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Abstract

Background: Although ozone-depleting methyl bromide was destined for phase-out by 2005, it is still widely
applied as a consequence of various critical-use-exemptions and mandatory international regulations aiming to
restrict the spread of pests and alien species (e.g. in globalized transport and storage). The withdrawal of methyl
bromide because of its environmental risk could fortuitously help in the containment of its human toxicity.

Methods: We performed a systematic review of the literature, including in vitro toxicological and epidemiological
studies of occupational and community exposure to the halogenated hydrocarbon pesticide methyl bromide. We
focused on toxic (especially chronic) or carcinogenic effects from the use of methyl bromide, on biomonitoring
data and reference values. Eligible epidemiological studies were subjected to meta-analysis.

Results: Out of the 542 peer reviewed publications between 1990-2011, we found only 91 referring to toxicity of
methyl bromide and 29 using the term “carcinogenic”, “neoplastic” or “mutagenic”. Several studies provide new
additional data pertaining to the mechanistic aspects of methyl bromide toxicity. Few studies have performed a
detailed exposure assessment including biomonitoring. Three evaluated epidemiological studies assessed a possible
association between cancer and methyl bromide. Overall, exposure to methyl bromide is associated with an
increased risk of prostate cancer OR, 1.21; 95% CI (0,98-1.49), P = 0.076. Two epidemiological studies have analyzed
environmental, non-occupational exposure to methyl bromide providing evidence for its health risk to the general
public. None of the epidemiological studies addressed its use as a fumigant in freight containers, although recent
field and case reports do refer to its toxic effects associated with its use in shipping and storage.

Conclusions: Both the epidemiological evidence and toxicological data suggest a possible link between methyl
bromide exposure and serious health problems, including prostate cancer risk from occupational and community
exposure. The environmental risks of methyl bromide are not in doubt, but also its health risks, especially for
genetically predisposed subjects, should not be underestimated.

Keywords: methyl bromide, bromomethane, fumigant, halomethane, pesticide, toxic effect, carcinogenic risk, criti-
cal use exemptions

Background
Fumigation with pesticides is a widely used defensive
measure against the multitude of pests responsible for
destroying foodstuffs and other natural commodities
during storage and transport. Necessarily, pesticide che-
micals are highly toxic to pests, but present also a sub-
stantial risk to both human health and the environment
[1-5]. The methyl and ethyl halides, in particular methyl

bromide (IUPAC name: bromomethane), are highly
effective fumigants and are often used as pesticides,
both during and after the harvest. Methyl bromide is a
broad spectrum pesticide with a long history of use as a
fumigant in farming (stripping the soil of pathogens)
and for disinfecting furniture, wood, barges, warehouses,
buildings and cargo ships [1-3,5]. Its use has accelerated
more recently because of increased globalization and the
perceived threat of invasion by alien species. Recent reg-
ulations requiring fumigation with methyl bromide (or* Correspondence: L.Budnik@uke.uni-hamburg.de
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heat treatment) of wooden packaging, flooring and woo-
den goods in imported freight containers [6] have
resulted in an epidemic of freight container fumigation.
To be set against the desirable characteristics of this

almost perfect fumigant is its remarkable potency as a
depleter of atmospheric ozone. Methyl bromide and
related ozone-depleting compounds were banned in the
1987 Montreal and 1997 Kyoto Protocols [4] and methyl
bromide was destined for a phase-out of production
within the current decade (2005 by industrial nations
and 2015 by developing nations). The ocean is a net
sink for atmospheric methyl bromide, where it is slowly
degraded by chemical and biological processes [7].
Although more than 15 industrialized nations have

claimed not to fumigate with methyl bromide anymore,
most continue to do so under the auspices of a critical
use exemptions (CUE) clause. The CUE allows contin-
ued use of methyl bromide where no adequate alterna-
tive is available, thus assuring its unremitting popularity
and widespread use as a fumigant. In 2003, methyl bro-
mide was the most commonly used pesticide among
California growers [8,9] and since 2001 it is required for
fumigation of grapes in the US [10]. This pesticide is
still being used in agriculture [11], in urban pest control
[12-14], and for processing onboard ship [15,16]. Also
in major ports worldwide, several hundred tons of
methyl bromide continue to be used annually for the
fumigation of containers destined for export, represent-
ing a substantial environmental and human health risk
[17-19]. Fumigation of freight containers with methyl
bromide is a standard procedure, particularly in Asia
[17,18], though adequate alternatives like heat treatment
are known. The imported containers and the fumigated
products are shipped deep within an importing country
before being opened, unloaded, distributed and used by
workers and the general public. The primary routes for
methyl bromide exposure are by inhalation and by der-
mal absorption from direct skin contact [20,21]. Expo-
sure due to off gassing is likely since methyl bromide
persists on clothes, leather, and rubber brought home or
when entering storage facilities where highly fumigated
products are stored [3,11,21]. The most common conse-
quences of a transient exposure to methyl bromide are
nervous system symptoms, including headache, nausea,
vomiting, dizziness, blurred vision, impairment of coor-
dination and twitching. Acute massive or prolonged
exposure ultimately leads to permanent debilitation or
death [22]. A link between methyl bromide exposure
and cancer has been demonstrated experimentally and is
also documented clinically, which is not surprising con-
sidering its recognized genotoxic effects [23,24]. From
animal studies, the National Institute for Occupational
Safety and Health (NIOSH) lists methyl bromide as a
potential occupational carcinogen [1,4]. However, the

