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1. INTRODUCTION 

Let n be an integer greater than 1. A group G is said to be n-rewriteable, 
or to have the property 

Qll 

if for every subset (x1, . . . . x,} of n elements of G there exist distinct 
permutations o and r in Sym(n) such that 

X,(I) “‘~,(,)=-%(1)“‘-%(,)- 

A group is rewriteable, or has the property 

Q 

if it is n-rewriteable for some n > 1. 
The class of rewriteable groups was first considered in [2], where a 

characterization of all such groups is given: 

STRUCTURE THEOREM. A group G is rewriteable if and only if it is finite- 
by-abelian-by-finite. 

The main object of this paper is to present two applications of the 
Structure Theorem. The reader should consult [2] for any undefined terms 
used in the sequel. 

Although, as the abelian groups show, there is no bound on the order of 
a general Q,-group, there is such a bound for the class of semisimple 
groups (that is, the class of groups which have no nontrivial abelian 
normal subgroups). 

* The results presented in this paper are excerpted from the author’s Ph. D. dissertation 
submitted at the University of Illinois, Urbana-Champaign, 1987. 
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THEOREM 1. For each n 2 3, there is a constant J,, depending only on n, 
such that if G is an n-rewriteable semisimple group, then IGI d J,,. 

The 5rewriteability of the nonsolvable group Alt(5) shows that the 
following result cannot be extended to any higher rewriting class. 

THEOREM 2. Every 4-rewriteable group is solvable. 

Thus there is at least limited agreement between an established measure 
of noncommutativity (solvability) and the use of the rewriting properties as 
measures of the degree of noncommutativity of a group. A similar result 
has been shown for the stronger property of total 4-rewriteability [ 11; in 
fact, every totally 4-rewriteable group is metabelian [S]. The symmetric 
group on 4 letters shows that this latter result does not extend to 
4-rewriteable groups. 

The proofs of Theorem 1 and 2 each depend initially on a reduction 
using the Structure Theorem to a more restricted class of groups. For 
Theorem 1, we are left to show that the conclusion of the theorem holds for 
n-rewriteable nonabelian finite simple groups. We then use the classification 
of the finite simple groups and information about the structure of the 
groups of Lie type to find the required bounds. In Theorem 2, the reduc- 
tion leaves us to show that no minimal simple group is 4-rewriteable. 
Machine calculations required to settle various particular cases were 
carried out using Cayley on the CYBER 175 system at the University of 
Illinois. 

2. REWRITEABLE SEMISIMPLE GROUPS 

Most of the proof of Theorem 1 lies in proving the result for nonabelian 
finite simple groups. 

PROPOSITION 2.1. For each n 2 3, there is a constant K,, depending only 
on n, such that if G is an n-rewriteable nonabelian finite simple group, then 
IGI 6 Kn. 

Indeed, suppose that 2.1 has been demonstrated, and let G be a 
semisimple Q,-group. Since GE FAF and FA c N,F, it follows easily that 
G E N,F (N, is the class of groups which are nilpotent of class at most 2). 
Thus, by semisimplicity, G is finite. Every finite group has a unique non- 
abelian CR-radical R, which is a direct product of nonabelian finite simple 
groups. Each direct factor has order at most K,, and by Proposition 2.6 of 
[2], there are at most c, = (;) - 1 such factors. Hence 

I RI S (IL)=“. 

481/119/l-17 
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Since G is semisimple, the canonical homomorphism G -+ Aut R is injective 
[lo], and therefore 

ICI < ((KJ’“)!. 

This completes the proof of Theorem 1. 
We utilize the classification of the finite simple groups to prove 2.1. We 

need not be concerned with the sporadic groups, since they are finite in 
number. Suppose that Alt(m) is n-rewriteable. From [2], we have that 
m < n + 1. It remains for us to consider the groups of Lie type. We first 
study the projective special linear groups. 

