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1 Introduction

The non-Abelian vortices are considered as an important tool to understand the non-

Abelian confinement in N = 2 supersymmetric QCD [1–3]. The low energy effective

theory of non-Abelian vortices plays an important role in understanding how monopoles

are confined on the vortex string and why spectra of the two and four dimensional theories

coincide. The construction of the effective action started as soon as the discovery of the

non-Abelian vortices, and has been extensively investigated [4–7, 10–12].

Hanany and Tong used the index theorem to obtain the dimension of the moduli space

of U(N) non-Abelian vortices, and studied the low energy dynamics of vortex strings for

both local and semi local cases [2, 4]. The spectrum of the vortex string coincides with that

of the four dimensional parent supersymmetric gauge theory, which is a proof of Dorey’s

2d-4d duality [13]. Shifman et al. derived the world-sheet theory of semi local non-Abelian

strings by a field theoretical method [5, 7]. For semi local vortices, the transverse size of the

magnetic flux is not fixed but becomes a modulus. By introducing an infrared regulator,

a so-called zn model was obtained for the single semi local vortex with or without twisted

mass [7]. Using the moduli matrix method, Eto et al. studied the moduli space of high

winding semi local vortices, and found that dynamical variables in the effective action,

including orientational zero modes and size moduli, depend on the point of the moduli

space [10]. Recently, the field theoretical method was generalized to construct the world-

sheet action of fundamental SO and USp vortices, and applied to some high winding
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vortices in U(N) and SO(2N) theories [11]. Further, Eto et al. derived the mass deformed

sigma models, and showed that confined monopoles are kinks on the vortex string for SO

and USp theories [12].

The aim of this paper is to derive the mass deformed effective action of semi local U(N)

vortices. There are two alternative ways to construct the effective action of vortices. One

is the moduli matrix formalism [9, 10, 12, 14, 15], and another one is the field theoretical

method [5–7, 11]. Besides that, the D-brane construction is also a powerful technique to

obtain the effective potential on the vortex moduli space [4]. In the moduli matrix formula,

all zero modes are encoded in components of the matrix representation of fields, and moduli

matrices are holomorphic with respect to a complex variable. The moduli space and the

effective action have been analyzed and obtained by this method [9, 10, 15]. In the field-

theoretical method, the Ansatz of the field is composed of radial profiles and reducing

matrices. The two dimensional effective action composed of reducing matrices can be

obtained by integrating out profile functions from the bulk four dimensional theory [6, 11].

So, we need to know the representation of the reducing matrix for the corresponding vortex

configuration. However, the known reducing matrices are quite limited [16, 17], this hinders

the application of the field theoretical method. There are by-products of this method, i.e.,

the analytical solutions for the profiles of the gauge fields and the adjoint scalars. For

instance, the profile for the gauge fields in the time and string directions has been solved

for the k = 2 SO(2N) vortex [11]. In the mass deformed case, the profile for the adjoint

scalar was also obtained in the same way [12]. In this paper, we choose the field theoretical

method to work out the mass deformed effective theory for semi local non-Abelian vortices.

For U(N) vortices, the Ansatz was invented by minimizing the massive excitations [5, 6].

The systematic method to obtain the right Ansatze is to solve the Euler-Lagrangian (EL)

equation, and the system reserves with the low energy excitations in such a way [14]. When

constructing the effective action of semi local vortices, the Anzatz for the adjoint scalar

was not studied [7]. Until very recently, Bolokhov et al. investigated the Anzatz of the

adjoint scalar for the local vortices [8]. We will solve EL equations to obtain the Ansatze

for both the gauge field components and the adjoint scalar.

This paper is organized as follows. In section 2, we describe the model, and give the

semi local vortex solutions. In section 3, we use EL equations to obtain Ansatze for the

gauge field and the adjoint scalar field, respectively. On the basis of these Ansatze, we

constructed the mass deformed effective action of semi local vortices. We also discussed

the effective theory of high winding vortices in section 4. Discussions and conclusions are

given in the last section.

2 The model

The bulk theory is the N = 2 supersymmetric QCD with U(Nc) gauge and SU(Nf ) flavor

group transforming in the fundamental representation. The Nc = Nf case will describe the

local non-Abelian vortex solutions [1–3], but we restrict to the Uf > Nc case, which will

describe the non-Abelian semi local vortices [5, 10]. Besides fermions, the theory contains

a U(Nc) vector multiplet Aµ, an adjoint scalar Φ, and two chiral multiplet q and q̃. The
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theory also has a Fayet-Illiopoulos parameter ξ > 0, which forces the theory onto the Higgs

branch. We also set that the anti-fundamental multiplet q̃ is zero, otherwise, there are

no BPS vortex solutions. With these setups, the bosonic truncation of the Lagrangian is

written as follows [7]

L4d = Tr

{
− 1

2g2
FµνF

µν +Dµq(Dµq)† +
1

g2
(DµΦ)DµΦ

− g2

4
(qq† − ξ1Nc)

2 − |Φq + qM|2
}
. (2.1)

The squark field q is written as an Nc×Nf matrix, and the adjoint scalar Φ is of an Nc×Nc

matrix. The expression of the mass matrix M is generic, namely, M = diag(m1, . . . ,mNf
),

which breaks the flavor group SU(Nf ) down to U(1)Nf−1, if all masses are non-degenerate.

The gauge couplings of the Abelian and non-Abelian components are set to be equal for

simplicity. In convention, the covariant derivatives and the gauge field tensor are written

as follows

Dµq = ∂µq + iAµq, (2.2)

DµΦ = ∂µΦ + i[Aµ,Φ], (2.3)

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]. (2.4)

Note that the gauge field Aµ contains both the Abelian and non-Abelian components,

i.e., Aµ = A0
µt

0 + Aaµt
a. The normalization is taken to be Tr(tatb) = 1/2δab and t0 ≡

1Nc/
√

2Nc. We choose to work in such a vacuum that the mass matrix takes the form M =

diag(m1, . . . ,mNc ,mNc+1, . . . ,mNf
) and the first Nc flavors of the squark q are condensed,

〈Φ〉 = −diag(m1, . . . ,mNc), 〈q〉 =
√
ξ(1Nc , 0Ñ ), (2.5)

where Ñ = Nf−Nc. The reduced Higgs branch of the vacua is the Grassmannian, GrNc,Nf
.

In the strong coupling limit, the moduli space of the semi local vortex Vk,(Nc,Ñ) becomes

to the Moduli space of Grassmannian GrNc,Ñ
lump.

The mass parameters mi are tuned to a common value mi ≈ m, satisfying the con-

straint m �
√
ξ. In the regime Λ �

√
ξ, a color-flavor locking symmetry SU(Nc)diag

remains, which develops vortex configurations. Therefore, the theory experiences a hierar-

chy symmetry breaking, i.e.,

U(Nc)× SU(Nf )
√
ξ−→S[U(Nc)diag ×U(Ñ)f ]

m−→Hc+f × H̃, (2.6)

where Hc+f is a subgroup of SU(Nc)diag depending on the setting of mi, and H̃ denotes

a remaining global flavor symmetry group. The generic mi will break the color-flavor

symmetry. However, we assume that such breaking is in a very weak manner. This will

produce a “shallow” potential for the world-sheet action of vortices. When Ñ becomes

zero, the system reduces to the local non-Abelian vortex case, where a narrow size flux

tube confines monopoles as kinks on the string [5, 12]. When Ñ 6= 0, we can shed some

light on how monopoles are confined by the semi local vortex.
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2.1 The moduli space

According to the index theorem, the dimension of the moduli space Vk,(Nc,Ñ) is 2k(Nc +

Ñ) [2]. The moduli space of the vortex configuration can be constructed by the Kähler

quotient method. Following [10], we use the moduli matrix formalism to show it in detail.