interpretation of toxicological data is often limited by
various shortcomings in the available studies. First, the
hazard data from animal experiments may not always be
immediately relevant to human beings because of the
acknowledged physiological and catabolic differences in
methyl bromide activity [24]. In addition, several epide-
miological studies are vague about the actual pesticide(s)
under investigation. Furthermore, inadequate exposure
assessment precludes the efficient identification of any
causal inferences between a given pesticide and subse-
quent cancer [25].
For the current study, we performed a systematic

review of the literature addressing the risks associated
with the exposure to methyl bromide, including the
available in-vitro toxicology assessments, in-vivo animal
experiments and population-based epidemiological stu-
dies. We provide evidence that this pesticide should be
phased out not only because of environmental concerns
but also because of its human health risks.

Methods
A Pubmed search for peer-reviewed studies on methyl
bromide was performed for the period 1990-2011 [26].
Several combinations of the following MeSH terms were
utilized in the search: “methyl bromide”, “bromomethane”,
“halogenated hydrocarbon pesticide”, “fumigant”, “poison-
ing”, “toxicity”, “cancer”, “neoplasm” “mutagenic” and
“tumour”. We selected studies according to the following
inclusion criteria:

• original studies published in English or German
between June 1990 and July 2011
• in-vivo and in-vitro studies on the toxicity of
methyl bromide
• papers analyzing molecular mechanisms underlying
possible links between methyl bromide exposure and
toxic or cancer risk
• cohort or case-control studies analyzing the asso-
ciation between exposure to halogenated hydrocar-
bon methyl bromide used as fumigant and the
incidence of cancer (any site of cancer)
• studies providing data on exposure assessment and
bioavailability.

The results from in vitro and in vivo toxicity studies are
summarized in an evidence table and discussed further.
The results from the included epidemiological studies
were summarized quantitatively. Summary odds ratio
(OR), with its corresponding 95% confidence interval,
was calculated using both fixed and random effects mod-
els [26,27]. We calculated I2 to assess the degree of het-
erogeneity across studies. Values of I2 under 25% indicate
low, up to 60% medium, and over 75% considerable het-
erogeneity [27]. Meta-analysis results are presented as a
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forest plot. All calculations were performed with the soft-
ware Comprehensive Meta-Analysis 2.0. (Biostat™,
Englewood, USA).

Results
The initial electronic database search yielded 543 publi-
cations on methyl bromide. 442 were considered not
relevant for the review (because they considered the
chemical synthesis of methyl bromide, its bacterial or
chemical degradation, pest control issues and regula-
tions or did not contribute new information). Among
the included studies, 91 matched the terms toxic, toxi-
cological effects or poisoning and 30 matched the terms
cancer or DNA damage. We identified only 5 publica-
tions reporting epidemiological studies addressing an
association between methyl bromide exposure and can-
cer or toxicity. Two publications reported data from the
same study [28,29], three studies addressed the risk of
prostate cancer [28,30,31] and were included in the
meta-analysis. One additional epidemiological study ana-
lyzed the toxic effects of methyl bromide only, but did
not report on possible carcinogenic effects [32] and a
further one only considered safety issues [33].

Toxicity of methyl bromide
Methyl bromide, like other methyl halides (i.e. methyl
chloride, methyl iodide), has pronounced acute and
chronic toxicity (EPA toxicity class I) [4]. It is known as
a developmental, neurologic and respiratory toxin
[34-36]. Other known target organs are the heart, adre-
nal glands, liver, kidneys and testis [24]. Chronic low
exposure to methyl bromide causes depression of the
central nervous system and injury to the kidney. Methyl
bromide is a dangerous cumulative poison with the
initial symptoms from damage of the nervous system
often delayed by 48 hours to several months. The symp-
toms of acute poisoning vary depending on the concen-
tration and duration of exposure. In sublethal poisoning,
the most serious effects involve the central nervous sys-
tem (with first symptoms including headache, nausea,
vomiting, dizziness, malaise and visual disturbances, fol-
lowed by peripheral neuropathies or neuropsychiatric
abnormalities (Table 1). Throat irritation, chest pain and
shortness of breath are the most likely first respiratory
symptoms with inflammation of the bronchi or lung
edema after severe acute exposure. Death may result
from respiratory and cardiovascular failure [13,22].
Chronic and acute exposure to methyl bromide may