LEMMA 2.2. Let Fz GF(q), where q = pm, p prime. Suppose that the 
group G is either 

(i) F* K F+, or 

(ii) F*/(-~)KF+, 

where in each case x E F* or x E F*l( - 1) acts on F+ via multiplication by 
x2. Zf G is n-rewriteable (n > l), then 

(a) q<(n-l)n!(n!-l), and 

(b) m,<M,(n)=n(n+(-1)P)/2; infact, zfp>n, then m<n-1. 

Proof (a) Suppose that G is n-rewriteable. Unless q < n (in which case 
we are done), fix a,, . . . . a,, to be distinct elements of F+ . Let x E F*, and 
consider the subset {(x, a,), . . . . (x, a,)} of n elements of G. Since G is a 
Q,-group, we have 

(x, ai,). ... . (x, a,,) = (x, a,,) . . . . . (x, ajJ 

for some (iI, . . . . i,) # (jl, . . . . j,), where each n-tuple is an arrangement 
chosen from the set { 1, . . . . n}. Hence 

w, x 2(n- ‘)a,, +x2(“- ‘jai2 + . . + ain) 

= (xn, x2(n-‘)aj, + x2(“p2)aj2 + . . + ajn), 

and so it follows that x is a root of the polynomial 

(a,-aj,)X2+‘)+ (a,‘-uj2)X2’“-*)+ ... + (a,,-ajJ. 

This is a nontrivial polynomial of degree at most 2(n - 1) with coefficients 
in F. The number of distinct polynomials that can arise in this fashion is at 
most n!(n! - l), and each such polynomial has at most 2(n - 1) distinct 
roots in F. Since transposing (iI, . . . . i,) and (iI, . . . . j,) merely negates the 
coefficients of the corresponding polynomial, there are at most 
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(n - 1) n!(n! - 1) distinct roots in F of all of these polynomials. Moreover, 
0 is a root of one of these polynomials, for example, of the polynomial 
(a,-f~,)X~+~)+ (a, -u2)X2+*) arising from (il, . . . . i,)=(2, 1,3, . . . . n) 
and (j,, . . . . j,) = (1, 2, 3, . ..) n). It follows that if F has more than 
(n- 1) n!(n! - 1) elements, then there is an element XE F* which is not a 
root of any of these polynomials. The existence of such an x would 
contradict the n-rewriteability of G. 

(b) F* is cyclic, so set F* = (z). Let a be a nonzero element of 
F+, and consider the subset {(z, a), (z*, a), . . . . (z”, a)}, if p = 2, or 
{ (1, a), (z, a), ..., (z”- ‘3 a)>, 1 p > 2, of n elements of G. Since G is a ‘f 
Q,-group, we have 

(z”, a). (Zh, a). . . . . (zin, a) = (zj’, a). (zj2, a). . . . . (zjn, a) 

for some (i,, . . . . i,)# (jI, . . . . j,), where each n-tuple is an arrangement 
chosen from the set { 1, 2, . . . . n}, if p = 2, or (0, 1, . . . . n - 1 }, if p > 2. Hence 

(z Mp(n ) > (z *Xi=,i,+,2Z=3C+ . . . +z2in+l)u) 

= (z M&o , (z*E3t=2ik+z*Zl=3jk+ . . . +z*h+ lju) 

and therefore, 

(z 2X;=2P+z*X;=jl+ . . . +z2in+ 1) 

-(z *Zi=2jk+z2Xi=jh+ . . . +z*jB+l)=o. 

Thus, since (i1, i2, . . . . i,) # (j,, j,, . . . . j,) if and only if (C[cZ2 ik, 
C;=3 i,, . . . . i,) # (C;:=*jk, C;=3 jk, . . . . j,), z* satisfies a nontrivial 
polynomial of degree at most M,(n) over the prime subfield Fo. It follows 
that deg(Irr,(z*)) < M,(n), from which we obtain lFo(z2)1 2 p”‘@). On the 
other hand, iz 

In either case 

= pm - ‘1, which gives 

lz21 = p:;l) 

{ 

z21>f(pm-1). Thus 4(p”-l)<lz* 
pm < 2p4’“’ - 1. We conclude that m <M,(n). 