The squark q(z), whose elements are polynomials in z and the corresponding coefficients

are coordinates on the moduli space, can be written as follows

q(z) = (D(z), Q(z)), (2.7)

where D(z) and Q(z) are Nc × Nc and Nc × Ñ matrices, respectively. For the winding

number k, q(z) has the degree of k. q(z) indicates the vortex configuration evidently. By

proper relations (see section 2 in [10]), all moduli coordinates can be collected in the set

of constant matrices
(
Z,Ψ, Ψ̃

)
modulo the GL(k,C). Z, Ψ, and Ψ̃ are constant k × k,

Nc×k and k×Ñ matrices, respectively. By counting dimensions, one can easily verify that

the triplet indeed represent moduli space coordinates, although the quotient space has the

non-Hausdorff properties. Given a vortex configuration q(z), one can obtain the expression

of the triplet uniquely after fixing the GL(k,C) action.

According to their physical characteristic, zero modes of semi local vortices can be

classified into tree types, namely the positional, the orientational and the size moduli. In

addition, the moduli can be further classified into the normalizable and non-normalizable

categories. The number of nonmalizable zero modes (NZMs) is subtle. Let us define that

r ≡ rank(ΨΨ̃) and j ≡ min(k,Nc, Ñ). For the case of k ≤ min(Nc, Ñ), the number of

NZMs is 2k2. For the case of k ≥ min(Nc, Ñ), the number of NZMs is 2(kNf − NcÑ).

When r < j, it was called that the NZMs are enhanced [10].

In the construction of the effective action, these non NZMs must be fixed, since they are

not dynamical. While the rest moduli are allowed in the geodesic approximation. Here, we

present the moduli space in the moduli matrix formula, which indeed has the corresponding

reducing matrix formula [11, 15]. For constructing the mass deformed effective action

of semi local vortices, we choose to work in the reducing matrix formula, and use the

Ansatz given in ref. [7]. As stated above, the dynamics of vortices depends on the point

of the moduli space on which we work. For the high winding case, we choose a special

point, namely the co-axial vortices, to construct the effective action as a concrete example.

However, this is not a generic point in the moduli space. We will leave the construction of

the effective action on a generic point for the future work.

2.2 The vortex solution

Consider the static configurations of the model in eq. (2.1), and suppose that the vortex

string lies along the x3 direction. The Lagrangian which has vortex solutions is written

as follows

L0
vortex = Tr

{
− 1

g2
F12F

12 +Diq(Diq)† −
g2

4
(qq† − ξ1N )2

}
. (2.8)

Here i = 1, 2 denotes the directions in the transverse plane of vortices. Other terms

in eq. (2.1) are ignored at this moment, they are also important for the construction of
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effective theory. After the Bogomol’nyi completion, the system has a bound energy. The

Bogomol’nyi-Prasad-Sommerfield (BPS) equations are written as follows

(D1 + iD2)q = 0, (2.9)

F12 −
g2

2
(qq† − ξ1N ) = 0. (2.10)

For simplicity, we choose Ñ = 1 at first, which means there is only one “additional flavor”.

Consider a high winding vortex which has the configuration as follow,

q =


φ1(r)eikθ φ3(r)

φ2(r)
. . .

...

φ2(r) 0

 . (2.11)

Notice that the winding term appears at the first diagonal component of the matrix, which

describes that k fundamental vortices have the same positional moduli, namely the co-axial

vortices. In this way, the moduli space of the vortex are highly reduced. In the additional

flavor, one has a profile φ3(r), which contains the size moduli [7, 18, 19]. The orientational

moduli can be tuned on by the color-flavor rotation, which we will discuss in the following.

Requiring Diq|r→∞ → 0, the gauge fields Ai is given as follows

Ai = εij
xj
r2


k − f(r)

0
. . .

0

 . (2.12)

By going to the singular gauge, i.e., q → Uq, Ai → UAiU
† + i∂iUU

†, the q and Ai can be

rewritten as follows

q =


φ1(r) φ3(r)e−ikθ

φ2(r)
. . .

...

φ2(r) 0

 , Ai = −εij
xj
r2
f(r)


1

0
. . .

0

 . (2.13)

Here U = diag(e−ikθ, 1, · · · , 1). The merit of the singular gauge is that BPS equations are

easily to be solved.

With these configurations, BPS equations for profiles are given by

φ′1(r)− f(r)

r
φ1(r) = 0, (2.14)

φ2
2(r) = ξ, φ′2(r) = 0, (2.15)

φ′3(r) +
k − f(r)

r
φ3(r) = 0, (2.16)

1

r
f ′(r)− g2

2
[φ2

1(r) + φ2
3(r)− ξ] = 0. (2.17)
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Here the prime sign denotes the derivative with respect to r. At the infinity, boundary

conditions are given by

φ1(∞) =
√
ξ, φ2(∞) =

√
ξ, φ3(∞) = 0, f(∞) = 0. (2.18)

When r goes to zero, boundary conditions are written as follows

φ1(0) = 0, ∂rφ2(0) = 0, f(0) = k. (2.19)

The solution for φ2 in eq. (2.15) can be solved directly,

φ2(r) =
√
ξ, (2.20)

which means that flavors from 2 to Nc have trivial profiles. We also notice that if

φ3(r) =
ρ

rk
φ1(r), (2.21)

then eq. (2.14) and eq. (2.16) coincide, where ρ is the size modulus of the semi local vortex.

|ρ| describes the size of the vortex, while there is still a U(1) phase rotation freedom for ρ.

It is natural to ask if there are other profiles for the additional Ñ = 1 flavor. For

high winding semi local vortices, it is indeed the case [20]. For example, the profile of the

Ñ flavor can be written as φ3 =
∑k−1

n=1 ϕne
i(k−n)θ. There are more profile equations and

boundary conditions for ϕn, which are difficult to solve. The difficulty here originates from

the disadvantage of the reducing matrix method for high winding vortices. However, we

find it solvable in the strong coupling limit if we stick to the formula in eq. (2.21).

