The minimum upper bound on the first ambiguous power of an irreducible, nonpowerful ray or sign pattern

Jong Sam Jeon ${ }^{\text {a }}$, Judith J. McDonald ${ }^{\text {a }}$, Jeffrey L. Stuart ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Washington State University, Pullman, WA 99164, USA
${ }^{\text {b }}$ Department of Mathematics, Pacific Lutheran University, Tacoma, WA 98447, USA

ARTICLEINFO

Article history:

Received 23 August 2008
Accepted 21 February 2011
Available online 27 March 2011
Submitted by B. Shader

Keywords:

Sign pattern
Ray pattern
Ambiguous power
Powerful
Nonpowerful

Abstract

Let A be an $n \times n$ irreducible ray or sign pattern matrix. If A is a sign pattern, it is shown that either A is powerful or else A^{k} has an ambiguous entry for some $k \leqslant n^{2}-2 n+2$, and further, sign patterns based on the Wielandt graph show that this bound is the best possible. If A is a ray pattern, partial results for the same bound are given.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In [4], Li et al. conjectured that for an irreducible sign pattern A, if $A^{\ell(|A|)+2 h(A)}$ contains no ambiguous entries, where $\ell(|A|)$ denotes the base of $|A|$ and where $h(A)$ denotes the index of imprimitivity of $|A|$, then A is powerful. In [6], You et al. extended the concepts of base and period to nonpowerful sign patterns. In particular, they proved that an $n \times n$ primitive, nonpowerful sign pattern A has base $\ell(A)=\min \left\{k: A^{k}=\# J\right\}$ where J is the matrix all of whose entries are 1 , and they determined bounds on $\ell(A)$ in terms of n and the structure of the digraph. For imprimitive, nonpowerful sign patterns, they proved analogous results for the base, and proved that the period was the index of imprimitivity. In this paper, we investigate related questions for both sign patterns and ray patterns. We will show that if A is an $n \times n$ irreducible sign pattern that is not powerful, then A^{k} contains an ambiguous entry for some positive integer k with $k \leqslant n^{2}-2 n+2$. We also show that there is an $n \times n$ sign pattern associated with the Wielandt graph, for which the first ambiguous power is indeed $n^{2}-2 n+2$, and

[^0]hence that the upper bound we give is, in fact, the minimum upper bound. In the case that A is a ray pattern, we determine certain cases in which the analogous results hold. The ray pattern associated with the Wielandt graph shows that any lower bound on k must be at least $n^{2}-2 n+2$.

Let G be a directed graph on n vertices. When A is a square matrix, $G=G(A)$ will denote the directed graph of A. A walk of length k in G is a sequence of directed edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{k}, v_{k+1}\right)$ from G. A path of length k is a walk of length k such that all of the v_{j} are distinct. A circuit of length k is a sequence of directed edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{k}, v_{k+1}\right)$ from G such that $v_{k+1}=v_{1}$. A cycle of length k is a circuit of length k such that $v_{1}, v_{2}, \ldots, v_{k}$ are all distinct. (Note that some authors use the terms cycle and simple cycle for what we call circuits and cycles, respectively.) For any walk W in G, the walk product, denoted $\wp(W)$, is the product of the entries from A whose index pairs are the coordinates of the edges in W. That is, if W consists of the edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{k}, v_{k+1}\right)$, then

$$
\wp(W)=\prod_{j=1}^{k} a_{v_{j}, v_{j+1}} .
$$

Given an $n \times n$ matrix A with entries in the set $\{-1,0,1\}$, the sign pattern corresponding to A is the class of all $n \times n$ real matrices of the form $A \circ X$ where \circ denotes the hadamard product and where X ranges over all $n \times n$ entrywise positive, real matrices. Following standard practice, we will regard A as the canonical representative of the class, and call A the sign pattern. Similarly, given an $n \times n$ matrix A with entries in the set $\{z \in \mathbb{C}:|z|=1\} \cup\{0\}$, the ray pattern corresponding to A is the class of all $n \times n$ complex matrices of the form $A \circ X$ where X ranges over all $n \times n$ entrywise positive, real matrices. Again following standard practice, we will regard A as the canonical representative of the class, and call A the ray pattern. We adopt all of the standard conventions for sign patterns and ray patterns; see [1,2,4] or [5] for details. When an ambiguous entry occurs in a product of sign or ray patterns, we will denote such an entry by \#. When working with ray patterns, if $a \in \mathbb{C}$ and k is a positive integer such that a^{k} is a positive real number, we will replace a^{k} with 1 .

2. A useful lemma on powers of cycle products

In this section, we show that if A is an irreducible ray pattern with two cycles whose product weights raised to certain powers differ, then A^{k} has an ambiguous entry for some $k \leqslant n^{2}-2 n+2$. We begin with a short lemma that will be used repeatedly in the proof of the useful lemma that follows it.

Lemma 1. Let A be an $n \times n$ irreducible ray pattern. If there exist circuits γ_{1} and γ_{2}, with lengths l_{1} and l_{2}, respectively, such that γ_{1} and γ_{2} share a common vertex, such that $l_{1}+l_{2} \leqslant 2 n-2$, and such that $\wp\left(\gamma_{1}\right)^{\frac{m}{1}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{2}}$, where $m=\operatorname{lcm}\left(l_{1}, l_{2}\right)$, then A^{m} has an ambiguous entry and $m<n^{2}-2 n+2$.

Proof. Since $l_{1}+l_{2} \leqslant 2 n-2$, we see that $m=\operatorname{lcm}\left(l_{1}, l_{2}\right) \leqslant l_{1} l_{2} \leqslant(n-1)^{2}<n^{2}-2 n+2$. Let v_{p} be a common vertex between γ_{1} and γ_{2}. For $j=1,2$, let β_{j} be the circuit through v_{p} obtained by following γ_{j} exactly $\frac{m}{l_{j}}$ times. Then β_{j} has length m and weight $\wp\left(\gamma_{j}\right)^{\frac{m}{l_{j}}}$. Since $\wp\left(\gamma_{1}\right)^{\frac{m}{1}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{2}}$, it follows that $\left(A^{m}\right)_{p p}=\#$.