In case p > n, the n elements a,, u2, . . . . a, in (a) may all be chosen to lie 
in F,, and therefore the polynomials arising there have coefficients in Fo. In 
particular, z* must be a root of a nontrivial polynomial over F. of degree 
at most n - 1, and so deg(Irr,,(z*)) <n - 1. As in the argument above, we 
conclude that m 6 n - 1. This completes the proof. 

IGP Mu - 1, and so 
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COROLLARY 2.3. Suppose that G is either the group SL(2, q) or the 
group PSL(2, q), where q = pm. If G is n-rewriteable (n > l), then 

(a) q<(n-l)n!(n!-l), and 

(b) m<M,(n)=n(n+(-1)P)/2; infact, ifpan, then m<n-1. 

Proof Let GgGF(q). In the group SL(2, q), the subgroup 
U= ((A W4 is isomorphic to F+, and X= ((“0’ ‘$/JEF*} is a sub- 
group isomorphic to F*. Moreover, the action of x = (“0’ 2) on a = (A f) is 
given by ax = (A “y ), so that x acts on U via XH x2. It follows that 
(X, U) z F* K F+, under the action of 2.2. Finally, since Un ( - 12) = 1, 
we have (X, U)/(-12)~(F*/(-l))#Ff. 

We are now equipped to deal with the general group of Lie type. The 
order of a group of Lie type depends on two parameters: the rank I of the 
group, and the number of elements q in the underlying field. If the group L 
is n-rewriteable, we can provide bounds for each parameter which depend 
only on n, and hence bound the order of L. 

PROPOSITION 2.4. Suppose that L is a group of Lie type of rank 1 of 
one of the types A,(q), B,(q), C,(q), D,(q), '4(q), or 'D,(q) which is 
n-rewriteable (n > 1). 

(i) Zf L is of type A,(q), then 1 <n - 1. 

(ii) Zf L is of type B,(q), C,(q), or D,(q), then 1 <n. 

(iii) Zf L is of type ‘A,(q), with 1 odd, then I< 2n - 1. 

(iv) Zf L is of type ‘A,(q), with 1 even, then 16 2n. 

(v) If L is of type 2At(q), then 1 <n + 1. 

Proof Since L is n-rewriteable, it follows that the monomial subgroup 
N of L is n-rewriteable. The Weyl group W(L) is isomorphic to the 
quotient group N/H, where H is the diagonal subgroup of L, and thus W is 
a Q,-group. The Weyl groups of interest are [3,4] 

Sym(l+ 1) if L is of type A,(q), 

Sym(1) K (Z/22)’ if L is of type f3,( q) or C,(q), 

Sym(1) K (Z/22)‘- l if L is of type D,(q), 

w(L)= 4 Sym 
l+l 

( > 
- K (z/22)“+ IV2 

2 
if L is of type 2At(q), q odd, 

Sym f K (2/22)~2 
0 

if L is of type ‘A,(q), q even, 

Sym(l- 1)K (Z/22)‘-’ if L is of type *D,(q). 
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The conclusion of the result now follows from the fact that Sym(m) is 
n-rewriteable if and only if m < n (see [2]). 

The proof of the next result follows the method of Jones [7]. 

PROPOSITION 2.5. Suppose that L is an n-rewriteable group of Lie type 
over the field GF(q) of q elements. 

(i) Zf L is a Chevalley group, or of type 2F4(q) or *G*(q), then q< 
(n-l)n!(n!-1). 

(ii) Zf L is of type 2A,(q), 2D,(q), or 2E6(q), then q< 
[(n-l)n!(n!-1)12. 

(iii) If L is of type 3D4(q), then q < [(n - 1) n!(n! - 1)13. 

(iv) If L is of type *B*(q), then q<2”‘“+‘)‘2. 