cause respiratory problems, and irritate the skin and
eyes. Central nervous system toxicity and early periph-
eral neuropathy following dermal exposure to methyl
bromide [36] confirm the earlier data (see below). Cen-
tral neurological disorders and chronic toxic encephalo-
pathy were documented in Korean workers after

exposure to methyl bromide [37]. Other studies describe
motor neuron disease [16], cerebro-vestibular and pyra-
midal neuropathy, and paresthesia (see Table 1 for
details). One clinical case report implicates erectile dys-
function in humans [38].
Structurally similar ethyl halides (i.e. ethylene dichlor-

ide, ethyl chloride, ethyl bromide) show less acute toxi-
cities than their methyl counterparts, but more
pronounced chronic toxicity [24].
The effects of methyl bromide on regional brain glu-

tathione-S-transferase has been well documented [39].
Human data from accidental poisoning show that the
conjugator status plays an important role in the expres-
sion of toxicity in humans, with non-conjugators being
apparently relieved of the acute neurotoxic effects (see
below for more details). They may not be subjectively
aware of the toxic exposure, which may lead them into
a false sense of security, especially as silent genotoxic
effects may only become clinically manifest years after
exposure [40-43].

Genotoxic and carcinogenic effects of methyl bromide
Methyl bromide is genotoxic in vitro, as shown in bac-
teria [23], animals [44] and human cell culture tests [54]
(Table 1). The strong alkylating potency of methyl bro-
mide is primarily responsible for its cytotoxic effect, caus-
ing this pesticide to be classified as a potent stimulator of
cell growth and, therefore, a potential tumor promoter.
Distinguishing alkylation from metabolic incorporation
provides proof for the direct genotoxic effect of methyl
bromide, methyl iodide and other methyl halides [46-48].
Based on in-vivo and in-vitro studies, methyl bromide
induces gene mutations in bacteria, mice and humans.
No systemic genotoxic effect was seen with methyl chlor-
ide [46,47] in animal experiments. Effects such as DNA
single strand breaks after methyl halide intoxication can,
however, point to both genotoxic as well as non-geno-
toxic mechanisms [24]. Methyl bromide causes DNA
methylation in rats and mice with concominant decreases
in the activity of O6-alkylguanine-DNA-alkyltransferase
[48]. Interestingly more recent data show that O6-alkyl-
guanine-DNA-alkyltransferase has opposing effects in
modulating the genotoxicity of dibromomethane, sug-
gesting a pathway which is alternative to the well-recog-
nized pathway that involves activation by GSTs [49].
Conversely, deficiencies in nucleotide excision repair
have been shown to strongly potentiate the mutagenic
effects of methyl bromide [44]. A clear DNA-alkylating
potential of methyl bromide can be demonstrated directly
with [14C]-methyl bromide binding to DNA in various
animal studies [24]. Three additional methylated bases
(3-methyl-adenine, 7-methyl-guanine, O6-methyl gua-
nine) were also recognized along with further unidenti-
fied DNA adducts found in liver, lung and stomach [46].
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DNA single strand breaks, liberation of reactive oxygen
species and enhanced cell proliferation were detected
both in vivo (animal studies) and in vitro using cell-based
assays [24,50]. Older studies reported that methyl bro-
mide induces squamous cell papillomas and carcinomas
in the forestomach of the rat [4,46]. No carcinogenic
effect was observed in further studies applying methyl
bromide orally with gavages [51]. A technical report from
the US National Toxicology Program showed no evi-
dence of carcinogenic activity in mice exposed to methyl
bromide by inhalation [52]. Bolt and Gansewendt [24]
explained the negative results in animal experiments by
the different or deficient catabolic conjugation pathways
for methyl bromide in different species. They also consid-
ered that the conclusions from these animal experiments
could not be extrapolated to human non-conjugators,
since these particular individuals are unable to

metabolize methyl bromide as quickly as a rodent can
[24]. Other studies report pre-carcinogenic sister chro-
matid exchange and the induction of chromosome aber-
rations after exposure to methyl bromide [53,54].
Recent data from Koutros et al. has highlighted the

association between the single nucleotide polymorphisms
(SNP) in genes coding for xenobiotic-metabolizing
enzyme (enzymes of oxidative stress and phase I/II
enzymes) and the risk of prostate cancer after exposure
to pesticides [55]. The authors could link the enhanced
prostate cancer risk after methyl bromide exposure with
a SNP in rs93322959 gene coding for the microsomal
GST1 enzyme (OR, 3.1; 95% CI (1.3-7.5) and SNP in
rs5764318 of cytosolic sulfotransferase, SULT4A1 (OR,
2.2; 95% CI (1.0-4.5). Such polymorphisms may lead to
an imbalance in the oxidative stress/antioxidant status,
resulting in DNA/chromosome damage and/or induction

Table 1 Toxic effects of methyl bromide (data 1990-2011)

Effect observed Ref.