Lemma 2. Let A be an $n \times n$ irreducible ray pattern. If there exist cycles γ_{1} and γ_{2} with lengths l_{1} and l_{2}, respectively, such that $\wp\left(\gamma_{1}\right)^{\frac{m}{1_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{2_{2}}}$, where $m=\operatorname{lcm}\left(l_{1}, l_{2}\right)$, then A^{k} has an ambiguous entry for some $k \leqslant n^{2}-2 n+2$.

Proof. Case I: Suppose that γ_{1} and γ_{2} contain at least one common vertex; call it v_{p}.
By Lemma 1 , we need only consider the case where $l_{1}+l_{2}>2 n-2$. Since γ_{1} and γ_{2} are cycles on at most n vertices we see that $l_{1}+l_{2} \leqslant 2 n$. Thus as a multiset, $\left\{l_{1}, l_{2}\right\}$ is either the multiset $\{n, n\}$ or the set $\{n, n-1\}$. We thus assume without loss of generality that $l_{1}=n$, and that l_{2} is either n or $n-1$. If $l_{2}=n$, then there are two cycles of length n through v_{p} with different product weights, and hence,
$\left(A^{n}\right)_{p p}=\#$. Thus we assume for the remainder of Case I that $l_{2}=n-1$, and hence, $m=n(n-1)$. Let H be the subgraph of $G(A)$ whose edges are precisely the edges common to γ_{1} and γ_{2}.

Suppose first that H is a path α of length $n-2$. Let v_{q} be the first vertex in α and let v_{r} be the last vertex in α. Going around γ_{1} exactly $n-1=\frac{m}{l_{1}}$ times and around γ_{2} exactly $n=\frac{m}{l_{2}}$ times, we see that $\left(A^{n(n-1)}\right)_{r r}=$ \#. By backtracking through the $n-2$ common vertices along α, we see that $\left(A^{n(n-1)-(n-2)}\right)_{r q}=\#$. Note that $n(n-1)-(n-2)=n^{2}-2 n+2$.

Next we consider the case where H is not a path with length $n-2$. In this case, there are at least two disjoint edges in γ_{1} that are not in γ_{2}. We can assume without loss of generality that the n-cycle γ_{1} has edges labeled (v_{j}, v_{j+1}) for $j=1, \ldots, n-1$ and edge (v_{n}, v_{1}). We also assume without loss of generality that (v_{1}, v_{2}) and (v_{h}, v_{h+1}) are not edges in γ_{2} for some h with $2<h<n$. Since γ_{2} has $n-1$ vertices, at least three of the vertices $v_{1}, v_{2}, v_{h}, v_{h+1}$ are in γ_{2}; we can assume without loss of generality that v_{1} and v_{2} are vertices of γ_{2}. Let $\left(v_{1}, v_{k}\right)$ be an edge in γ_{2}. Notice $k \neq 2$. Then γ_{1} can be decomposed into three paths: $\alpha_{1}=\left(v_{1}, v_{2}\right), \alpha_{2}$ from v_{2} to v_{k}, and α_{3} from v_{k} to v_{1}. Similarly γ_{2} can be decomposed into three paths: $\beta_{1}=\left(v_{1}, v_{k}\right), \beta_{2}$ from v_{k} to v_{2}, and β_{3} from v_{2} to v_{1}. Then $\gamma_{1} \gamma_{2}=\alpha_{1} \alpha_{2} \alpha_{3} \beta_{1} \beta_{2} \beta_{3}$. By following the same edges in a different order, we get three circuits, $\gamma_{3}=\alpha_{1} \beta_{3}, \gamma_{4}=\alpha_{2} \beta_{2}$, and $\gamma_{5}=\alpha_{3} \beta_{1}$, with lengths l_{3}, l_{4}, and l_{5}, respectively.

Notice that $l_{3} \leqslant 1+n-3=n-2$ and $l_{5} \leqslant 1+n-2=n-1$. Let $m_{j}=\operatorname{lcm}\left(l_{2}, l_{j}\right)$ for $j=3,4,5$. Since γ_{2} has vertices in common with both of γ_{3} and γ_{5}, by Lemma 1 we need to consider only the case where

$$
\wp\left(\gamma_{3}\right)^{\frac{m_{3}}{1_{3}}}=\wp\left(\gamma_{2}\right)^{\frac{m_{3}}{2}} \text { and } \wp\left(\gamma_{5}\right)^{\frac{m_{5}}{1_{5}}}=\wp\left(\gamma_{2}\right)^{\frac{m_{5}}{1_{2}}} \text {, }
$$

and hence,

$$
\wp\left(\gamma_{3}\right)^{l_{2}}=\wp\left(\gamma_{2}\right)^{l_{3}} \text { and } \wp\left(\gamma_{5}\right)^{l_{2}}=\wp\left(\gamma_{2}\right)^{l_{5}} \text {. }
$$

If in addition,

$$
\wp\left(\gamma_{4}\right)^{l_{2}}=\wp\left(\gamma_{2}\right)^{l_{4}},
$$

then

$$
\begin{aligned}
\wp\left(\gamma_{1}\right)^{l_{2}} \wp\left(\gamma_{2}\right)^{l_{2}} & =\wp\left(\gamma_{1} \gamma_{2}\right)^{l_{2}} \\
& =\wp\left(\gamma_{3} \gamma_{4} \gamma_{5}\right)^{l_{2}} \\
& =\wp\left(\gamma_{3}\right)^{l_{2}} \wp\left(\gamma_{4}\right)^{l_{2}} \wp\left(\gamma_{5}\right)^{l_{2}} \\
& =\wp\left(\gamma_{2}\right)^{l_{3}+l_{4}+l_{5}} \\
& =\wp\left(\gamma_{2}\right)^{l_{1}+l_{2}} .
\end{aligned}
$$