Proof Consider first the case that L is a Chevalley (nontwisted) group, 
and let r be a positive root of L. The epimorphism 

defined by sending 

H x,(t) and 

has kernel of order at most 2 (see [S] ), which shows that (A’,, X,) is 
isomorphic either to SL(2, q) or to PSL(2, q). In either case, by 2.3(a), 
q<(n-I)n!(n!-1). 

Consider next the case that L is a Steinberg group, that is, one of the 
types *At(q), 2D,(q), 3D4(q), or *L&(q). Each of these groups is the sub- 
group of the corresponding Chevalley group fixed by an automorphism B 
which maps each generator x,(t) to x,( t’), where the map r H r’ is a sym- 
metry of the root system and t H t’ is an automorphism of GF(q). The map 
c has order 2, 2, 3, and 2, respectively. Inspection of the Dynkin diagrams 
shows that in all cases except *A,(q), with I even, there is at least one 
fundamental root fixed by the root symmetry. In the case of 2A,(q), with 1 
even, there are two adjacent fundamental roots which are transposed by 
the graph symmetry, and thus the positive root which is their sum is fixed 
by the symmetry. Thus in all cases the symmetry fixes at least one positive 
root s. Consider the epimorphism 

The elements x,(t) fixed by 6, and thus contained in L, are those for which 
t is fixed by the automorphism of GF(q). These elements t form a subfield 
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GF(q’) of GF(q), where q’ is q’12, q”‘, q’13, and q’12, respectively. Restricting 
cp, to the subgroup SL(2, q’) of X42, q), we observe that 

cpsIsL,2,y’): SL(2, q’) + (X,, X-,> n L 

is a homomorphism with kernel of order at most 2. It follows, as before, 
that q’ < (n - 1) n!(n! - 1 ), and therefore the Steinberg group case is com- 
plete. 

According to [ 131, the group L = 2F,(q) has a subgroup isomorphic to 
PSL(2, q). The group *G2(q) contains a centralizer Gb of some q + 1 of its 
elements which is a direct product of PSL(2, q) and Z/2Z (see [ 11 I). Thus 
the cases ‘F,(q) and 2G2(q) are complete, by 2.3(a). 

Finally, for the Suzuki groups *l?*(q) = Sz(q), where q = 22”+ ‘, we carry 
out direct calculations (see [8]). Consider the subset {xa, x2a, . . . . ~“a} of n 
elements of Sz(q), where a = S( 1,0) and x = M(o). Here o is a root of the 
primitive irreducible polynomial defining F= GF(q); thus o generates F*. 
Using the action S(a, 6) M(A) = S(la, A(ln)b), the typical product is 

x;~a . xi2a . . . . . xina = x n(n+1)/2~(~~~=2il+~~~=3il+ . . . +oin+ I,~), 

where (i, , . . . . i,) is an arrangement chosen from { 1, . . . . n} and p E F. We 
note that different choices of (i,, . . . . i,) give rise to different (n - l)-tuples 
(C~= 2 ij, ICY= 3 ij, -, i,), and therefore, as formal sums, the expressions 

&=2i/+&=3il+ . . . +(++ 1 

are all distinct. They remain distinct in F if, in particular, 

i ij < degree of F over GF(2) 
j=2 

=2m+l. 

This is certainly the case if n(n + 1)/2 < 2m + 1. Since this would contradict 
the n-rewriteability of Sz(q), it follows that n(n + 1)/2 > 2m + 1. 

We have now completed the proof of (2.1). 

3. SOLVABILITY OF 4-Rmwm3~BLE GROUPS 

The bulk of the proof of Theorem 2 resides in considering the minimal 
simple groups. 

PROPOSITION 3.1. No minimal simple group is 4-rewriteable. 

Indeed, suppose that 3.1 is established. By the Structure Theorem, if 
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there is an insolvable Q,-group, then there is a finite one. Let G be a finite 
insolvable Q,-group of smallest order. Then G must be minimal simple, 
contradicting 3.1. This disposes of Theorem 2. 