With such setting, we have only one size modulus in the moduli space. The remaining

two independent equations are written as follows

φ′1 −
f

r
φ1 = 0, (2.22)

1

r
f ′ − g2

2

[
φ2

1

(
1 +
|ρ|2

r2k

)
− ξ
]

= 0. (2.23)

In the large gauge coupling g →∞, these two equations can be solved algebraically in the

1/g2 expansion. Keeping only terms of the order of 1/g2, profile functions can be written

as follows

φ1 = φ1,0 +
1

g2
δφ1, f = f0 +

1

g2
δf. (2.24)

Substituting φ2 =
√
ξ into eqs. (2.22) and (2.15), the zeroth order equations are written

as follows

φ2
1,0

(
1 +
|ρ|2

r2k

)
− ξ = 0, (2.25)

φ′1,0 −
f0

r
φ1,0 = 0. (2.26)
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And equations with the order of 1/g2 can be expressed as

δφ′1 −
1

r
(φ1,0δf + f0δφ1) = 0, (2.27)

1

r
f ′0 − φ1,0δφ1

(
1 +
|ρ|2

r2k

)
= 0. (2.28)

After some algebra calculations, we obtain solutions as the following

φ1,0 =
√
ξ

rk√
r2k + |ρ|2

, (2.29)

f0 = k
|ρ|2

r2k + |ρ|2
, (2.30)

δφ1 = − 2k√
ξ

|ρ|2r3k−2

(r2k + |ρ|2)
5
2

, (2.31)

δf =
4k

ξ

|ρ|2r2k−2

(r2k + |ρ|2)3

[
k(r2k − |ρ|2) + r2k + |ρ|2

]
. (2.32)

Since k is a positive integer, boundary conditions for r →∞ are satisfied. When k=1, the

results agree with Shifman et al. [7].

Degenerate vortex solutions can indeed be generated by color-flavor rotations. For

Ñ = 1, there is a remaining global flavor group, i.e., H̃ = U(1)f in eq. (2.6). However, this

U(1) rotation can be absorbed into the phase transition of size modulus ρ. The global color-

flavor group SU(Nc) is broken by the vortex configuration in eq. (2.11). The symmetry

breaking pattern produces the “Nambu-Goldstone” modesCPN−1 ∼= SU(Nc)/SU(Nc−1)×
U(1), which are represented by the reducing matrix U . Now, we turn on the color-flavor

transformations here, i.e., q → U q Ũ and Ai → UAi U
†, where U and Ũ are written as

follows [11]

U =

(
X−

1
2 −B†Y −

1
2

BX−
1
2 Y −

1
2

)
, Ũ =

(
U †

1

)
. (2.33)

Note that Ũ is composed of U † and 1 as the diagonal components. The elements X and Y

in the reducing matrix U are defined by

X ≡ 1 +B†B , Y ≡ 1Nc−1 +BB† , (2.34)

where B is an N − 1 component column vector. Its relation with the vector n in ref. [6, 7]

is expressed as

n =

(
X−1/2

BX−1/2

)
. (2.35)

From now on, we use the vector n and n† to represent modulus parameters. The squark q

and the gauge fields Ai are written as follows

q(r, xα) =
(
φ21Nc + (φ1 − φ2)nn† φ3e

−ikθn
)
, (2.36)

Ai(r, xα) = −εij
xj

r2
f(r) nn†, (2.37)
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where xα = (x0, x3). Note that nn† is an Nc ×Nc matrix. The zero modes are not genus

zero-modes of the system, they are massive modes in the vacuum, but massless along the

vortex string. Thus, they can propagate along the vortex string direction in the vicinity of

the axis. We promote the collective modes n and ρ to be dependent of xα, i.e.,

n→ n(xα), ρ→ ρ(xα). (2.38)

The collective coordinates of the moduli space are considered to be the fluctuation fields

around the background solution. Also there is one positional mode which stands for the

mass center of the vortex, it’s dynamics is straightforward, we will not discuss them in

the following.

3 The Ansatze

Generically, the motion of solitons can be well approximated by the geodesic motion in the

moduli space [21]. In the BPS configuration, vortices are static. The xα-dependence of

the moduli parameters induces small deviations from the background BPS configuration.

The momentum of the motion of zero modes is considered to a small variable for the slow

moving case. A systematic method to construct the effective action and its high derivative

corrections of BPS solitons in supersymmetry gauge theories has been presented in the

moduli matrix formalism [14, 22–24]. Cipriani and Fujimori used this formalism to study

the effective action of vortex-monopole complex [9]. Here, we take the spirit of this method

and apply it to the field theoretical formalism. We also assume that the excitation energy

of zero modes is much less than the typical mass scale of massive modes, i.e., ∂α � g
√
ξ.

The Lagrangian can be expanded with respect to the derivative ∂α. The zeroth order

terms give the static vortex configuration, and becomes the bounded energy after the

Bogomolnyi completion. The lowest order terms take the form of two derivatives for zero

modes, i.e., the non linear sigma models with certain target space. The second order terms

belong to high derivative corrections O(∂4
α), which are not considered in this paper. The

Lagrangian in eq. (2.1) can be decomposed as

L4d = L0
vortex + L2

eff +O(∂4
α), (3.1)

L2
eff = Tr

{
− 1

g2
FiαF

iα +
1

g2
|DiΦ|2 +Dαq(Dαq)† − |Φq + qM|2

}
, (3.2)

where L0
vortex has already been given in eq. (2.8). The adjoint scalar Φ has the order of ∂α,

and contains fluctuations of collective modes.

In the field theoretical method, the effective theory is obtained by integrating out

the xi (i = 1, 2) coordinates for the 4 dimensional bulk action. We still have to give the

unknown Ansatze of Aα and Φ, which are unknown. Shifman et al. have constructed the

Ansatz of Aα for the U(Nc) local vortex in refs. [3, 5, 6] and for the semi local U(Nc)

vortex in the ref. [7]. Gudnason et al. have given the Ansatz of Aα, including the SO and

USp cases with the help of reducing matrices [11]. The idea there is to design this “input

parameter” to minimize the action. However, in the moduli matrix formalism, the Ansatze
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of both Aα and Φ were solved by equations of motion [9, 12, 24]. Inspired by this, we will

use equations of motion for Aα and Φ to obtain their Ansatze. This will ensure that the

formula of them indeed minimizes the action.

3.1 The gauge field

The second order Lagrangian has been given in eq. (3.2). The equation of motion for Aα
is calculated to be

0 =
1

g2
DiF aiα − iTr

[
ta(Dαq)q† − taq(Dαq)†

]
, (3.3)

where a = 0, 1, · · · , N2
c − 1 is the generator index of the SU(Nc) group. With the vortex

configuration, q and Ai have already been given in eqs. (2.36) and (2.37), respectively.

Substituting them into eq. (3.3), the equation of motion for Aα is given by

0 =
1

r
∂r(r∂r)Aα + i

f2

r2
[(∂αn)n† − n∂αn† + 2(∂αn

†n)nn†]− f2

r2
[{Aα, nn†} − 2nn†Aαnn

†]

− g2

2

(
2φ2

2Aα + (φ2
1 + φ2

3 − φ2
2){Aα, nn†} − i[∂α(φ3n)(φ3n)† − (φ3n)∂α(φ3n)†]

− i(φ1 − φ2)2[∂αnn
† − n∂αn† + 2(∂αn

†n)nn†)]

)
. (3.4)

Note that n is a normalized vector with Nc components, which satisfies the condition

n†n = 1.

In order to solve this equation, properties of Aα should be discussed. First, Aα is

Hermitian. Secondly, we require that Aα can reduce to the formula for local vortices. We

use the separation of variables method to express Aα as a product of the profile and the

matrix containing zero modes. Based on these arguments, we suppose that Aα takes such

a formula

Aα = ω(r)Wα + γ(r)W̃α, (3.5)

where ω(r) and γ(r) are two profiles with respect to only one variable r, while Wα and W̃α

are two matrices describing orientational zero modes. Both Wα and W̃α are Hermitian.