in vitro

chromosomal aberration (mammalian cells exposed to gaseous methyl bromide) [54]

Sister chromatid exchange and chromosome aberrations in lymphocytes

O-6-alkylguanine-DNA-alkyltransferase [49]

genotoxic in bacteria (Ames test) [23]

Genotoxicity in workers exposed to methyl bromide [88]

in vivo

toxic encephalopathies (animal experiments) [65]

immunoreactive HSP 70 in rat olfactory receptor neurone [64]

DNA methylation (rat, mice) [48]

reduction in the white blood cells (rat) [89]

increase in SCOT, SGPT activities (mice) [89]

hepatic and glomerular injuries (mice) [89]

MMP-9, matrix-metalloproteinase -9 and -2, MMP-2 expression in olfactory bulb following methal bromide gas exposure (mice) [66]

human

irritation of eyes, skin, respiratory system; muscle weakness, coordination loss, visual disturbance, dizziness; nausea, vomiting, headache;
malaise (vague feeling of discomfort); hand tremor; convulsions; dyspnea (breathing difficulty); skin vesiculation; liquor frostbite; [potential
occupational carcinogen]

[11,34]

acute poisoning: ataxia, behavioral changes, seizures, coma chronic low level exposure: peripheral neuropathy, electroencephalogram
abnormalities, deficits on the Wechsler memory scale (on 2-point discrimination at the index scale)

[90]

headache, dizziness, nausea [11,34]

chronic exposure: central and peripheral system disorders, cerebro-vestibular and pyramidal neuropathy of lower

limbs, paresthesia
cerebro-vestibular and pyramidal neuropathy of lower limbs, paresthesis

motor neuron disease [16]

acute exposure (high concentration): refractory seizures, intermittent fever, multiorgan system failure, death [13]

liver degenerative changes [1]

reduction of lung function, chest pain, shortness of breath, inflammation of the lung [1]

erectile dysfunction [38]

central nervous system toxicity and early peripheral neuropathy following dermal exposure [36]

diffuse lesions in the spleen of the corpus callosum [91]
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of possible epigenetic or tumor suppressor gene altera-
tions [55].

Possible molecular mechanisms
According to the alkylation hypothesis, the methylating
activity of methyl bromide should play an important
role in the molecular mechanism of toxicity for methyl
bromide. Besides this, epigenetic damage [57] may be
the most important fundamental cause of degenerative
diseases and it can induce carcinogenic lesions (see
Figure 1 for a simple model summarizing the current
knowledge on non-linear response relationships between
the exposure to halomethane methyl bromide, oxidative
stress status, DNA damage and pre-carcinogenic
lesions).
The conjugation with glutathione, is regarded as the

main initiation pathway of methyl bromide: upon inhala-
tion of [14C]-methyl bromide, some radioactivity was
covalently attached to haemoglobin [56]. The presence
of S-methyl-cysteine in the haemoglobin of workers
exposed to methyl bromide has been demonstrated [42].

Humans accidentally exposed to either methyl bromide,
methyl iodide, methyl chloride in Japan, The Nether-
lands or in the US showed similar S-methyl-cysteine
levels after exposure suggesting similar metabolism of
methyl halides in older literature.
Although metabolism of methyl bromide, methyl

chloride and methyl iodide has been studied in different
systems and to different extents, it has been suggested
that the general metabolic scheme is valid for all methyl
halides. The tissue specificity and the degree of toxicity
of the organic halides are manifested either by the par-
ent compound or their metabolic or catabolic products.
The genotoxic effects of methyl bromide appear to be
caused by the direct alkylation of macromolecules, pro-
ducing adducts [40] and sister chromatid exchange [41].
Conversely, the neurotoxic effects appear to arise after
the alkylation of methyl bromide by conjugation with
glutathione, producing acutely toxic catabolites that pre-
ferentially target the nervous system [42].
Data collected within the last five years point to an

intriguing association between the alkylation activity of
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Figure 1 Scheme summarizing available literature data on possible molecular mechanisms of methyl bromide effects leading to either
degenerative diseases or pre-carcinogenic lesions.
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methyl bromide (which is modulated by the expression
of various isoforms of GST) and the development of
prostate cancer. Two gene products seem to be involved
in the epigenetic changes caused by methyl bromide. Pi-
class glutathione S-transferases (GSTP1) protect the cell
from cytotoxic and carcinogenic agents and have been
found to be hypermethylated and silenced in prostate
cancer tissue [57,58]. The glutathione S-transferase
theta (GSTT1) gene, whose activity can be influenced by
methyl bromide in human erythrocytes, was reported to
be positively associated with the risk of prostate cancer
[59-61], although other studies have not found these
associations [62,63]. It must be pointed out that glu-
tathione S-transferases may also undergo complex epige-
netic changes, such as hyper/hypomethylation,
depending on the stage of the carcinogenic progression
of the prostate cancer.
The molecular mechanisms responsible for the neuro-