We recall the classification of the minimal simple groups, due to 
Thompson [ 121. 

PROPOSITION 3.2. The minimal simple groups are 

(a) PSL(2,2”), m a prime, 

(b) PSL(2,3’), I an odd prime, 

(c) PSL(5 p), p = 5, or p a prime > 5 congruent to f 2 (modulo 5), 

(d) PSL(3,3), and 

(e) SZ(~~“+’ ), 2m + 1 a prime. 

We shall investigate each type of minimal simple group in turn; in fact, 
we obtain more general results. 

PROPOSITION 3.3. The group PSL(2,2”) is 4-rewriteable if and only if 
m= 1. 

Proof On the one hand, PSL(5 2) E Sym(3) is 4-rewriteable. On the 
other hand, suppose that PSL(2,2”) is 4-rewriteable. By 2.3(b), we must 
have m < 10; thus PSL(2,2”) does not have Q4 for m> 10. Since 
PSL(2,2’) is a subgroup of PSL(2,2”) whenever r divides s (see [ll]), it 
remains to investigate PSL(2, 22), PSL(2, 23), PSL(2, 25), and PSL(2,2’). 
The group PSL(2, 22) z Alt(5) is not 4-rewriteable [2]. For the group 
PSL(2, 23), we take the elements of the underlying field GF(23) to be 
{a + bo + cw2 1 a, b, c E GF(2)}, where o is a root of the primitive 
irreducible polynomial x3 - x - 1 over GF(2). Machine computations show 
that the subset 

of elements of SL(2, 23) is not rewriteable. For the group PSL(2,2’), we 
take the elements of the underlying field GF(2’) to be 
{a+ bo+ cw2+do3 +ew41a, b, c, d, eEGF(2)}, where o is a root of the 
primitive irreducible polynomial x5 -x2 - 1 over GF(2). The subset 

K 

02+1 0 

>( 

w2+1 w2+1 
0 w4+w2+w+1 ’ 0 ) w4+Cf12+w+1 ’ 

w2+1 0 
w4+0.12+w+1 w4+c02+w+1 
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of elements of SL(2, 2’) is not rewriteable. Finally, for the group 
PSL(2, 27), we take the elements of the underlying field GF(27) to be 
{a+bw+~w~+dw~+ew~+fw~+gw~~a,b,c,d,e,f,g~GF(2)}, where o 
is a root of the primitive irreducible polynomial x7 - x - 1 over GF(2). The 
subset 

{(do’1 tl), (cd; 1 “6-J l), 

( 

w2+1 
0 w~Yxw)~ (““w’l iI)] 

of elements of SL(2, 27) is not rewriteable. Since PSL(2, 2’) 2 SL(2,2’), the 
proof is complete. 

PROFQSITION 3.4. The group PSL(2, 3’) is 4-rewriteable if and only if 
I= 1. 

Proof First, PSL(2, 3) E Alt(4) is 4-rewriteable. On the other hand, 
suppose that PSL(2, 3’) is 4-rewriteable. By 2.3(b), we observe that 1~ 6; 
thus for I> 6 the group PSL(2, 3’) is not 4-rewriteable. It remains to 
investigate PSL(2, 32), PSL(2, 33), and PSL(2, 35). The group 
PSL(2, 3*)~Alt(6) is not 4-rewriteable [2]. For the group PSL(2, 33), 
we take the elements of the underlying field GF(33) to be 
{a+bw+cw2)a, b, CEGF(~)}, where w  is a root of the primitive 
irreducible polynomial x3 - x - 2 over GF(3). The 24 possible products of 
the elements 