Substituting the formula of Aα into the equations of motion, one obtains

0 =
1

r
∂r(r∂r)ωWα +

f2

r2
i[(∂αn)n† − n∂αn† + 2(∂αn

†n)nn†]

− ωf
2

r2
[{Wα, nn

†} − 2nn†Wαnn
†]− g2

2

(
(φ2

1 + |φ3|2 − φ2
2)ω{Wα, nn

†}

+ 2φ2
2ωWα − i|φ3|2[∂αnn

† − n∂αn† + 2(∂αn
†n)nn†]

− i(φ1 − φ2)2[∂αnn
† − n∂αn† + 2(∂αn

†n)nn†)]

)
+

1

r
∂r(r∂r)γW̃α −

f2

r2
γ[{W̃α, nn

†} − 2nn†W̃αnn
†]− g2

2

(
(φ2

1 + |φ3|2 − φ2
2)γ{W̃α, nn

†}

+ 2φ2
2γW̃α − inn†[(∂αφ3)φ∗3 − φ3∂αφ

∗
3 − 2|φ3|2(∂αn

†n)]

)
. (3.6)
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The first four lines are composed of Wα terms, while the last two lines contain W̃α

terms. This equation is composed of profiles, reducing matrices, and unknown matrices

Wα and W̃α.

In order to solve it, we set Ñ = 0 at first. All W̃α and φ3 terms disappear, since

we return to the local vortex case. Then, the very remaining term can be separated into

the profile part and orientational matrix part. In the spirit of the separation of variable

method, all the orientational matrix parts should have the same formula except a constant

factor. Therefore, one has

Wα = c1i[(∂αn)n† − n∂αn† + 2(∂αn
†n)nn†] = c2{Wα, nn

†}. (3.7)

One can check that TrWα = 0, and Wα is Hermitian. The self consistent solution is c2 = 1

and c1 is undetermined. The term nn†Wαnn
† vanishes in the equation of motion, since

nn†Wαnn
† = 0. In principle, one can always absorb the c1 factor into the definition of ω,

and the final solution for the profile is unaffected. Therefore, we set c1 = 1 without loss of

generality, i.e.,

Wα = i[(∂αn)n† − n∂αn† + 2(∂αn
†n)nn†]. (3.8)

Separating out the zero modes part, the equation of motion for ω(r) is written as follows

0 =
1

r
∂r(r∂r)ω +

f2

r2
(1− ω)− g2

2
[ω(φ2

1 + φ2
2 + φ2

3)− (φ1 − φ2)2 − φ2
3]. (3.9)

With the help of BPS equations for profiles, the solution of ω(r) is given by

ω = 1− φ1√
ξ
. (3.10)

This result has already been known in ref. [3, 6, 7, 11]. This solution is the exact one,

which are independent of the coupling conditions.

Now let us consider the “additional flavor” part. Terms in the last two line of eq. (3.6)

manifest properties of semi local vortices. The recipe of the solution for W̃α is the same

with that of Wα. However, there is a caveat that φ3 contains the size modulus ρ, see

eq. (2.21). By substituting φ3 = (ρ/rk)φ1 into the last term in eq. (3.6), one obtains

(∂αφ3)φ∗3 − φ3∂αφ
∗
3 − 2|φ3|2(∂αn

†n) =
φ2

1

r2k
[∂αρρ

∗ − ρ∂αρ∗ − 2|ρ|2(∂αn
†n)]. (3.11)

Therefore, a natural solution for W̃α is

W̃α = i
[
∂αρρ

∗ − ρ∂αρ∗ − 2|ρ|2(∂αn
†n)
]
nn†. (3.12)

Note that we have already assumed that the constant, namely c̃1, is set to be one, since it

can be adjusted by redefining the profile γ. With this Ansatz, one easily finds that

{W̃α, nn
†} = 2W̃α, nn†W̃αnn

† = W̃α. (3.13)
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The equation of motion for γ(r) is written as follows

0 =
1

r
∂r(r∂r)γ −

g2

2

(
2(φ2

1 + |φ3|2)γ − φ2
1

r2k

)
. (3.14)

γ has no exact analytical solution. In the strong coupling limit, the zeroth order solution

of γ is written as follows

γ =
1

2
(
r2k + |ρ|2

) . (3.15)

For k = 1, this solution agrees with Shifman et al. [7]. Now we have obtained the Ansatz

for the gauge fields Aα, which indeed satisfies the equation of motion.

3.2 The adjoint scalar

The Ansatz of the adjoint scalar has been less discussed than the gauge field Aα. In the

moduli matrix formalism, this Ansatz has been given in ref. [12].1 In the mass deformed the-

ory, the effective potential leads to kink solutions on the vortex string. Recently, Bolokhov

et al. proposed the Ansatz of the adjoint scalar for the local vortices [8]. We will go beyond

this, and give the Ansatz of the adjoint scalar for the semi local case.

The procedure to obtain the Ansatz is the same as that of the gauge field. First, we

give the equation of motion for the adjoint scalar, which is written as follows

2

g2
DiDiΦ + {Φ, qq†}+ 2qMq† = 0. (3.16)

The bulk matrix M has been given in section 2, and can be written as follows

M =

(
M1

M2

)
, (3.17)

where M1 = (m1, · · · ,mNc) and M2 = (mNc+1, · · · ,mNf
). In the vacuum, the adjoint

scalar Φ takes the form in eq. (2.5). The Ansatz of Φ describes that fluctuations of zero

modes excite in the background of vacuum. Thus, we assume that the Ansatz of Φ is

written as follows

Φ = −M1 + (1− b(r))Φ̂ + χ(r)Ω, (3.18)

where Φ̂ and Ω describe orientational modes and size modes, respectively. Note that we

take the form of (1− b(r)) for convenience in calculation.

1The Ansatz of the adjoint scalar in the field-theoretical method for the local non-Abelian vortices was

given in the Ph.D thesis of the author.
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Substituting Φ into the equation of motion in eq. (3.16), the equation of motion be-

comes

0 =

[
−
(
b′′ +

b′

r

)
− g2(1− b)φ2

2

]
Φ̂ +

[
−(1− b)f

2

r2
− g2

2
(1− b)(φ2

1 + φ2
3 − φ2

2)

]
{nn†, Φ̂}

+

[
f2

r2
+
g2

2
(φ2

1 + φ2
3 − φ2

2)− g2φ2(φ1 − φ2)

]
{nn†,M1}+ 2(1− b)f

2

r2
nn†Φ̂nn†

−
[
f2

r2
+
g2

2
(φ1 − φ2)2

]
2nn†M1nn

† +

(
χ′′ +

χ′

r
− g2φ2

2χ

)
Ω

+

[
−χf

2

r2
− g2

2
χ(φ2

1 + φ2
3 − φ2

2)

]
{nn†,Ω}+ 2χ

f2

r2
nn†Ωnn† − g2φ2

3mNc+1nn
†. (3.19)

Since only one “additional flavor” was considered, the matrix M2 becomes mNc+1.

In order to solve Φ, we set mNc+1 = 0 and Ω = 0 at first. In eq. (3.16), there are two

evident terms related to the orientational moduli, i.e., {nn†,M1} and nn†M1nn
†. In the

spirit of the separation of variables, the formula of Φ̂ should be a combination of them.