Hence, $\wp\left(\gamma_{1}\right)^{l_{2}}=\wp\left(\gamma_{2}\right)^{l_{1}}$. Since $\operatorname{gcd}\left(l_{1}, l_{2}\right)=\operatorname{gcd}(n, n-1)=1$, it follows that $m=\operatorname{lcm}\left(l_{1}, l_{2}\right)=$ $l_{1} l_{2}$, and hence that

$$
\wp\left(\gamma_{1}\right)^{\frac{m}{1_{1}}}=\wp\left(\gamma_{2}\right)^{\frac{m}{1_{2}}},
$$

which contradicts one of our main assumptions. Thus for the remainder of Case I, we assume that

$$
\wp\left(\gamma_{4}\right)^{l_{2}} \neq \wp\left(\gamma_{2}\right)^{l_{4}},
$$

which implies

$$
\wp\left(\gamma_{4}\right)^{\frac{m_{4}}{1_{4}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m_{4}}{2}} .
$$

By Lemma 1, we need only consider the case where $l_{4} \geqslant n$.
Since γ_{4} does not go through v_{1}, it has at least n edges on at most $n-1$ vertices, and hence is not a cycle. Decompose γ_{4} into cycles $\gamma_{6} \ldots \gamma_{q}$. Since γ_{4} is made up of two paths α_{2} and β_{2}, each γ_{j} for $j=6, \ldots, q$ contains at least one vertex from β_{2}, and hence, from γ_{2}. Let $m_{j}=\operatorname{lcm}\left(l_{2}, l_{j}\right)$ for $j=6, \ldots, q$. If

$$
\wp\left(\gamma_{j}\right)^{\frac{m_{j}}{j_{j}}}=\wp\left(\gamma_{2}\right)^{\frac{m_{j}}{l_{2}}}
$$

for $j=6, \ldots, q$, then it is easy to see that

$$
\wp\left(\gamma_{j}\right)^{l_{2}}=\wp\left(\gamma_{2}\right)^{l_{j}},
$$

and hence that

$$
\wp\left(\gamma_{4}\right)^{l_{2}}=\wp\left(\gamma_{2}\right)^{l_{4}},
$$

which is a contradiction. Thus there must exist $j \in\{6, \ldots, q\}$ such that $\wp\left(\gamma_{j}\right)^{\frac{m_{j}}{l_{j}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m_{j}}{l_{2}}}$. Since γ_{j} is a cycle on at most $n-1$ vertices, $l_{j} \leqslant n-1$, and hence, $l_{2}+l_{j} \leqslant 2(n-1)$. By Lemma 1 , there exists $k \leqslant n^{2}-2 n+2$ such that A^{k} contains an ambiguous entry.

Case II: Suppose that γ_{1} and γ_{2} have no vertices in common. Since A is irreducible, there is a shortest path β from some vertex v_{p} in γ_{1} to some vertex v_{q} in γ_{2} such that v_{p} is the only common vertex for γ_{1} and β and such that v_{q} is the only common vertex for γ_{2} and β. Let l_{3} be the length of β. Then $l_{3} \leqslant n$. Consider two walks from v_{p} to v_{q}, W_{1} consisting of m / l_{1} laps around γ_{1} followed by β, and W_{2} consisting of β followed by m / l_{2} laps around γ_{2}. Thus W_{1} and W_{2} have length $m+l_{3}$, and

$$
\wp\left(W_{1}\right)=\wp\left(\gamma_{1}\right)^{\frac{m}{1}} \wp(\beta) \neq \wp(\beta) \wp\left(\gamma_{2}\right)^{\frac{m}{2}}=\wp\left(W_{2}\right) .
$$

Since γ_{1} and γ_{2} are cycles with no vertex in common, $l_{1}+l_{2} \leqslant n$. Thus

$$
m+l_{3} \leqslant l_{1} l_{2}+l_{3} \leqslant l_{1}\left(n-l_{1}\right)+l_{3} \leqslant\left(\frac{n}{2}\right)^{2}+n
$$

It is easy to check that for $n \geqslant 4$,

$$
\left(\frac{n}{2}\right)^{2}+n<n^{2}-2 n+2
$$

Thus when $n \geqslant 4$, there is a $k \leqslant n^{2}-2 n+2$ such that A^{k} contains a $\#$. It remains to examine the $n=2$ and $n=3$ cases. Either γ_{1} and γ_{2} are both disjoint loops, in which case the result is immediate, or one is a loop and the other is a 2 -cycle. Since the number of vertices is at most three, it is easy to confirm these cases.

Lemma 3. Suppose A is an $n \times n$ irreducible ray pattern. Suppose that γ_{1} and γ_{2} are cycles in $G(A)$ such that $\wp\left(\gamma_{1}\right)^{\frac{m}{1_{1}}}=\wp\left(\gamma_{2}\right)^{\frac{m}{2}}$ where l_{j} is the length of γ_{j} for $j=1,2$, and where $m=\operatorname{lcm}\left(l_{1}, l_{2}\right)$. Let $g=\operatorname{gcd}\left(l_{1}, l_{2}\right)$. Let $a \in \mathbb{C}$ satisfy $\wp\left(\gamma_{1}\right)=a^{l_{1}}$. Then $\wp\left(\gamma_{2}\right)=a^{l_{2}} \exp \left(2 \pi\right.$ itg $\left./ l_{1}\right)$ for some integer t with $0 \leqslant t<l_{1}$.