2w2+2w+1 2w2+2w+1 
0 > w2 ’ 

and (2wy1 i) 

of SL(2, 33) are all distinct modulo Z(SL(2, 33))= (- 1,). Hence 
PSL(2, 33) is not 4-rewriteable. For the group PSL(2, 35), take the 
elements of the underlying field GF(35) to be {a + bw + co2 + do3 + 
ew4(a, 6, c, d, eEGF(3)}, where w  is a root of the primitive irreducible 
polynomial x5+x4 +x2 + 1 over GF(3). The 24 possible products of the 
subset 

2w4 + 2w3 + 2w 
{(ii :>y ( 0 

2w4 + 203 + 2w 
w  )T 

2w3+2w2+2 2w3+202+2 204+203+20 0 
0 w  W 
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of elements of SL(2, 35) are all distinct modulo Z(SL(2, 35)) = (- 1,); 
thus PSL(2, 35) is also not 4-rewriteable. 

Although 2.3(a) shows that PSL(2, p), p prime, is not 4-rewriteable for 
p > 1656, using a different technique we are able to show that PSL(2, p) is 
not 4-rewriteable for p > 5. 

PROPOSITION 3.5. For each prime p > 5 and positive integer m, the group 
PSL(2, p”) is not 4-rewriteable. 

Proof It suffices to show that PSL(2, p) is not rewriteable for each 
pa5. 

We first provide a generic example for p > 7. Choose c to be a generator 
of the multiplicative subgroup of GF(p) such that c2 & -2 .(modulo p) 
and c-* & -2 (modulo p). The existence of such a c is guaranteed 
provided that cp(p - 1) > 5, where q(n) is the number of integers i, 
l<i<n, such that (i,n)=l. Since q(n)>5 for n>12, cp(p-1) is greater 
than 5 for p > 13. For p = 11, the choice c = 2 has the required properties, 
as does the choice c = 2 for p = 13. Therefore we can find a generator c of 
the required type for each prime p > 7. 

Choose the elements A, B, C, and D of SL(2, p) to be 

A=(:, ;), B=(‘;’ “;I), 

C=(‘i2 ‘T), and D=(: 0). 

We classify the 24 possible products arising by their (2, 1)-entries: 

( 

c-3 c-3+c+c3 c-3 c-3+c-‘+c3 
I: 

c-3 H c-3+c+2c3 ’ c-3 > c-3+c-1+2c3 ’ 

( 

cc3 c3+2c c -3 2c-3+c 

c -3 c-3 I( +2c+c3 ’ c-3 ) 2c-3+c+c3 ’ 

( 

c-3 c-3 +2c-’ 
c-3 c-3 >( 

c-3 2c-)+c-’ 

+2c-‘+c3 ’ c-3 > 2c-3+c-l+c3 ’ 

( 

2c-3 2cc3+2c+c3 2c-3 2c-3+2c-1+c3 

c -3 c -3+c+c3 H ’ c-3 c-3+c-1+c3 ) 
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II : 
( 

2cp3+c+c3 cmm3+c+c3 

I( 

2cp3+cm! +c3 c~-3+c 1+~3 

C3 c3 C3 > c’ ’ 

2c3+2c c3+2c ‘3cc3+c 2c-3+c 

C3 

2c-3+2c-’ cp3+2cp1 3c3+c-’ 2c-3+c-' 

C3 

~c-~+c 3c3+2c 
C3 

III : 
2cc3+c-’ 2c-3+cP1+c+c3 

CC’ 

) 2c-3 

C --I +c3 
>( CC1 

3c3 3c3+2c 

>( 

2c-3 
CC’ c-l+c3 ’ c-I 

IV: 
2c-3+c 2c-3+c-'+c+c3 

H 

2cc3 

C c+c3 > 
C 

3CP3 3~-~+2c-l 

>( 

2cP3 4cp3+c-’ 

C c+c3 ’ c > 2c+c3 . 