Note that the coefficient of {nn†,M1} and the coefficient of 2nn†M1nn
† are similar except

a g2φ2
3/2 coefficient. However, φ3 contains the size modulus ρ, thus one can attribute it to

the equation of motion for χ. In this way, a natural solution for Φ̂ is written as follows

Φ̂ = {nn†,M1} − 2nn†M1nn
†. (3.20)

This formula also agrees with that given by Bolokhov et al., which is Φ̂ =[
nn†, [nn†,M1]

]
[8]. One can easily chech that such relations hold

{nn†, Φ̂} = Φ̂, nn†Φ̂nn† = 0. (3.21)

It is also remarkable that Φ̂ and Wα have the same relations with nn†. With the help of

these relations, the equation of motion for the profile b(r) is written as follows

0 =− b′′ − b′

r
+ b

f2

r2
− g2

2

[
(1− b)(φ2

1 + φ2
3 + φ2

2)− (φ1 − φ2)2 − φ2
3

]
. (3.22)

Compared with eq. (3.9), the solution of b(r) is

b =
φ1√
ξ
. (3.23)

The relation of b and ω is b+ ω = 1.

Now, let us throw away the settings, which are mNc+1 = 0 and Ω = 0. Remember

that a term g2φ3nn
†M1nn

† has been attributed to the rest of eq. (3.16). Therefore, the

equation of motion for Ω is written as follows

0 =

(
χ′′ +

χ′

r
− g2φ2

2χ

)
Ω−

[
χ
f2

r2
+
g2

2
χ(φ2

1 + φ2
3 − φ2

2)

]
{nn†,Ω}

+ 2χ
f2

r2
nn†Ωnn† + g2φ2

3

(
nn†M1nn

† −mNc+1nn
†). (3.24)

Following the same routine, the solution of Ω reads

Ω = nn†M1nn
† −mNc+1nn

†. (3.25)
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With this Ansatz, the relations of Ω and nn† are

{nn†,Ω} = 2Ω, nn†Ωnn† = Ω. (3.26)

Note that relations between nn† and Ω are the same with relations between nn† and W̃α.

Substituting them into eq. (3.24), one obtains the equation of motion for χ, i.e.,

0 = χ′′ +
χ′

r
− g2

[
χ(φ2

1 + φ3
3)− φ2

3

]
. (3.27)

In the strong coupling limit, g →∞, we have the solution for χ, i.e.,

χ =
φ2

3

φ2
1 + φ2

3

=
|ρ|2

r2k + |ρ|2
. (3.28)

Note that this solution respecting the exact relation of φ3 and φ1. Although there is no

size moduli in the solution of Ω, χ contains it. The solution of χ is similar to γ. Now the

complete Ansatze for Aα and Φ can be summarized as follow

Aα = (1− φ1√
ξ

)i[(∂αn)n† − n∂αn† + 2(∂αn
†n)nn†]

+
i

2
(
r2k + |ρ|2

)[∂αρρ∗ − ρ∂αρ∗ − 2|ρ|2(∂αn
†n)
]
nn†, (3.29)

Φ = −M1 + (1− φ1√
ξ

)[{nn†,M1} − 2nn†M1nn
†]

+
|ρ|2

r2k + |ρ|2
[nn†M1nn

† −mNc+1nn
†]. (3.30)

The size modulus ρ couples with the orientational n. With these Ansatze, we are ready to

construct the effective theory in the next step.

4 The mass deformed effective action

The world-sheet action of the semi local non-Abelian vortices can be obtained by integrating

out the vortex transverse plane, i.e.,

Seff =

∫
d4xL2

eff

=

∫
d2xα

∫
d2xiTr

{
1

g2
FiαF

α
i +Dαq(Dαq)† −

1

g2
|DiΦ|2 − |Φq + qM|2

}
. (4.1)

Note that we have changed the signs of relative terms according to the metric.2 With the

vortex configuration (eqs. (2.36) and (2.37)) and Ansatze (eqs. (3.29) and (3.30)), one can

perform the integration over d2xi straight forward. The four terms in eq. (4.1) above can

be classified according to properties of the effective action, which are the kinetic part and

2The Minkowski metric is taken to be (1,−1,−1,−1).
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the potential part. The kinetic effective action originates from the first and the second

terms in eq. (4.1), which are calculated to be

L2
eff−kin = Tr

[
1

g2
FiαF

α
i +Dαq(Dαq)†

]
= 2[∂αn

† ∂αn+ (∂αn
†n)(∂αn†n)]

{
1

g2

[
ω′2 +

f2

r2
(1− ω)2

]
+ (1− ω)(φ1 − φ2)2 +

ω2

2
(φ2

1 + φ2
2 + |φ3|2)− ω|φ3|2

}
+ [(ρn)†∂α(ρn)− ∂α(ρn)†ρn]2

{
− 1

g2
γ′2 + γ

φ2
1

r2k
− γ2(φ2

1 + φ2
3)

}
+ ∂α(φ3n)†∂α(φ3n) + (∂αφ1)(∂αφ1) +

1

g2

1

r2
(∂αf)(∂αf). (4.2)

In the second last line, we have used an identity

(∂αρ)ρ∗ − ρ∂αρ∗ − 2|ρ|2(∂αn
†n) = (ρn)†∂α(ρn)− ∂α(ρn)†ρn. (4.3)

We also use a square sign to replace the same formula with a superscript α in the bracket

for saving space. Some other tips are given in the appendix. The existence of the last two

terms seems to contradict the spirit of the separation of variable method, since we assume

them to be independent of moduli parameters in the beginning. In the BPS equations

(eq. (2.14) to (2.17)), they are profiles without coupling to ρ. The size modulus enters in

the exact relation in eq. (2.21), and ρ is considered to be only a complex number. However,

when the effective theory is constructed, ρ in profiles φ1(r) and f(r) should be considered

as the size modulus. Thus, the derivative ∂α of φ1, φ3 and f are not zero.

The integration over the transverse plane of the vortex can be realized by using the

polar coordinates, i.e.,
∫
d2xi → 2π

∫∞
0 rdr. The integration of profiles in the first two lines

in eq. (4.2) are well known [3, 5, 7, 11]. Here, we repeat the exact result, which is written

as follows

Γ = 2π

∫ ∞
0

dr r

[
1

g2

[
ω′2 +

f2

r2
(1− ω)2

]
+ (1− ω)(φ1 − φ2)2

+
ω2

2
(φ2

1 + φ2
2 + |φ3|2)− ω|φ3|2

]
=

2π

g2
k . (4.4)

The remaining lines in eq. (4.2) is exact, but profiles φ1 and f are known up to the order

of 1/g2. Substituting all the solutions of profiles, i.e. eqs. (2.21), (2.29), (2.30) and (3.15),

into the last two lines of eq. (4.2), one obtains

[(ρn)†∂α(ρn)− ∂α(ρn)†ρn]2
{
− 1

g2
γ′2 + γ

φ2
1

r2k
− γ2(φ2

1 + φ2
3)

}
+ ∂α(φ3n)†∂α(φ3n) + (∂αφ1)(∂αφ1) +

1

g2

1

r2
(∂αf)(∂αf)

= [∂αn
† ∂αn+ (∂αn

†n)2]
ξ|ρ|4

(r2k + |ρ|2)2

[
1− 4k

g2ξ

r2k−2(kr2k + |ρ|2)

(r2k + |ρ|2)2

]
+ |∂α(ρn)|2 ξ r2k

(r2k + |ρ|2)2

[
1 +

4k(k − 1)

g2ξ

r2k−2|ρ|2

(r2k + |ρ|2)2

]
. (4.5)
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The first term can be considered as a correction to the world-sheet action of the local

vortices. When the integration over r is performed, there is no divergence in the first term.