toxic effects of methyl bromide (either alone or with
other halo-methanes or halo-ethanes) have been eluci-
dated to great extent [50]. Methyl halides (and probably
also ethyl halides) readily react with GST causing its

depletion in several cerebellum cell types and lowering
the antioxidant status of these cells [50]. There is a
marked cooperation between neurones and astrocytes
with regard to maintenance of GSH. GSH is toxic to iso-
lated cerebellar granule cells in culture and to astrocytes.
The mechanism of neuronal cell loss with methyl halides
appears to involve DNA damage, methylation and inhibi-
tion of DNA repair, plus depletion of the intracellular
antioxidant GSH and oxidative stress; the apoptotic path-
ways and neuronal cell death may be switched on [50].
Additionally, recent data provide evidence for the

mechanistic aspects of methyl bromide neurotoxicity
and point to its ability to alter epithelial density and
expansion of bulbar projections [64], to inhibit creatine
kinase in rat brain [65] or its effects on matrix metallo-
proteinase-9 and -2 in the olfactory bulb following
methyl bromide gas exposure [66].

Epidemiological studies addressing methyl bromide
exposure
No epidemiological studies analysing the potential carci-
nogenic effects from the exposure to methyl bromide

Table 2 Overview of epidemiological studies on methyl bromide effects (1990-2011)

Reference Study
design

Magnitude
of study

Specified measure 1 Exposure to
methyl
bromide

cases p value
high vs.
low

study year sample
size

location cancer
(prostate)

Odds Ratio
adjusted

95%
CI

[28] 2003 cohort
study

occupational agriculture,
farmers

55, 332 USA, IA,
NC

exposed/controls
*84/482

84 1.10 0.77,
1.36

0.004

low exposure 6 2.73 1.18,
6.33

high exposure 5 3.47 1.37,
8.76

[29] 2010 data
analysis

occupational agriculture,
farmers

55, 332 USA, IA,
NC

5 3.47 1.37,
8.76

0.004

[30] 2003 case-control
study

occupational agriculture,
Hispanic farm workers

1, 332 USA, CA exposed/controls
121/1110

64 1.17 0.77,
1.75

0.25

low exposure 37 1.20 0.66,
2.18

high exposure 32 1.59 0.77,
3.30

[31] 2011 case-control
study

population, near intensive
agricult. areas

USA, CA exposed/controls
173/162

87 1.62 1.02,
2.59

0.1

low exposure 45 1.81 1.03,
3.18

high exposure 42 1.45 0.82,
2.57

[29] 2010 data
analysis

occupational agriculture,
farmers

55, 332 USA, IA,
NC

5 3.47 1.37,
8.76

0.004

toxic
effects

[32] 2006 cohort
study

population, farmers’ wives USA, CA exposed/controls
*145/797

1.82 1.02-
3.24
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contaminants (or any other pesticide) due to its use in
shipping and storage (i.e. in the atmosphere of contain-
ers) have been published to date. Most of the epidemio-
logical studies analysing the causal link between methyl
bromide exposure and the development of cancer have
focused on the agricultural use of pesticides. However,
the first clue implicating methyl bromide in a carcino-
genic effect was from a study of chemical industry work-
ers who were exposed to methyl halides. In this cohort
study, an increased mortality from testicular cancer was
reported in association with long-term occupational
exposure to methyl bromide in a chemical plant [3].
There were only 3 more recent studies analysing the
association between exposure to methyl bromide and
cancer or toxicity. Two were cohort studies and one a
case-control study. The main characteristics and results
of the included studies are summarized in Table 2. All
of them addressed exposure in relation to the use of
methyl bromide in agriculture, either as occupational or
environmental. One of the studies, the Agricultural
Health Study (AHS), is a long-term cohort study of pes-
ticide applicators and their spouses [28]. A report from
the US National Cancer institute [35] stated that a few of
the 45 evaluated pesticides showed evidence of a possible
association with prostate cancer in the pesticide applica-
tors. While methyl bromide was linked with the risk of
prostate cancer in the entire group, exposure to six other
pesticides was only associated with an increased risk of
prostate cancer among those men with a family history
of the disease [35]. Alavanja et al. reported a slightly
increased relative risk among farmers occupationally
exposed to methyl bromide [28]. This study demon-
strated a gradient for the risk of prostate cancer with
increasing level of exposure to methyl bromide, with the
greatest risks among the two highest exposure categories
(OR 3.47 95%-CI 1.37-8.76 for the highest exposure cate-
gory) [28]. The risk was two to four times higher than for
men who were never exposed to methyl bromide [28,35].
Among the 45 specific pesticides evaluated, only methyl
bromide was associated with a statistically significant