Proof. Let $b \in \mathbb{C}$ satisfy $\wp\left(\gamma_{2}\right)=b^{l_{2}}$. Then $\wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}=\wp\left(\gamma_{1}\right)^{\frac{m}{1_{1}}}$ is equivalent to $a^{m}=b^{m}$, so $b=a \exp (2 \pi i r / m)$ for some integer r. Thus $\wp\left(\gamma_{2}\right)=a^{l_{2}} \exp \left(2 \pi i l_{2} r / m\right)$. Employ $l_{2} / m=g / l_{1}$. Finally, writing $r=k l_{1}+t$ where $0 \leqslant t<l_{1}$, then $r g \equiv \operatorname{tg}\left(\bmod l_{1}\right)$.

The next result follows from the preceding lemma.
Lemma 4. Suppose A is an $n \times n$ irreducible ray pattern. Suppose that γ is a cycle in $G(A)$ with length l. Let $a \in \mathbb{C}$ satisfy $\wp(\gamma)=a^{l}$. Suppose that for all cycles γ_{1} and γ_{2} in $G(A)$ with lengths l_{1} and l_{2}, respectively, $\wp\left(\gamma_{1}\right)^{\frac{m}{12}}=\wp\left(\gamma_{2}\right)^{\frac{m}{2}}$ holds when $m=\operatorname{lcm}\left(l_{1}, l_{2}\right)$. Then for every cycle γ^{\prime} in $G(A)$ with length $h, \wp\left(\gamma^{\prime}\right)=a^{h} \exp \left(2 \pi i t_{h} g_{h} / l\right)$ where $g_{h}=\operatorname{gcd}(l, h)$ and t_{h} is some nonnegative integer with $0 \leqslant t_{h}<l$. Since $G(\bar{a} A)=G(A)$, the weight on γ^{\prime} with respect to $\bar{a} A$ is $\wp\left(\gamma^{\prime}\right)=\exp (2 \pi i t g / l)$. Finally, if γ is a loop, then the ray pattern $\bar{a} A$ has all of its cycle products equal to the ray 1 .

Note that if l_{1} and l_{2} are positive integers, $g=\operatorname{gcd}\left(l_{1}, l_{2}\right)$ and $m=\operatorname{lcm}\left(l_{1}, l_{2}\right)$, then $m / l_{1}=l_{2} / g$ and $m / l_{2}=l_{1} / g$. Consequently all of the results in this section that depend on m / l_{1} and m / l_{2} can be restated in terms of l_{1} / g and l_{2} / g.

3. An upper bound on the first ambiguous power

Let p be an integer such that $p>1$. The integer l is called p-odd if $l \neq 0 \bmod p$. If $l \equiv u \bmod p$ for some integer u with $0<u<p$, then l is called p-odd of modular class u (with respect to p). If $l \equiv 0 \bmod p$, then l is called p-even. If γ is a cycle in $G(A)$ for some sign or ray pattern A, γ will be called p-odd (p-even) if its length is p-odd (p-even). Note that when $p=2, p$-odd and p-even mean odd and even in the traditional sense.

Lemma 5. Let p be a prime number. Let $\eta=\exp (2 \pi i / p)$. For $j=1,2$, let t_{j} be an integer satisfying $0 \leqslant t_{j}<p$. Let l_{1} and l_{2} be positive integers. Let $m=\operatorname{lcm}\left(l_{1}, l_{2}\right)$ and let $g=\operatorname{gcd}\left(l_{1}, l_{2}\right)$. Suppose

$$
\begin{equation*}
\left(\eta^{t_{1}}\right)^{\frac{l_{2}}{g}}=\left(\eta^{t_{2}}\right)^{\frac{l_{1}}{g}} \tag{1}
\end{equation*}
$$

(i) If l_{1} / g and l_{2} / g are p-odd of the same modular class, then $t_{1}=t_{2}$.
(ii) If l_{1} / g is p-odd and l_{2} / g is p-even, then $t_{2}=0$.

Proof. (All equivalences are modulo p). Since p is prime, $0<u<p$, implies u^{-1} exists modulo p.
Suppose that the hypotheses of (i) hold with modular class u. Since η is a p th root of unity, equality (1) is equivalent to $\eta^{t_{1} u}=\eta^{t_{2} u}$. Thus $u t_{1} \equiv u t_{2}$. Multiply by u^{-1} to obtain $t_{1} \equiv t_{2}$. Since $0 \leqslant t_{j}<p$ for $j=1,2, t_{1}=t_{2}$. Thus (i) holds.

Suppose that the hypotheses of (ii) hold. Since η is a pth root of unity, condition 1 is equivalent to $\eta^{0}=\eta^{t_{2} u}$. Now proceed as the proof of part (i).

The preceding lemma can be extended to composite p.
Lemma 6. Let A be an $n \times n$ irreducible ray pattern such that $A^{n^{2}-2 n+2}$ is unambiguous. Suppose that there exists a prime number p such that for every cycle γ in $G(A)$ with length $l, \wp(\gamma)=\exp (2 \pi$ it $/ p)$ for some t with $0 \leqslant t<p$. Let γ_{1} and γ_{2} be cycles with lengths l_{1} and l_{2}, respectively. Then the following hold:
(i) If l_{1} and l_{2} are p-odd of the same modular class, then $\wp\left(\gamma_{1}\right)=\wp\left(\gamma_{2}\right)$.
(ii) If l_{1} is p-odd and l_{2} is p-even, then $\wp\left(\gamma_{2}\right)=1$.
(iii) For a fixed positive integer r and a fixed integer u with $0<u<p$, all cycles whose lengths are of the form $p^{r} q$ with $q \equiv u \bmod p$ have the same product ray.
(iv) If h is the gcd of the lengths of all p-even cycles, and if $h=p^{r} q$ where q is p-odd, then every cycle whose length is divisible by p^{r+1} must have product 1 .