The second term, i.e. |∂α(ρn)|2 , is the kinematic term for the size modulus coupling to

the orientational modes. This can be considered as a characteristic property of semi local

vortices. Except for k = 1, the result of the integration for the second term is also finite.

Terms proportional to 1/g2ξ can be considered as the 1/g2 corrections. The expression in

eq. (4.5) seems to be different with Shifman et al. [7]. This is not the fact, since we take

the following decomposition, i.e.,

|∂α(ρn)†ρn|2 = |ρ|2|∂α(ρn)|2 − |ρ|4[∂αn
†∂αn+ (n†∂αn)2]. (4.6)

The integration of the transverse plane can be done analytically. We give some examples

for different values of k in the next section.

Similarly, the effective potential from the last two terms in eq. (4.1) is expressed as

L2
eff−pot = − 1

g2
Tr(DiΦ)2 − Tr|Φq + qM|2

= −2Tr
[
M2

1nn
† −M1nn

†M1nn
†
]{ 1

g2

(
b′2 +

f2

r2
b2
)

+
b2 − 1

2
(φ2

1 + φ2
3 + φ2

2) + 2φ1φ2(1− b) + (φ1 − φ2)2 +
φ2

3

2

}
− Tr

[(
nn†M1nn

†−mNc+1nn
†
)2
]{

1

g2
χ′2+χ2(φ2

1+φ2
3)−2χφ2

3+φ2
3

}
. (4.7)

Except the last φ2
3/2 term in the second line, the first two lines describe the effective

potential for the local vortex case. After the integration (excluding the last φ2
3/2 term),

we have such a formula, i.e.,

−4πk

g2
Tr
[
M2

1nn
† −M1nn

†M1nn
†
]
. (4.8)

In the formula of components, eq. (4.8) agrees with Shifman et al. [7], except a total

shift.3 We attribute the φ2
3/2 term to the contribution from the “additional flavor”. In the

same way, substituting the profiles into the remaining terms in eq. (4.7), one obtains the

following equation

− Tr
[
M2

1nn
† −M1nn

†M1nn
†
]
φ2

3

− Tr

[(
nn†M1nn

† −mNc+1nn
†
)2
]{

1

g2
χ′2 + χ2(φ2

1 + φ2
3)− 2χφ2

3 + φ2
3

}
.

=− Tr
[
M2

1nn
† −M1nn

†M1nn
†
] |ρ|2ξ
r2k + |ρ|2

(
1− 4k

g2ξ

|ρ|2r2k−2

(r2k + |ρ|2)2

)
− Tr

[(
nn†M1nn

† −mNc+1nn
†
)2
]
|ρ|2ξr2k

(r2k + |ρ|2)2

[
1 +

4(k2 − k)

g2ξ

|ρ|2r2k−2

(r2k + |ρ|2)2

]
. (4.9)

3The adjoint scalar is shifted in the Higgs branch.
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We can see that the coefficients in last lines of both eq. (4.5) and eq. (4.9) is exactly equal

except the |ρ|2 term. However, the coefficients of first terms in these two equations are

not the same. Can we take use some identity, similar to that in eq. (4.6), and change the

formula in eq. (4.9)? Yes, we can. The identity reads

Tr[(M1 −mNc+11Nc)
2nn†] = Tr

[
M2

1nn
† −M1nn

†M1nn
†
]

+ Tr

[(
nn†M1nn

† −mNc+1nn
†
)2
]
. (4.10)

Substitute it into eq. (4.9), one obtains the following

− Tr
[
M2

1nn
† −M1nn

†M1nn
†
]
φ2

3

− Tr

[(
nn†M1nn

† −mNc+1nn
†
)2
]{

1

g2
χ′2 + χ2(φ2

1 + φ2
3)− 2χφ2

3 + φ2
3

}
.

=− Tr
[
M2

1nn
† −M1nn

†M1nn
†
] |ρ|4ξ

(r2k + |ρ|2)2

[
1− 4k

g2ξ

r2k−2(kr2k + |ρ|2)

(r2k + |ρ|2)2

]
− Tr[(M1 −mNc+11N )2(ρn)(ρn)†]

ξr2k

(r2k + |ρ|2)2

[
1 +

4(k2 − k)

g2ξ

|ρ|2r2k−2

(r2k + |ρ|2)2

]
. (4.11)

We observe that the coefficients of two kinetic terms coincide with the coefficients of two

potential terms, respectively. This is an interesting result, since the same result also hap-

pens for local vortices, where the coefficient is 4πk/g2. This also reduces a lot of calculation

in the following.

By collecting all these pieces of work, the effective action reads

Leff =
[
[∂αn

† ∂αn+ (∂αn
†n)(∂αn†n)]− Tr

(
M2

1nn
† −M1nn

†M1nn
†)]

·
{

4kπ

g2
+ 2π

∫
rdr

[
|ρ|4ξ

(r2k + |ρ|2)2
− 4k

g2

|ρ|4r2k−2(kr2k + |ρ|2)

(r2k + |ρ|2)4

]}
+
[
∂α(ρn)†∂α(ρn)− Tr

[
(M1 −mNc+11N )2(ρn)(ρn)†

]]
·
{

2π

∫
rdr

[
ξr2k

(r2k + |ρ|2)2
+

4(k2 − k)

g2

|ρ|2r4k−2

(r2k + |ρ|2)4

]}
. (4.12)

This formula reduces to the effective theory of local non-Abelian vortices, if we simply set

ρ = 0. The remaining job is integrating out r for given k.

4.1 The fundamental case

First, we consider the k = 1 case, which is fundamental. Since there is divergence, we

introduce an infrared cut-off L as the upper limit for integrating r to tame the divergence.

We also assume that L is much larger than the size of the semi local vortex, i.e., L� |ρ|.
The effective action is written as follows

Lk=1
eff =

(
2π

g2
+ πξ|ρ|2

){
[∂αn

† ∂αn+ (∂αn
†n)(∂αn†n)]− Tr

[
M2

1nn
† −M1nn

†M1nn
†
]}

+

[
πξ

(
2 log |L

ρ
|−1

)]{
∂α(ρn)†∂α(ρn)−Tr

[
(M1−mNc+11Nc)

2 (ρn)(ρn)†
]}
. (4.13)
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The kinetic term agrees exactly with the result of Shifman et al.,4 see eq. (2.49) in [7].

There is no divergence in the first term. The effective kinetic part is exactly the formula of

the non-Abelian local vortex case. But, the coefficient 4π/g2 was replaced by 2π/g2+πξ|ρ|2.

Note that we also considered the contributions from δφ1. This is remarkable, since the

finite term of semi local vortices seems to contain corrections to the effective action of local

vortices. This kinetic term also shows that the size modulus couples to orientational zero

modes, this agrees with the prediction of the Kähler potential [10].

