þ:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Because we follow the (m, α, β) form for TFN in this paper, the example is converted

to this form.

~A ¼
m1;1

a; α1;1a; β1;1
a

� �
m2;1

a; α2;1a; β2;1
a

� �
m1;2

a; α1;2a; β1;2
a

� �
m2;2

a; α2;2a; β2;2
a

� �
0
@

1
A ¼ 3; 5; 1ð Þ 2; 4; 1ð Þ

2; 1; 0ð Þ 4; 0; 1ð Þ
� 	

;

where

~X ¼ ~x1
~x2

� 	
¼ m x

1 ; α x
1 ; β x

1

� �
m x

2 ; α x
2 ; β x

2

� �
 !

;

~xi ¼ m x; α x; β x� �
; i ¼ 1; 2 are arbitrary triangular fuzzy numbers,
i i i

~B ¼ m b
1 ; α b

1 ; β b
1

� ��
m b

2 ; α b
2 ; β b

2

�
 !

¼ 8; 21; 6ð Þ�
8; 22; 6

�� 	

then the FFLS in (34) is equivalent to the following matrix form ~A⊗~X ¼ ~B,

3; 5; 1ð Þ 2; 4; 1ð Þ
2; 1; 0ð Þ 4; 0; 1ð Þ

� 	
⊕

m x
1 ; α x

1 ; β x
1

� �
m x

2 ; α x
2 ; β x

2

� �
 !

¼ 2; 1; 0ð Þ�
1; 4; 1

�� 	
: ð35Þ

~Xk ¼ ~x1
~x2

� 	
¼ m x

1 ; α x
1 ; β x

1

� �
m x

2 ; α x
2 ; β x

2

� �
 !

¼ 2; 1; 0ð Þ�
1; 4; 1

�� 	
:

Another solution is
~Xg ¼ ~x1
~x2

� 	
¼ m x

1 ; α x
1 ; β x

1

� �
m x

2 ; α x
2 ; β x

2

� �
 !

¼
2;
51
14

; 0

� 	
�
1;
22
7
; 1

	
0
BB@

1
CCA:

We find that both fuzzy solutions satisfy the system,

~A⊗ ~Xg ¼ ~A⊗ ~Xk ¼ ~B:

Also, we can support the satisfaction of solution by the metric function because

D2
2
~A ~Xg ; ~B
� � ¼ D2

2
~A ~Xk ; ~B
� � ¼ 0:

The solution ~Xk is considered as identical to solution ~Xk
′
.

Hence, the FFLS may have unique solutions. In order to enhance that, an example of

FFLS in size n = 3 is illustrated with two unique solutions.
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Example 10. Consider the following 3 × 3 FFLS (written in the form (m, α, β)).

3; 5; 1ð Þ⊗ m x
1 ; α x

1 ; β x
1

� �
⊕ 2; 4; 1ð Þ⊗ m x

2 ; α x
2 ; β x

2

� �
⊕ 2; 1; 1ð Þ⊗ m x

3 ; α x
3 ; β x

3

� � ¼ 12; 24; 11ð Þ;

2; 1; 0ð Þ⊗ m x
1 ; α x

1 ; β x
1

� �
⊕ 4; 0; 1ð Þ⊗ m x

2 ; α x
2 ; β x

2

� �
⊕ 2; 1; 1ð Þ⊗ m x

3 ; α x
3 ; β x

3

� � ¼ 12; 25; 11ð Þ;

2; 3; 1ð Þ⊗ m x
1 ; α x

1 ; β x
1

� �
⊕ 2; 6; 1ð Þ⊗ m x

2 ; α x
2 ; β x

2

� �
⊕ 0; 0; 0ð Þ⊗ m x

3 ; α
x
3 ; β x

3

� � ¼ 6; 17; 12ð Þ;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð36Þ

where ~xi ¼ m x
i ; α x

i ; β x
i

� �
; i ¼ 1; 2; 3 are arbitrary triangular fuzzy numbers.