exposure-response trend. This effect was not seen among
those without a family history of prostate cancer [35].
Mills and Yung also showed an association between
methyl bromide exposure and prostate cancer with OR,
1.17; 95% CI (0.77-1.75), P = 0.45 although statistically
non-significant [30]. Control subjects were age and loca-
tion-matched farm workers without prostate cancer. The
risk was associated with relatively high levels of exposure
to methyl bromide. In a first study on prostate cancer
and non-occupational exposure to pesticides, Cockurn et
al. [31] confirmed the data from Alavanja et al. and pro-
vided evidence for an association between prostate can-
cer and the environmental exposure to methyl bromide
in and around homes in highly agricultural areas [31].
Our meta-analysis shows a slight increase in prostate
cancer risk after exposure to methyl bromide with OR,
1.21; 95% CI (0.98-1.49), P= 0.07. The results of the
included studies are homogeneous (I2 = 0%, thus we
report results from the fixed effects model (see Figure 2,
Table 2)). The model choice did not affect the results.
A further epidemiological study [32] of intoxication

cases showed an association with chronic low-dose
methyl bromide pollution and chronic bronchitis with
OR, 1.82; 95% CI (1,02-3.24), P = 0.04, due to non-occu-
pational exposure.

Related population-based epidemiological studies
Studies evaluating exposure to pesticides in general (i.e.
without differentiating between compounds) have
reported rather contradictory results, with some indicating
an increase in cancer risk with risk increases ranging from
1.1 to 2.73 [9,67-70] and others showing rather lower can-
cer risks after pesticide exposure, ranging from 0.7 to 0.93
[67] for both workers and the community. Based on
cohorts exposed to pesticides, 8 studies explored a possible
association with increased cancer risk. Some reports iden-
tified an insignificant slightly decreased risk and others a
significantly increased risk of cancer from pesticide expo-
sure [9,68-70]. Yet, a declaration on carcinogenicity was
not always available; similarly, retrospective personal or

Study OR and 95% CIOR 95% CI p- value

Alavanja 2003 [28] 1 100 0 828 1 462 0 511Alavanja 2003 [28] 1.100 0.828 - 1.462 0.511
Mills 2003 [30] 1.170 0.776 - 1.764 0.453
Cockburn 2011 [31] 1.620 1.017 - 2.581 0.042

1.208 0.980 - 1.489 0.076
0.2 0.5 1.0 2.0 5.0

Risk of prostate cancer (exposed vs. non-exposed to methyl-bromide).OR>1 indicates increased risk.

Summary

( y )
Figure 2 Meta-analysis of cancer risk after exposure to methyl bromide. The data showing all epidemiological studies clearly related to
methyl bromide exposure (1990-2011) was analysed as described in the methods.
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apocryphal reporting of product use (or misclassification
of the degree of exposure or constitution of the chemical
mixtures) is notoriously inadequate for risk association
and assessments. Marusek et al. [39] concluded that this
might also lead to misestimating of exposure level for con-
trol groups, especially when family members, generally
considered as bystanders in farming activities, were used
as controls. It has been reported that farmers tend to be at
higher risk for cancers of the lip, brain, prostate, stomach,
connective tissue melanoma and for carcinogenic changes
in lymphatic and hematopoietic systems than the general
population [71,72]. Several case-control studies have
reported elevated relative risks of prostate cancer in agri-
cultural workers [73]. Both in Italy and the USA [74-76],
case control studies (though very inhomogeneous in nat-
ure) do report a slight increase in prostate cancer risk
after pesticide exposure (with RR of 1.69 and RR 2.13).
One US study reported a significantly increased risk of
cancer in association with farming activities RR, 2.17; 95%
CI (1.18-3.98), although the authors suggest a possible
association with methyl bromide exposure, they acknowl-
edged that another, as yet unidentified, factor may be
involved [77]. More recent studies focused on cancer risk
associated with pesticide use including methyl bromide:
Issa et al. analysed two differently exposed groups of pesti-
cide users in a retrospective study (1998-2006) [33]. To
estimate prevalence differences between the two popula-
tions, directly exposed (farmers) and bystanders (farmers’
wifes), the authors focused mainly on the change of habits,
such as the use of the protective equipment or the applied
dosage, concluding that there were some positive changes
in the handling of pesticides amongst participants. The
authors listed methyl bromide as one of the fumigant used
but its possible carcinogenic effects were not addressed. A
review by Weichenthal et al. [29] provided a comprehen-
sive summary for most of the pesticides evaluated in the
AHS.
The authors concluded that the data outside the study

was still limited, but that the animal toxicity findings
support the biological plausibility of a cancer risk. In
addressing the issue of the link between the methyl bro-
mide use and the incidence of the prostate cancer risk,
the authors referred to the AHS study included in our
meta-analysis and highlighted the increased risk of pros-
tate cancer in methyl bromide applicators in the highest
category of intensity-weighted exposure-days (Table 2).