Proof. Let $g=\operatorname{gcd}\left(l_{1}, l_{2}\right)$. Apply Lemma 2 using the following cases.
Suppose l_{1} is p-odd. Then g is p-odd. Since p is prime, g^{-1} exists modulo p. Let u be an integer with $0<u<p$ such that $l_{1} \equiv u \bmod p$. Then $l_{1} / g \equiv u g^{-1} \bmod p$, and since p is prime, l_{1} / g is p-odd. If l_{2} is p-odd of modular class u, then the same argument as that for l_{1} shows that l_{2} / g is p-odd of the same modular class as l_{1} / g. If l_{2} is p-even, then $l_{2} \equiv 0 \bmod p$, so $l_{2} / g \equiv 0 g^{-1} \equiv 0 \bmod p$, which is to say, l_{2} / g is p-even. Apply parts (i) and (ii) of the previous lemma to obtain parts (i) and (ii) of this result.

Suppose that there is a positive integer r such that $l_{1}=p^{r} b_{1}$ and $l_{2}=p^{r} b_{2}$ where $b_{1} \equiv b_{2} \equiv$ $u \bmod p$ for some integer u with $0<u<p$. Then $g=p^{r} d$ where $d \equiv v \bmod p$ for some v with $0<v<p$. Since p is prime, $l_{1} / g \equiv l_{2} / g \equiv u v^{-1} \neq 0 \bmod p$. Thus, part (iii) follows from part (i) of the preceding lemma.

If there are p-even cycles in $G(A)$, then there must be a cycle, call it γ_{1}, such that $l_{1}=2^{r} a$ where a is p-odd. If γ_{2} has length $l_{2}=p^{r+1} b$ for some positive integer b, then $g=p^{r} c$ where c is relatively prime to p, and hence, l_{1} / g is p-odd and l_{2} / g is p-even. Hence, part (iv) follows from part (ii) of the preceding lemma.

The proof of the following well-known result is included for completeness.
Lemma 7. Let A be an irreducible sign or ray pattern. If all cycles in A have product 1 , then A must be powerful.

Proof. An irreducible sign or ray pattern has a power with an ambiguous entry if and only if it has a power with an ambiguous entry on its diagonal. Consequently, an irreducible sign or ray pattern A is not powerful if and only if there are two circuits of the same length through a common vertex with conflicting products. Since circuits are constructed by traversing cycles, if all cycles in $G(A)$ have product 1, then clearly, A must be powerful.

The next result is a trivial consequence of the definition of a powerful ray (sign) pattern.
Lemma 8. Let A be an $n \times n$ irreducible sign or ray pattern. If A is powerful then $A^{n^{2}-2 n+2}$ does not contain an ambiguous entry.

Theorem 9. Let A be an $n \times n$ irreducible ray pattern. Suppose that there exist $a \in \mathbb{C}$ and a prime number p such that for every cycle γ in $G(A), \wp(\gamma)=a^{l} \eta^{t}$ where $\eta=\exp (2 \pi i / p)$, where l is the length of γ, and where t is an integer with $0 \leqslant t<p$. Then A is powerful if and only if $A^{n^{2}-2 n+2}$ does not contain an ambiguous entry.

Proof. By the preceding lemma, one direction is clear. We prove that if $A^{n^{2}-2 n+2}$ does not contain an ambiguous entry, then A is powerful. Since A is powerful if and only if $\bar{a} A$ is powerful, and since $A^{n^{2}-2 n+2}$ does not contain an ambiguous entry if and only if $(\bar{a} A)^{n^{2}-2 n+2}$ does not contain an ambiguous entry, we assume without loss of generality that $a=1$. By Lemma 7 , the result is clear if every cycle in $G(A)$ has product 1 , so assume that A contains at least one cycle whose product is not 1 .

Since A is irreducible and $A^{n^{2}-2 n+2}$ does not contain an ambiguous entry, it follows that A^{k} cannot contain an ambiguous entry for any positive integer $k \leqslant n^{2}-2 n+2$. By Lemma 2 , whenever γ_{1} and γ_{2} are cycles in $G(A)$, it follows that $\wp\left(\gamma_{1}\right)^{\frac{m}{11}}=\wp\left(\gamma_{2}\right)^{\frac{m}{2}}$ where l_{j} is the length of γ_{j} for $j=1,2$, and where $m=\operatorname{lcm}\left(l_{1}, l_{2}\right)$.

By part (ii) of Lemma 6 , if $G(A)$ contains a p-odd cycle, then it must contain a p-odd cycle γ whose product is not 1 . Thus the proof consists of two cases: $(I) G(A)$ contains a p-odd cycle whose product is not 1 ; and (II) all cycles in $G(A)$ are p-even, and there is a p-even cycle whose product is not 1 .

Case I: It follows from Lemma 6 that all p-odd cycles in the same modular class have the same product, and that if there is a p-even cycle, its product must be 1 . Consequently, even cycles have no effect on the product for a circuit that contains them; that is, the product for a circuit is determined only by the products for the odd cycles contained in the circuit.