The coefficient of the second line is divergent. This means that we need infinite energy

to excite the motion of the size moduli. The finite energy requires that the size modulus ρ

is not dynamical, which must be fixed in principle. Then, one can extract the size modulus

from the derivative ∂α. Thus, the effective theory contains powers of ρ∂α. This agrees with

the spirit of the effective dynamics [10]. The effective potential in eq. (4.13) does not agree

exactly with Shifman et al., since they did not construct the Ansatz for the adjoint scalar.

However, ignoring the divergent coefficients, the two mass terms in our formula match with

the two mass terms in their reference.

The theory in eq. (4.13) is exact up to the order of 1/g2ξ. We have four physical

parameters in the effective theory, which are L, |ρ|, 1/g
√
ξ, and δmi = mi −mNc+1 (i =

1, . . . , Nc), respectively. Their rations is important to construct the effective theory. First,

we consider the 1/g
√
ξ parameter to be a constant, since it is the size of the local non-

Abelian vortices. The power expansion in eq. (2.24) is valid, if the size of the semi local

vortices |ρ| is much larger than the size of the local vortices 1/g
√
ξ, i.e., |ρ| � 1/g

√
ξ. The

derivation from eq. (4.12) to eq. (4.13) throws away some finite terms, which consider the

limit L � |ρ|. Remember that we also take the assumption that m �
√
ξ in section 2.

The inverse of δmi may be comparable to L. For example, Shifman et al. took L to be

1/δm to rewrite the effective potential.

The lump limit can also be realized in the strong coupling limit g → ∞, or equally

by keeping 1/g
√
ξ finite, while taking |ρ| to be infinite. Respecting L � |ρ|, the effective

Lagrangian can be further reduced to the following,

Lk=1
eff = 2πξ|ρ|2 log |L

ρ
|
{
∂αn

†∂αn−
Nc∑
i=1

δm2
i |ni|2

}
. (4.14)

By introducing a new parameter z ≡ ρ(2πξ ln |L/ρ|)1/2, the model in eq. (4.14) reduces to

the zn model of Shifman et al..

However, if we don’t consider the strong coupling limit, the theory in eq. (4.13) does

not coincide with eq. (4.8) in ref. [7]. The difference is only the finite integral, i.e., we

have the coefficient (πξ|ρ|2 + 2π/g2) in the first line of eq. (4.13); while they used 4π/g2 in

their paper.

4One can compare the results by using the identity in eq. (4.6).
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The generalization to Ñ > 1 case is done straight forward. The effective action reads

Lk=1
eff =

4π

g2
+

Ñ∑
j=1

(
πξ|ρj |2 −

2π

g2

){[∂αn
† ∂αn+ (∂αn

†n)(∂αn†n)]−
( Nc∑
i=1

m2
i |ni|2

− |
Nc∑
i=1

mi|ni|2|2
)}

+

Ñ∑
j=1

πξR2
j

{
∂α(ρjn)†∂α(ρjn)−

Nc∑
i=1

(mi−mj)
2|ρjni|2

}
. (4.15)

where Rj ≡ [2 ln |L/ρj | − 1]1/2 is a real number. One can also shift a total (or averaged)

mass to the mass matrix M1 without changing the effective potential [7]. The semi local

model has similarities in both the non-Abelian Higgs model and the sigma model lump. It

may interpolate between them.

It is also interesting to construct the two dimensional N = (2, 2) gauge theory from

the effective action of vortices. First we study the local vortices case. The effective theory

of local vortices is simply expressed as follows

Lk=1
local =

4π

g2

{
[∂αn

† ∂αn+ (∂αn
†n)(∂αn†n)]−

( Nc∑
i=1

m2
i |ni|2 − |

Nc∑
i=1

mi|ni|2|2
)}

. (4.16)

The component fields ni (i = 1, . . . , Nc) are considered as chiral matter fields in the

two dieminonal supersymmetric U(1) gauge theory. The U(1) vector multiplet contains the

gauge fields Aα and a complex scalar σ. They can be constructed as follows

Aα = in†∂αn, σ =

Nc∑
i=1

mi|ni|2. (4.17)

We also define the covariant derivative in the two dimensional theory to be Dα ≡ ∂α+ iAα.

Then, following Shifman et al., we rescale ni to get a D-term condition, which is written

as follows

0 =

Nc∑
i=1

|ni|2 −
4π

g2
. (4.18)

The effective theory of the local vortex in eq. (4.16) becomes the following

Lk=1
local =

Nc∑
i=1

(
|Dαni|2 − |σ −mi|2|ni|2

)
− e2

2

(
Nc∑
i=1

|ni|2 −
4π

g2

)
. (4.19)

By adding kinetic terms for both Aα and σ, the theory in eq. (4.16) agrees with the Hanany-

Tong model for the local vortices [4]. The theory has kink solutions which are confined

monopoles on the vortex string [4, 7, 12].

Now we study the semi local vortex case. First, we observe that

∂α(ρn)†∂α(ρn) = (D̃αρ)∗D̃αρ, (4.20)

where the covariant derivative is D̃α ≡ ∂α − iAα; while Aα is given in eq. (4.17). So ρ

can be considered as a chiral matter field with U(1) charge −1. In the effective theory in

– 18 –
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eq. (4.15), coefficients proportional to 1/g2 disappear in the strong coupling limit. In order

to match coefficients of remaining terms, we set log |L/ρ| = 1. This means the integral

radius is about ten times larger than the size of semi local vortices, allowed by the physical

condition. Besides, we define ñj ≡ ρj/|ρ| (j = 1, . . . , Ñ), where |ρ|2 =
∑Ñ

j=1 |ρj |2 is the

total size of the semi local string. With these set-up, the effective theory of semi local

vortices in eq. (4.15) becomes

Lk=1
sem−loc =

Nc∑
i=1

[
|Dαni|2 − 2|σ −mi|2|ni|2

]
+

Ñ∑
j=1

[
|D̃αñj |2 − |σ −mj |2|ñj |2

]
. (4.21)

There is a remarkable Seiberg-like duality in the theory. One can also construct a dual

theory for the four dimensional U(Ñc)× SU(Nf ) supersymmetric gauge theory, by replac-

ing n and ñ with each other in eq. (4.21) and defining σ =
∑Ñ

i=1mi|ni|2. In ref. [10], the

Seiberg-like duality was also manifested in the Kähler quotient construction. In our deduc-

tion, we take that L ∼ 10|ρ| and sizes of the semi local vortices are normalized. These two

conditions are very reasonable in the physical content. The theory in eq. (4.21) agrees with

the Hanany-Tong construction of the semi local vortices [4], where the anti chiral matter

fields ñj with mass mj are identified with the normalized size moduli.

4.2 The high winding case

For the k = 2 case, all terms become finite after the integration, if L � |ρ|. The effective

Lagrangian is written as follows

Lk=2
eff =

(
16π

3g2
+
π2

4
ξ|ρ|
){

[∂αn
† ∂αn+ (∂αn

†n)(∂αn†n)]−
( Nc∑
i=1

m2
i |ni|2 − |

Nc∑
i=1

mi|ni|2|2
)}

+

[
π2

4
ξ|ρ|2 +

2π

3g2

]{
∂αn

†∂αn−
Nc∑
i=1

δm2
i |ni|2

}
. (4.22)

From the index theory, we know that the dimension of the k = 2 moduli is 4Nf . However,

the Anzatz of q contains n as the orientational modes and ρ as the size modulus, which

is incomplete to denote all the moduli parameters. A more precise representation of the

moduli parameters is given in the moduli matrix method [10]. With the present formula,

we need to understand where we stand on, and what is missing.