Bioavailability
The routes of absorption of methyl bromide are the
lungs and skin with elimination routes via the lung,
urine and faeces. The available animal biotransformation
data in vivo show that seventy two hours after exposure
to [14C]-methyl bromide, 43% was found in urine, ~40%
was exhaled and 14-17% remained in the body (not only

in fat tissue, but mainly in liver and kidneys). Notably,
the animal data may not be directly extrapolated to
humans (the serum half-life of bromide in humans is
12-16 days but only 1.5-3.5 days in the rat). Rats and
mice metabolize methyl halides more rapidly than
humans, so that the information on exposure concentra-
tion/duration and the association between the exposure
concentration and symptoms cannot be directly extrapo-
lated to humans. Fatal cases resulting from home fumi-
gation exposure to humans were reported early [21].
One reported fatal case [13] provided both biomonitor-
ing (exposure biomonitoring) and bioavailability data
that showed initial serum methyl bromide levels on day
1 of 270 mg/L and of 29 mg/L on day 19 after exposure
(at post mortem); the urine bromide concentration was
62 mg/L (normal <16 mg/L) one day after the exposure.
Post-mortem (19 days after exposure) bromide levels
were 17 mg/L in the bile, 24 μg/g in the liver and 28
μg/g in adipose tissue; urine formic acid was 58 μg/L
(normal 50-360 μg/L). It needs to be noted that, as a
consequence of the unrecognized first intoxication
symptoms, the patient was presumed to have the flu
and took bromide-containing flu medication. While this
could have influenced the elimination kinetics, this data
is important in highlighting differences between human
and animal bioavailability.

Exposure assessment and biomonitoring
On a short time scale, the assessment of possible methyl
bromide intoxication can be performed by air (ambient)
monitoring or exposure biomonitoring [78]. Ambient
monitoring data, associated with intoxication incidents,
revealed values of 2-10 ppm methyl bromide in storage
units (measured in cold-storage facilities, where off-gas-
sing grapes were stored) [10]. We have measured over
4000 import freight container units in Hamburg and
Rotterdam (2007-2010) and found the following range
of methyl bromide concentrations in air samples from
containers arriving at the harbor customs for inspection:
0.005-50 ppm (11.5% incidence in 2006-2008) and
0.005-7.1 ppm (4.8% in 2009/2010) [18,19]. In 2006, 3
individual container atmospheres had methyl bromide
levels exceeding 800 ppm [17]. It has to be noted that
the container air samples had multiple contaminations
with fumigants and/or toxic industrial chemicals (like
benzene) [17-19,79].
If supported by toxicological validation, exposure

assessment based on biomarkers [78,80] provides the
most valuable information about possible methyl bro-
mide intoxication (for the individual incorporation
through the lungs and skin). with the parent methyl
bromide, or its metabolite bromide, being used for the
biomonitoring of methyl bromide exposure. In a 17-year
follow-up study, urinary bromide concentrations in
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factory workers (using protective equipment) exposed to
methyl bromide were 25.2 ± 18.7 mg/g creatinine (3.0-
125 mg/g creatinine) [20]. The measured urine values of
32.4-68.7 mg bromide/mg creatinine and serum levels of
36.2-52.1 mg bromide/L (normal reference levels are <5
mg/L) were associated with technical incidents and
could be correlated with reported episodes of dizziness
[20]. Blood samples from greenhouse workers analyzed
11 days after the application of methyl bromide revealed
3.4-20.6 mg/L of serum bromide. The increased bromide
values, observed in most applicators, were associated
with reported symptoms of irritation to the eyes, cough-
ing, neurological, psychiatric, respiratory and gastro-
intestinal symptoms [11]. Biological effect biomonitoring
[78,80] provides useful information about prior intoxica-
tion and has implied an association between an increase
in proximate pre-carcinogenic lesions after pesticide
exposure and the cancer risk [81-83]. A prospective ana-
lysis of blood samples from more than 6700 agricultural
and greenhouse workers revealed an elevation of cytoge-
netic biomarkers and enhanced cancer risk after pesti-
cide exposure [81]; Several other studies using
micronuclei (and other functional cytogenetic biological
markers) revealed both an increase in cytogenetic
damage after exposure to pesticide mixtures and their
correlation with an increased cancer risk in several Eur-
opean populations [74,82,83].

Reference values, community exposure limits
The calculated reference concentration values (RfC) for
non-carcinogenic effects of methyl bromide in humans
[84] can be regarded as community exposure limits. The
RfC is a reference point to gauge potential effects, the
incidence of which increases for an exposure greater
than RfC [45]. An RfC limit value of 0.210 ppm (0.210
mL/m3) was recently estimated for acute inhaled expo-
sure of methyl bromide [84]. Also, for a subchronic
exposure to methyl bromide for 1 week, the RfC was
estimated to be 0.129 ppm and 0.079 ppm for adults
and children, respectively; while the chronic 6 week
RfCs were estimated to be 0.002 ppm and 0.001 ppm
for adults and children, respectively. The California
Office of Environmental Health has also settled non-
cancer reference dose (RfD) values for acute air expo-
sure to methyl bromide at 0.05 ppm (neurologic
targeted toxicity) and for chronic RfD for the respiratory
tract target (based on degenerative and proliferative
lesions of the olfactory epithelium of the nasal cavity) to
be 0.005 mg/m3 (0.0012 ppm) [9]. Additionally, commu-
nity exposure data, which showed air values of 0.005
ppm [9,69,85] due to pollution from farming activities,
provides the basis for the estimation of hazard quotients
(HQ) (defining non-cancer risk) [84,85]. These risk quo-
tients were characterized for populations within a few