Let C_{1} and C_{2} be two circuits in $G(A)$ with the same length. For $\sigma=1,2$, let $n_{\sigma 0}$ count the number of p-even cycles in C_{σ}, and for $0<j<p$, let $n_{\sigma j}$ be the number of p-odd cycles of modular class j in C_{σ}. Since the two circuits have the same length l,

$$
\begin{equation*}
l \equiv \sum_{j=1}^{p-1} j n_{1 j} \equiv \sum_{j=1}^{p-1} j n_{2 j} \bmod p \tag{2}
\end{equation*}
$$

By part (i) of Lemma 6 , for each j with $0<j<p$, there is an integer θ_{j} with $0 \leqslant \theta_{j}<p$ such that every p-odd cycle of modular class j in $G(A)$ has product $\eta^{\theta_{j}}$. (If there is no p-odd cycle of modular class j in $G(A)$, set $\theta_{j}=0$.) Further, since there is a p-odd cycle whose product is not 1 , some $\theta_{j} \neq 0$. Let j_{*} denote the smallest value of j for which $\theta_{j} \neq 0$, and let α be a p-odd cycle whose length l_{α} is in modular class j_{*}. Then $\wp(\alpha)=\eta^{\theta_{j_{*}}} \neq 1$. Suppose that there is a p-odd cycle β whose length l_{β} is of modular class $k \neq j_{*}$ for some integer k with $0<k<p$. Then $\wp(\beta)=\eta^{\theta_{k}}$. Then $g=\operatorname{gcd}\left(l_{\alpha}, l_{\beta}\right)$ is p-odd. By Lemma 2 ,

$$
\wp(\alpha)^{\frac{l_{\beta}}{g}}=\wp(\beta)^{\frac{l_{\alpha}}{g}} .
$$

That is, $\theta_{j_{*}} l_{\beta} / g \equiv \theta_{k} l_{\alpha} / g \bmod p$. Then $\theta_{j_{*}} l_{\beta} \equiv \theta_{k} l_{\alpha} \bmod p$, and hence, $\theta_{j_{*}} k \equiv \theta_{k} j_{*} \bmod p$. Since p is prime, $\theta_{k} \equiv \theta_{j_{*}} j_{*}^{-1} k$ for each integer k with $0<k<p$ for which $G(A)$ contains a p-odd cycle whose length is in modular class k.

Observe that for $\sigma=1,2$,

$$
\begin{aligned}
\wp\left(C_{\sigma}\right) & =\left(\eta^{\theta_{1}}\right)^{n_{\sigma 1}}\left(\eta^{\theta_{2}}\right)^{n_{\sigma 2}} \cdots\left(\eta^{\theta_{p-1}}\right)^{n_{\sigma p-1}} \\
& =\eta^{\sum_{j=1}^{p-1} \theta_{j} n_{\sigma j}} .
\end{aligned}
$$

Thus $\wp\left(C_{\sigma}\right)$ is determined by $\left(\sum_{j=1}^{p-1} \theta_{j} n_{\sigma j}\right) \bmod p$. Using equivalence (2),

$$
\begin{aligned}
\sum_{j=1}^{p-1} \theta_{j} n_{1 j} & \equiv \sum_{j=1}^{p-1}\left(\theta_{j_{*}} j_{*}^{-1} j\right) n_{1 j} \bmod p \\
& \equiv \theta_{j_{*}} j_{*}^{-1} \sum_{j=1}^{p-1} j n_{1 j} \bmod p \\
& \equiv \theta_{j_{*}} j_{*}^{-1} \sum_{j=1}^{p-1} j n_{2 j} \bmod p \\
& \equiv \sum_{j=1}^{p-1} \theta_{j_{*}} j_{*}^{-1} j n_{2 j} \bmod p \\
& \equiv \sum_{j=1}^{p-1} \theta_{j} n_{2 j} \bmod p
\end{aligned}
$$

Thus $\wp\left(C_{1}\right)=\wp\left(C_{2}\right)$.
Case II: Let h be the gcd of the cycle lengths of all cycles in $G(A)$. Since every cycle is p-even, $h=p^{r} a$ where r is a positive integer and where a is p-odd. Then by Lemma 6 , every cycle whose length is divisible by p^{r+1} must have product 1 . Call each cycle in $G(A)$ for which p^{r+1} does not divide the length of the cycle a minimally p-even cycle. By Lemma 6 , every minimally p-even cycle of length l must have its product determined solely by the modular class of l / h, which is p-odd For each j with $0<j<p$, there is an integer θ_{j} with $0 \leqslant \theta_{j}<p$ such that every minimally p-even cycle of modular class j in $G(A)$, where $j \equiv l / h \bmod p$, has product $\eta^{\theta_{j}}$. (If there is no minimally p-even cycle of modular class j in $G(A)$, set $\theta_{j}=0$.) Further, since there is a minimally p-even cycle whose product is not 1 , some $\theta_{j} \neq 0$. Let j_{*} denote the smallest value of j for which $\theta_{j} \neq 0$, and let α be a minimally p-even cycle with length l_{α} that satisfies l_{α} / h is in modular class j_{*}. Then $\wp(\alpha)=\eta^{\theta_{j_{*}}} \neq 1$. Suppose that there is a minimally p-even cycle β whose length l_{β} satisfies l_{β} / h is of modular class $k \neq j_{*}$ for some integer k with $0<k<p$. Then $\wp(\beta)=\eta^{\theta_{k}}$. By Lemma 2 ,

$$
\wp(\alpha)^{\frac{l_{\beta}}{g}}=\wp(\beta)^{\frac{l_{\alpha}}{g}} .
$$

That is, $\theta_{j_{*}} l_{\beta} / g \equiv \theta_{k} l_{\alpha} / g \bmod p$. Note that since l_{1} and l_{2} are minimally p-even and since h divides $g=\operatorname{gcd}\left(l_{1}, l_{2}\right)$, both l_{1} / g and l_{2} / g must be p-odd. Applying the argument from Case I, $\theta_{k} \equiv \theta_{j_{*}} j_{*}^{-1} k$ for each integer k with $0<k<p$ for which $G(A)$ contains a minimally p-even cycle whose length divided by h is in modular class k.