The squark field for k = 2 semi local vortices in the muduli matrix method is written

as follows [10]

q(z) =


z2 − αz − β sz + u

a1z + b1 1 −a1s
...

. . .
...

aNc−1z + bNc−1 1 −aNc−1s

 , (4.23)

where s ≡ (s1, . . . , sÑ ) is a raw vector, and u has the similar definition. By the Kähler

quotient construction, the moduli parameters can be extracted from q(z) to a set of matrices
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(
Z,Ψ, Ψ̃

)
. The divergent part of the Kähler potential can be written as follows

K = 2πξ logLTr|ΨΨ̃|2. (4.24)

In the case of the configuration in eq. (4.23), the three matrices are expressed as

Z =

(
0 1

β α

)
, Ψ =


1 0

b1 a1

...
...

bNc−1 aNc−1

 , Ψ̃ =

(
s

αs + u

)
, (4.25)

respectively. It is not difficult to obtain that

K = 2πξ logL

{ Ñ∑
j

|sj |2
(
1 + |α|2

Nc−1∑
i=1

|ai|2 +

Nc−1∑
i=1

(αb∗i ai + c.c.)
)

+ (

Ñ∑
j

|uj |2)(

Nc−1∑
i=1

|ai|2) +
[
(

Ñ∑
j

ujs
∗
j ) ·

Nc−1∑
i=1

(b∗i ai + α∗|ai|2) + c.c.
]}
. (4.26)

When we transform the vortex configuration in eq. (2.36) into the moduli matrix form, while

keeping the same moduli parameters, we find that α = 0, ai = 0, and s = 0 in eq. (4.23).

We can see that the divergent part of the Kähler potential disappears completely. α = 0

means that the positions of two fundamental semi local vortices coincide. ai = 0 denotes

that Nc−1 orientational parameters are set to zero. From s = 0, we know that only half of

size moduli were considered. Therefore, the Lagrangian in eq. (4.22) describes a reduced

point of the muduli space.

Now a question arises, i.e., how to construct the effective theory for high winding semi

local vortices. Following our recipe, we find that it is a difficult task. We do not know how

to represent all the modulus parameters in q. For example, in the k = 2 case, the profile

in the additional flavor part should be written as φ3e
iθ + φ4. One can find reduced BPS

equations, if φ3 = ρ1
r φ1 and ρ4 = ρ4

r2
φ1. However, this will bring the crossing terms like

ρ∗3ρ4e
iθ in the BPS equations. The following calculations will explode. We prefer to choose

the moduli matrix method to construct the high winding semi local vortices in a generic

point of the moduli space.

5 Conclusion and discussion

In this paper, we have constructed the mass deformed effective theory of the semi local

non-Abelian vortices. The Ansatze for the adjoint scalar and the gauge field were solved via

EL equations, this ensures the minimal energy excitation of zero modes. The separation of

variable method is powerful in the calculation of EL equations. We obtained all solutions

of profiles up to the 1/g2 order. The Ansatze for the adjoint scalar and gauge fields

have the similar structure, respecting the vortex configuration. The effective theory of the

semi local vortices were constructed by integrating out the transverse plane of the vortex

string. It was found that the size modulus couples to orientational zero modes, and the
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kinetics of the size modulus is a divergent term. The effective theory interpolates between

the local vortices and the sigma model lump. The relation between our mass deformed

effective theory and the zn model was clarified. We also showed that the effective theory

has a Seiberg-like duality respecting certain normalization conditions. The mass deformed

theory of high winding semi local vortices was studied. There are no divergent terms in the

effective theory, because the vortex configuration denotes only a special point in the moduli

space. We leave the construction of the high winding semi local vortices as a future work.

The field theoretical method to construct the effective world sheet theory of non-

Abelian vortices offers a special proof of Dorey’s 2d-4d duality [13]. Our work extends the

verification of the 2d-4d duality to the Nf > Nc case. Although we did not discuss the

classical spectrum of our effective action, it has no difference with Shifman et al. [7], and

agrees with that of the D-brane construction [4]. The 2d-4d duality sheds light on the

connection between supersymmetry gauge theories and quantum integrable systems [25,

26], which has been studied by Nekrasov and Shatashvili [27–29]. For example, the two

dimensional twisted superpotential is identified the Yang-Yang function of the integrable

system; while the supersymmetric vacua can be identified with Bethe states of quantum

integrable systems. As illustrated in the present paper, the twisted superpotential can be

derived from non-Abelian vortices. This gives us a hint that there is a dictionary between

non-Abelian vortices and integrable systems. Let us check the route from vortices to

integrable systems. First we give a vortex configuration and construct its mass deformed

effective theory. From the effective theory, one obtains the classical vacuum, i.e., a kink

solution corresponding a non-Abelian monopole. This can be considered as a Bethe state

of quantum integrable systems. However, the moduli space of non-Abelian vortices are

very rich [12]. For examples, CPN−1 and Gr(k,N) represent orientational zero modes

of U(N) vortices. The representation of the moduli space of non-Abelian vortices with

winding number k looks like Bethe states of spin chains, see section 2 in ref. [12]. Following

this route, one can find more integrable systems from the vortex section. This is quite

non-trivial, since very limited integrable systems are known. The present work brings us

one more question, i.e., how the mass deformed potential of semi local vortices is connected

with integrable systems. All these questions are interesting future research topics.
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A Calculation tips

We have used many tips to reduce the calculation, especially the traces. We list them here

for the convenience of readers. The traces used in the calculation of the kinetic effective

action are written as follows

Tr(Wα)2 = 2Σ, Σ ≡ [(∂αn
†n)2 + ∂αn

†∂αn], (A.1)

Tr[WαW̃α] = 0, 0 = Tr[∂α(nn†)nn†], (A.2)

Tr[W 2
αnn

†] = Σ, 2Σ = Tr[
(
∂α(nn†)

)2
], (A.3)

Tr[∂α(nn†)Wα] = 0, 0 = Tr[nn†Wα], (A.4)

Tr[∂α(nn†)Wαnn
†] = iΣ. (A.5)

The traces used for the calculation of the effective potential are given in the following

Tr[Φ̂2] = 2Ξ, Ξ ≡ Tr[M2
1nn

† −M1nn
†M1nn

†] (A.6)

Tr[Ω2] = Θ, Θ ≡ Tr[nn†M1nn
† −mNc+1nn

†]2, (A.7)

Tr[ΩM1] = Λ, Λ ≡ Tr[M1nn
†M1nn

† −mNc+1M1nn
†] (A.8)

Tr[Ωnn†] = ∆, ∆ ≡ Tr[M1nn
† −mNc+1], (A.9)

Tr[Φ̂2nn†] = Ξ, 2Ξ = Tr[Φ̂M1], (A.10)

Tr[{nn†,M1}Φ̂] = 2Ξ, 0 = Tr[Φ̂Ω], (A.11)

Tr[Ω2nn†] = Θ, 2Λ = Tr[{nn†,M1}Ω], (A.12)

Tr[M1Φ̂] = 2Ξ, 0 = Tr[nn†Φ̂]. (A.13)
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