Solution

The FFLS may be written in matrix form ~A⊗ ~X ¼ ~B,

3; 5; 1ð Þ �
2; 4; 1

� �
2; 1; 1

��
2; 1; 0

� �
4; 0; 1

� �
2; 1; 1

��
2; 3; 1

� �
2; 6; 1

� �
0; 0; 0

�
0
@

1
A⊗

�
m x

1 ; α x
1 ; β x

1

��
m x

2 ; α x
2 ; β x

2

��
m x

3 ; α x
3 ; β x

3

�
0
@

1
A ¼

�
12; 24; 11

��
12; 24; 11

��
6; 17; 12

�
0
@

1
A; ð37Þ

where

~X ¼
~x1
~x2
~x3

0
@

1
A ¼

m x
1 ; α x

1 ; β x
1

� �
m x

2 ; α x
2 ; β x

2

� �
m x

3 ; α x
3 ; β x

3

� �
0
B@

1
CA:

The FFLS has two unique solutions ~X 1; ~X 2 as follows:

~X 1 ¼
~x1
~x2
~x3

0
@

1
A ¼

m x
1 ; α x

1 ; β x
1

� �
m x

2 ; α x
2 ; β x

2

� �
m x

3 ; α x
3 ; β x

3

� �
0
B@

1
CA ¼

2;
17
10

;
1
5

� 	

1;
77
20

;
6
5

� 	

2;
21
20

;
8
15

� 	

0
BBBBBB@

1
CCCCCCA
:

Verification for the solution:

3; 5; 1ð Þ⊗ 2;
17
10

;
1
5

� 	
⊕ 1;

77
20

;
6
5

� 	
⊕ 2; 1; 1ð Þ⊗ 2;

21
20

;
8
15

� 	

¼ 6;
52
5
;
14
5

� 	
⊕ 2;

211
20

;
23
5

� 	
⊕ 4;

61
20

;
18
5

� 	
¼ 12; 24; 11ð Þ;

2; 1; 0ð Þ⊗ 2;
17
10

;
1
5

� 	
⊕ 4; 0; 1ð Þ⊗ 1;

77
20

;
6
5

� 	
⊕ 2; 1; 1ð Þ⊗ 2;

21
20

;
8
15

� 	

¼ 4;
37
10

;
2
5

� 	
⊕ 4;

61
20

;
18
5

� 	
¼ 12; 15; 11ð Þ;

2; 3; 1ð Þ⊗ 2;
17
10

;
1
5

� 	
⊕ 2; 6; 1ð Þ⊗ 1;

77
20

;
6
5

� 	
⊕ 0; 0; 0ð Þ⊗ 2;

21
20

;
8
15

� 	

¼ 4;
31
5
;
13
5

� 	
⊕ 2;

54
5
;
47
5

� 	
⊕ 0; 0; 0ð Þ ¼ 6; 17; 12ð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:
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Another alternative solution is

~X 2 ¼

~x1

~x2

~x3

0
BBBB@

1
CCCCA ¼

m1
x; α1x; β1

xð Þ

m2
x; α2x; β2

xð Þ

m3
x; α3x; β3

x� �

0
BBBB@

1
CCCCA ¼

2; 1; 0ð Þ

1; 4; 1ð Þ

2; 1; 1ð Þ

0
BBBB@

1
CCCCA:

Verification for the solution:
3; 5; 1ð Þ⊗ 2; 1; 0ð Þ⊕ 2; 4; 1ð Þ⊗ 1; 4; 1ð Þ⊕ 2; 1; 1ð Þ⊗ 2; 1; 1ð Þ ¼

6; 10; 2ð Þ⊕ 2; 11; 4ð Þ⊕ 4; 3; 5ð Þ ¼ 12; 24; 11ð Þ;

2; 1; 0ð Þ⊗ 2; 1; 0ð Þ⊕ 4; 0; 1ð Þ⊗ 1; 4; 1ð Þ⊕ 2; 1; 1ð Þ⊗ 2; 1; 1ð Þ ¼

4; 3; 0ð Þ⊕ 4; 19; 6ð Þ⊕ 4; 3; 5ð Þ ¼ 12; 25; 11ð Þ;

2; 3; 1ð Þ⊗ 2; 1; 0ð Þ⊕ 2; 6; 1ð Þ⊗ 1; 4; 1ð Þ⊕ 0; 0; 0ð Þ⊗ 2; 1; 1ð Þ ¼

4; 6; 2ð Þ⊕ 2; 11; 10ð Þ⊕ 0; 0; 0ð Þ ¼ 6; 17; 12ð Þ:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

Then, the two fuzzy solutions satisfy the system
~A⊗ ~X 1 ¼ ~A⊗ ~X 2 ¼ ~B:

Also, we can support satisfying the solution by distance function because

D2
3
~A ~X 1; ~B
� � ¼ D2

3
~A ~X 2; ~B
� � ¼ 0:

Now, we will transfer the example to form (a, b, c) in [33],

~A′ ¼

a1;1a; b1;1
a; c1;1a

� �
a2;1a; b2;1

a; c2;1a
� �

a3;1a; b3;1
a; c3;1a

� �
a1;2a; b1;2

a; c1;2a
� �

a2;2a; b2;2
a; c2;2a

� �
a3;2a; b3;2

a; c3;2a
� �

a1;3a; b1;3
a; c1;3a

� �
a2;3a; b2;3

a; c2;3a
� �

a3;3a; b3;3
a; c3;3a

� �

0
BBBB@

1
CCCCA

¼

−2; 3; 4ð Þ −2; 2; 3ð Þ 1; 2; 3ð Þ

1; 2; 2ð Þ 4; 4; 5ð Þ 1; 2; 3ð Þ

−1; 2; 3ð Þ −4; 2; 3ð Þ 0; 0; 0ð Þ

0
BBBB@

1
CCCCA;

~X ′ ¼

~x1
′

~x2
′

~x3
′

0
BBBB@

1
CCCCA ¼

a1x; b1
x; c1xð Þ

a2x; b2
x; c2xð Þ

a3x; b3
x; c3xð Þ

0
BBBB@

1
CCCCA;

where ~xi
′ ¼ aix; bi

x; cixð Þ; i ¼ 1; 2; 3; are arbitrary triangular fuzzy numbers.
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~B′ ¼

a1b; b1
b; c1b

� �
a2b; b2

b; c2b
� �
a3b; b3

b; c3b
� �

0
BBBB@

1
CCCCA ¼

12; 24; 11ð Þ

12; 25; 11ð Þ

6; 17; 12ð Þ

0
BBBB@

1
CCCCA:

Then, the system may be written in the following matrix form ~A′⊗~X ′ ¼ ~B′
−2; 3; 4ð Þ −2; 2; 3ð Þ 1; 2; 3ð Þ

1; 2; 2ð Þ 4; 4; 5ð Þ 1; 2; 3ð Þ

−1; 2; 3ð Þ −4; 2; 3ð Þ 0; 0; 0ð Þ

0
BBBB@

1
CCCCA⊗

a1x; b1
x; c1xð Þ

a2x; b2
x; c2xð Þ

a3x; b3
x; c3xð Þ

0
BBBB@

1
CCCCA ¼

12; 24; 11ð Þ

12; 25; 11ð Þ

6; 17; 12ð Þ

0
BBBB@

1
CCCCA:

The first solution is
~X 1
′ ¼

~x1
′

~x2
′

~x3
′

0
BBBBBBBB@

1
CCCCCCCCA

¼

a1x; b1
x; c1xð Þ

a2x; b2
x; c2xð Þ

a3x; b3
x; c3xð Þ

0
BBBBBBBB@

1
CCCCCCCCA

¼

3
10

; 2;
11
5

� 	

−
57
20

; 1;
11
5

� 	
19
20

; 2;
38
15

� 	

0
BBBBBBB@

1
CCCCCCCA
:

The second solution is

~X 2
′ ¼

~x1
′

~x2
′

~x3
′

0
BBBB@

1
CCCCA ¼

a1x; b1
x; c1xð Þ

a2x; b2
x; c2xð Þ

a3x; b3
x; c3xð Þ

0
BBBB@

1
CCCCA ¼

1; 2; 2ð Þ

−3; 1; 2ð Þ

1; 2; 3ð Þ

0
BBBB@

1
CCCCA:

Remark 5. The nature of uniqueness in FFLS can be determined by one solution and

more, but not infinite number of solutions which is contrary to the essential concept of

uniqueness on the linear system that states the determination of only one solution.

Conclusion
The nature of FFLS solution is numerically examined and revealed to be completely

different from the linear programing nature of solution because the possible ways of

the former solution are different from the possible ways of the linear system (no solu-

tion, unique solutions, many infinite solutions). In FFLS, the uniqueness does not hap-

pen even in the order of system 1 × 1. Moreover, it has been revealed that uniqueness

may happen through more than one solution. The possible ways of solution do not de-

pend upon the number of parameters compared with the number of equations, and the

three former possibilities may happen even when they are equal or the number of pa-

rameters is greater or less than the number of equations.

The nature of non-fuzzy solution which is equivalent to no solution in the known

possible ways of solution is recommended to be considered in the future work, and un-

like the result in this paper, the LP and non-linear program (NLP) will be shown to be

very effective and sufficient with no exact fuzzy solution, as only one unique approxi-

mate solution is needed in order to represent the nearest solution for FFLS; the smal-

lest objective function is considered to be the most optimal solution.
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