miles of the air monitoring stations [9]. The HQ is
defined as a ratio between the estimated intake of
methyl bromide (in mg/kg/day) and the reference dose
(RfD); the acute HQ was estimated to be 0.7 mg/kg/day
(95% CI), the subchronic as 13.9 mg/kg/day (95% CI)
and the HQ for chronic intake as 2.0 mg/kg/day [84].

Discussion
The halogenated hydrocarbon pesticide methyl bromide,
which was designed for phase-out in 2005, remains in
frequent use because of various critical use exemptions
and new regulations. The exposure assessment data and
epidemiological analysis indicate health risk concerns
for both workers and the general public [31,32]. Recent
case reports continue to demonstrate episodes of illness
(with disabling neurological symptoms, memory difficul-
ties and dizziness) in association with elevated levels of
serum bromide [10,15].
Methyl bromide is at least as poisonous to humans as it

is to the pests with genetic susceptibility (i.e. the conjuga-
tor status) or acquired single point mutations playing an
essential role in humans. The conjugator status varies
phenotypically between species and individuals and may
help to explain the variation in toxicity observed (with
data showing no immediate, otherwise expected, effects).
In human non-conjugators, the absence of the glu-
tathione S-transferase (GST) pathway pushes methyl bro-
mide into alternative oxidation pathways [43], effectively
reducing its acute neurotoxicity but concomitantly and
insidiously exacerbating its chronic genotoxic effects
[40-42].
The exposure to pesticides in agriculture is almost

always additive in nature [35]. The possible additive or
subadditive effects might be different for cases of exposure
to fumigated container and contaminated goods however.
We found not only methyl bromide but also high levels of
contamination with ethylene dichloride, methylene chlor-
ide, ethylene dibromide or tetrachlorethanes in import
containers (all halo-methanes or halo-ethanes that share
signalling pathway disruption mechanisms). Many epide-
miological studies refer to pesticide exposure but without
discriminating between the different chemical entities nor
their formulations, which differ not only chemically but
also in their toxicity, patho-physiological mode of action,
target organ, symptoms and possible carcinogenic status
(with many not listed as carcinogenic nor even evaluated
[35]. Retrospective personal or apocryphal reporting of
product use, or misclassification of the degree of exposure
or constitution of the chemical mixtures, all fail to contri-
bute adequately to risk associations and assessments.
Occupational circumstances associated with farming alone
(as confounder) do not appear to provide a risk factor for
prostate cancer; rather there is a perceived decrease in
overall cancer incidence among unexposed farmers [87].
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On the other hand, the community exposure risks to air-
borne agricultural pesticides have been documented [9]
and the study from Cockburn et al. demonstrated an asso-
ciation between prostate cancer and the ambient non-
occupational exposure to methyl bromide [31].
Our meta-analysis indicates an increased prostate cancer

risk after exposure to methyl bromide. The International
Agency for Research on Cancer (IARC) continues to clas-
sify methyl bromide in the carcinogenic category 3
(defined as unclassifiable as to its carcinogenicity to
humans because of inadequate evidence in humans and
limited evidence in experimental animals) [86]. Yet many
studies provide evidence that application of this pesticide
may not only elicit a number of toxic effects but also is
associated with an increased risk of cancer [28-31]. How-
ever, the carcinogenicity of methyl bromide cannot be
easily explained as a function of the concentration levels
and the exposure period, especially with the limitations
and disputed relevance of animal experimentation. More
recent data delineate the role of single point mutations in
enhanced prostate cancer risk after pesticide exposure,
affecting genes which code for phase I/II and oxidative
stress enzymes, [55].
The complicated and complex biotransformation path-

ways of methyl bromide in humans have only been par-
tially elucidated. Human studies are rare and any
extrapolation from animal data is difficult to justify.
Further investigations are needed to explore the molecular
mechanisms of the toxicological and carcinogenic effects
of methyl bromide in more detail.
The exposure misclassification in many epidemiological

studies may have caused an underestimation of the effects
(especially when the control groups, such as family mem-
bers, are also exposed). It has also to be emphasized that
many available studies concern average risks and, there-
fore, do not represent the actual risks in genetically predis-
posed human subjects. We recommend further studies to
redress this deficiency.

Conclusions
Both the epidemiological evidence and toxicological data
suggest a link between methyl bromide exposure and
serious health problems, including cancer risk (prostate
cancer), from occupational and community exposure.
The carcinogenic classification of methyl bromide
should be reevaluated.
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