We observe first that products in different classes are distinct module 
( - 12), chiefly by comparing the (2, l)-entries of the product matrices. 
The only situation not covered by comparing (2, l)-entries arises when 
p= 13, for which c-35 -c3 (modulo 13). In this case we chose c = 2, and 
explicit calculations give 0, 2,4, 7, 1, 12, 2, and 7 (modulo 13) for the (2, 2)- 
entries of the matrices in class I, and 5 and 10 (modulo 13) for the additive 
inverses of the (2,2)-entries of the matrices in class II. Thus it suffices to 
show that the products within each class are distinct. Since 2cP3, 2c3, 2~i, 
and 2c are all nonzero (modulo p), two products within a class which are 
equal in PSL(2, p) must be equal as elements of SL(2, p). The details of 
the comparisons of the entries within each class are left to the reader; in the 
comparisons within classes I and II, the facts c2 f -2 (modulo p) and 
cP2 f -2 (modulo p) are required. Since all 24 products are distinct as 
elements of PSL(2, p), the group PsL(2, p) is not 4-rewriteable for p > 7. 

We observed in 3.3 that PSL(2, 5) E Alt(5) is not 4-rewriteable. Finally, 
the subset ((i’$ (ii), (i :I, (ii)> f 1 o e ements of SL(2,7) produces 24 
products which are distinct modulo Z(SL(2, 7)) = ( - 12). This completes 
the proof. 

PROPOSITION 3.6. The group PSL(3, 3) is not 4-rewriteable. 
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Proof: The subset 
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of elements of X(3, 3) z PSL(3, 3) is not rewriteable. 

PROPOSITION 3.7. For each positive integer m, the Suzuki group 
Sz(2 2m + ’ ) is not 4rewriteable. 

Proof For m 2 3 we provide a generic example. Let q = 22m+ ’ and 
r = 2”. The Suzuki group G = Sz(q) has a cyclic subgroup U, = (a) of 
order q + 2r + 1, with normalizer NG(Ul) = (Ur, x), where ux = ZP for 
each MEU,, and INJU,): U, 1 =4 (see [6]). Consider the subset 
{a, xa, xa3, xa’} of elements in (X)K (a) =NG(Ul). Each of the 24 
products arising may be expressed in the form x3a’, where z is a linear 
combination of powers of q. Using q2 z - 1 (modulo q + 2r + 1) and 
q = - 2r - 1 (modulo q + 2r + 1 ), we may reduce each z to a linear 
expression in r. In this form it is easy to see that the powers z arising are all 
distinct as integers as long as r > 4, that is, for m > 3. Furthermore, the 
largest difference in powers z arising is 12r + 10, which is less than 
q + 2r + 1 whenever m > 3. It follows that all 24 products are distinct as 
elements of (x) K (a), and therefore that the group SZ(~~~+‘) is not 
4-rewriteable for m 2 3. 

For the group SZ(~~), let the underlying field GF(23) consist of elements 
of the form a + bw + co2, where a, 6, CE GF(2) and o is a root of the 
primitive irreducible polynomial x3 -x - 1 over GF(2). Let 

1 0 0 0 

S(1, 
l)= i 1100 

1 
1 1 0 ) ’ 

S(1, w)= 

1 0 1 1 

and 

+l +l 0 0 0 0 0 0 
0 0 co2 co2 0 0 0 0 
0 0 0 0 02+o+1 02+o+1 0 0 
0 0 0 0 0 0 C02+0 C02+0 

0 0 0 1 
0 0 1 0 

T=OIOO’ ( i 1 0 0 0 
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which are elements of SZ(~~). Computer calculations show that the subset 
{W, l), T-‘S(l, w) T, M(o), T} is not rewriteable. Finally, let GF(2’) 
consist of elements of the form a+bo+c~~+d~~+e~~, where 
a, b, c, d, e E GF(2) and o is a root of the primitive irreducible polynomial 
x5 -x2 - 1 over GF(2). We choose the elements 

and 

T= 

of SZ(~~). The subset {S(l, l), T-‘S(1, OJ) T, M(o), T} of elements of 
SZ(~~) is not rewriteable. 

This result completes the proof of 3.1. 
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