Let C_{1} and C_{2} be two circuits in $G(A)$ with the same length. For $\sigma=1,2$, let $n_{\sigma 0}$ count the number of p-even cycles in C_{σ} that are not minimally p-even, and for $0<j<p$, let $n_{\sigma j}$ be the number of
minimally p-even cycles in C_{σ} whose length divided by h is of modular class j. Since the two circuits have the same length, call it l, it follows that

$$
\begin{equation*}
l / h \equiv \sum_{j=1}^{p-1} j n_{1 j} \equiv \sum_{j=1}^{p-1} j n_{2 j} \bmod p \tag{3}
\end{equation*}
$$

Since all cycles that are not minimally p-even have cycle products 1 , the product of the circuit C_{σ} is given by

$$
\wp\left(C_{\sigma}\right)=\eta^{\sum_{j=1}^{p-1} \theta_{j} n_{\sigma j}} .
$$

The proof that $\wp\left(C_{1}\right)=\wp\left(C_{2}\right)$ proceeds exactly as the proof in Case I, using equivalence (3) rather than (2).

In both Case I and in Case II, we observe that $\wp\left(C_{1}\right)=\wp\left(C_{2}\right)$ whenever C_{1} and C_{2} are circuits in $G(A)$ of the same length. Thus no power of A can have an ambiguous entry on the diagonal. Since A is irreducible, no power of A can have an ambiguous entry.

For a sign pattern, every cycle has its product in $\{+,-\}$, where $+=1=\eta^{0},-=-1=\eta^{1}$, and $\eta=\exp (2 \pi i / 2)$. Thus sign patterns correspond to the case when $p=2$. Hence:

Theorem 10. Let A be an $n \times n$ irreducible sign pattern. Then A is powerful if and only if $A^{n^{2}-2 n+2}$ contains no ambiguous entry.

Corollary 11. Let A be an $n \times n$ irreducible ray pattern such that $A^{n^{2}-2 n+2}$ contains no ambiguous entry. If there is a cycle γ whose length is $l=g p$ where g is a positive integer and p is either 1 or a prime number, and if for every cycle $\gamma^{\prime} \neq \gamma$ with length $l^{\prime}, \operatorname{gcd}\left(l, l^{\prime}\right) \in\{g p, g\}$, then A is powerful.

Proof. Let $a \in \mathbb{C}$ such that $\wp(\gamma)=a^{l}$. If $a \neq 1$, replace A with $\bar{a} A$, so $\wp(\gamma)=1$. Suppose that γ^{\prime} is a cycle such that $\operatorname{gcd}\left(l, l^{\prime}\right)=g$. Then $\wp(\gamma)^{\frac{l^{\prime}}{g}}=\wp\left(\gamma^{\prime}\right)^{\frac{l}{g}}$ becomes $1=\wp\left(\gamma^{\prime}\right)^{p}$, and hence, $\wp\left(\gamma^{\prime}\right)$ is a p th root of unity when p is prime, and $\wp\left(\gamma^{\prime}\right)=1$ when $p=1$. Suppose that γ^{\prime} is a cycle such that $\operatorname{gcd}\left(l, l^{\prime}\right)=g p$. Then $\wp(\gamma)^{\frac{l^{\prime}}{\text { gp }}}=\wp\left(\gamma^{\prime}\right)^{\frac{l}{g p}}$ becomes $1=\wp\left(\gamma^{\prime}\right)$. Thus every cycle product is either 1 or else a p th root of unity where p is a prime number. Apply Theorem 9 with $a=1$.

A useful special case of the previous result:
Corollary 12. Let A be an $n \times n$ irreducible ray pattern such that $A^{n^{2}-2 n+2}$ contains no ambiguous entry. If there is a cycle γ whose length is either 1 or a prime number, then A is powerful.

What happens when there is no prime number p and no $a \in \mathbb{C}$ such that each cycle in $G(\bar{a} A)$ has product $\exp (2 \pi i t / p)$ for some integer t with $0 \leqslant t<p$? That is, what happens when we must choose p to be composite? The proofs given above strongly depend on the existence of inverses modulo p.

Conjecture 13. Let A be an $n \times n$ irreducible ray pattern such that $A^{n^{2}-2 n+2}$ is unambiguous. Then A is powerful.

4. The Wielandt graph

In this section, we show that there is an $n \times n$ irreducible matrix A, for $n \geqslant 3$, that can be viewed as either a sign pattern or a ray pattern, such that the first power of A with an ambiguous entry is the $\left(n^{2}-2 n+2\right)$ th power. That is, $n^{2}-2 n+2$ cannot be replaced with a smaller power in Theorem 9 or in the conjecture (Fig. 1).

Fig. 1. The Wielandt graph.
The Wielandt graph is the digraph $W=(V, E)$ where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and where

$$
E=\left\{\left(v_{i}, v_{i+1}\right) \mid i=1, \ldots, n-1\right\} \cup\left\{\left(v_{n}, v_{1}\right)\right\} \cup\left\{\left(v_{n-1}, v_{1}\right)\right\} .
$$

We consider the matrix $A=\left[a_{j k}\right]$ where

$$
a_{j k}= \begin{cases}1=e^{i 0} & \text { if } \mathrm{k}=\mathrm{j}+1 \\ -1=e^{i \pi} & \text { if } k=1, \text { and } \begin{cases}j=n & \text { if } n \text { is even } \\ j=n-1 & \text { if } n \text { is odd }\end{cases} \\ 1=e^{i 0} & \text { if } k=1, \text { and } \begin{cases}j=n & \text { if } n \text { is odd } \\ j=n-1 & \text { if } n \text { is even }\end{cases} \\ 0 & \text { otherwise. }\end{cases}
$$

Notice that $G(A)=W$, and A provides a weighting for the edges of W. The graph W has exactly two cycles: an n-cycle γ_{1} and an $n-1$-cycle γ_{2}, where

$$
\begin{aligned}
& \wp\left(\gamma_{1}\right)=\left\{\begin{array}{cc}
1 & \text { if } n \text { is odd } \\
-1 & \text { if } n \text { is even }
\end{array}\right. \\
& \wp\left(\gamma_{2}\right)=\left\{\begin{array}{cc}
1 & \text { if } n \text { is even } \\
-1 & \text { if } n \text { is odd. }
\end{array}\right.
\end{aligned}
$$

Clearly, A is irreducible whether viewed as a sign pattern or as a ray pattern. If C is a circuit, then C must be obtained by traversing $\gamma_{1} r$ times for some $r \geqslant 0$ and traversing $\gamma_{2} s$ times for some $s \geqslant 0$. Thus the length of C is $r n+s(n-1)$. If C_{1} and C_{2} are two distinct circuits of the same length, then $r_{1} n+s_{1}(n-1)=r_{2} n+s_{2}(n-1)$ with at least one of $r_{1} \neq r_{2}$ and $s_{1} \neq s_{2}$ holding. Further, if C_{1} and C_{2} are chosen so that there is no shorter pair of distinct circuits with a common length, then $\min \left(r_{1}, r_{2}\right)=0$ and $\min \left(s_{1}, s_{2}\right)=0$. Thus, without loss of generality, $r_{1} n=s_{1}(n-1)$ with $r_{1} s_{1} \neq 0$. Since $\operatorname{gcd}(n, n-1)=1$, the shortest pair occurs when $r_{1}=n-1$ and $s_{1}=n$. Thus for all j, $\left(A^{k}\right)_{j j}$ must be unambiguous for $k<n(n-1)$. Letting C_{1} be the circuit obtained by traversing $\gamma_{1} n-1$ times, $\wp\left(C_{1}\right)=\wp\left(\gamma_{1}\right)^{n-1}$. Letting C_{2} be the circuit obtained by traversing $\gamma_{2} n$ times, $\wp\left(C_{2}\right)=\wp\left(\gamma_{2}\right)^{n}$. Note that $\wp\left(\gamma_{1}\right)^{n-1}=\wp\left(\gamma_{1}\right)$, and that $\wp\left(\gamma_{2}\right)^{n}=\wp\left(\gamma_{2}\right)$, so C_{1} and C_{2} are
conflicting circuits of length $n(n-1)$. Consequently, the first occurrence of sharp in a diagonal entry of a power of A occurs for $A^{n(n-1)}$. Specifically, $\left(A^{n(n-1)}\right)_{n-1, n-1}=\#$. Since the two cycles share a common path of length $n-2$ from v_{1} to v_{n-1}, it follows that $\left(A^{n(n-1)-n+2}\right)_{n-1,1}=\#$. Finally, observe that $n(n-1)-n+2=n^{2}-2 n+2$.

Suppose $\left(A^{\ell}\right)_{j k}=\#$. Then there are two walks β_{1} and β_{2} from v_{j} to v_{k} with length ℓ such that $\wp\left(\beta_{1}\right)=-\wp\left(\beta_{2}\right)$. Extend β_{1} and β_{2} to circuits C_{1} and C_{2} by adding the same shortest path γ from v_{k} to v_{j} of length h. Unless $j=1$ and $k=n, h \leqslant n-2$. Note that C_{1} and C_{2} are distinct circuits in W with a common length, and hence their length must be at least $n(n-1)$. Unless $j=1$ and $k=n$, the common length of β_{1} and β_{2} must be at least $n(n-1)-h \geqslant n(n-1)-(n-2)=n^{2}-2 n+2$. If $j=1$ and $k=n$, then $h=n-1$ and the circuits C_{1} and C_{2} must traverse γ_{1} because they contain v_{n}. Since both circuits are distinct but have the same length, it means that at least one must also traverse γ_{2}, without loss of generality, C_{1} does. Then $r_{1} n+s_{1}(n-1)=r_{2} n+s_{2}(n-1)$ with r_{1}, r_{2} and s_{1} positive. From the argument given above, r_{1} and s_{1} positive implies that the common length of these circuits must exceed $n(n-1)$. Then the common length of β_{1} and β_{2} must exceed $n(n-1)-(n-1)=n^{2}-2 n+2$.

Summarizing,
Proposition 14. Let k be the smallest positive integer such that if A is an $n \times n$ nonpowerful, irreducible sign (ray) pattern, then A^{k} must contain at least one ambiguous entry. Then $k \geqslant n^{2}-2 n+2$.

Acknowledgements

Many of the ideas in this paper are included in the Ph.D. dissertation [3] of Jong Sam Jeon, which was written under the direction of Professor Judith McDonald.

The authors thank the referee for pointing out that our proof of Lemma 2 could be substantially shortened, and for finding several minor errors whose correction improves the clarity of the paper.

References

[1] F. Hall, Z. Li, Sign pattern matrices, in: L. Hogben (Ed.), The Handbook of Linear Algebra, Chapman \& Hall - CRC, Boca Raton, 2007 (Chapter 33).
[2] F. Hall, Z. Li, J. Stuart, Reducible, powerful ray patterns, Linear Algebra Appl. 399 (2005) 125-140.
[3] J.S. Jeon, Powerful ray patterns, Ph.D. Dissertation, Washington State University, Pullman, 2008.
[4] Z. Li, F. Hall, C. Eschenbach, On the period and base of a sign pattern matrix, Linear Algebra Appl. 212/213 (1994) 101-120.
[5] Z. Li, F. Hall, J. Stuart, Irreducible powerful ray pattern matrices, Linear Algebra Appl. 342 (2002) 47-58.
[6] L. You, J. Shao, H. Shan, Bounds on the bases of irreducible generalized sign pattern matrices, Linear Algebra. Appl. 427 (2007) 285-300.

[^0]: * Corresponding author.

 E-mail addresses: jeon@math.wsu.edu (J.S. Jeon), jmcdonald@math.wsu.edu (J.J. McDonald), jeffrey.stuart@plu.edu (J.L. Stuart).

