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Prediction on widely factorizable signals
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Abstract

This article extends the solutions to the prediction problem for factorizable real random signals to the class of
improper complex-valued random signals. For that, the concept of widely factorizable signals is introduced and
several real examples of signals having a widely factorizable correlation function are presented. A widely linear
processing is considered in the design of both linear and nonlinear prediction algorithms which are
computationally feasible from the practical standpoint. These algorithms are valid for stationary as well as
nonstationary signals and they can be applied from only the knowledge of the second-order properties of the
augmented vectors involved, it not being necessary to know if the signal satisfies a state-space model.

Keywords: complex-valued improper signals, prediction problems, widely factorizable signals, widely linear
processing.

1 Introduction
In recent research, estimation theory becomes very rele-
vant within the complex random signals field. In fact,
although traditionally the treatment of this type of pro-
blem has consisted in mere extensions of the vectorial
real-valued estimation algorithms to the complex plane, a
complex formalism has a special value in the description
of some physical systems in such diverse fields as com-
munications, oceanography, meteorology and optics
among others (see, for example, [1] and the references
therein).
The classic processing with such signals, called strictly

linear (SL), assumes that the signals involved are proper.a

However, this assertion is not always justified. The
improper nature of some signals requires that the pseu-
docorrelation function must be taken into account in
describing and characterizing their second order proper-
ties completely [2-4].
With this motivation, [2] introduces a new methodol-

ogy called widely linear (WL) whose more notable char-
acteristic is that it utilizes not only the observed signal
but also its conjugate to obtain estimators with better
behavior than the conventional ones in the sense of
reducing the mean square estimation error. Moreover,
this kind of processing has become very usual in the last
decade for designing linear and nonlinear estimation

algorithms from a discrete-time [1,5-9] as well as a con-
tinuous-time perspective of the problem [10]. Specifi-
cally, focussing our attention on the discrete case, the
recent books of Mandic and Goh [1] and Adali and
Haykin [11] about WL adaptive systems can be consid-
ered as two reference texts in this area which provide a
unified treatment of linear and nonlinear complex-
valued adaptive filters.
On the other hand, knowledge of second-order statis-

tics is a key assumption in solving estimation problems
(see, for example, [12]). In practice this knowledge is
available because second-order statistics of the problem
have been measured experimentally or they are under-
standable enough from the physical mechanism [13]. In
this framework, WL estimation algorithms for computing
all types (filtering, prediction, and smoothing) of esti-
mates have been devised in [8] for second-order station-
ary (SOS) signals, i.e., those signals with constant mean
function and both correlation and pseudocorrelation
functions only dependent on the difference of time
instants. Although the WL estimation problem consid-
ered is very general, its applicability is limited to SOS
signals.
In the real field, an alternative estimation methodology

based on correlation information has been developed to
solve very general linear and nonlinear estimation pro-
blems for the class of factorizable signals (see, for exam-
ple, [14,15]). This type of signal is characterized by
having a factorizable kernel which is a very general con-
dition valid for stationary and nonstationary signals. This
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formulation does not require postulating a dynamical
model for the signal and thus, it is useful whenever the
physical mechanism generating the signal of interest is
not known or if it impossible to determine (for instance,
if it does not satisfy a state-space model).
In this article, our objective is to extend this last

methodology to the complex plane. For that, we intro-
duce a new class of signals, called widely factorizable,
whose correlation function of the augmented vector
formed by the signal and its conjugate is a factorizable
kernel. Then, a WL processing is employed in the devel-
opment of both linear and nonlinear prediction algo-
rithms for widely factorizable signals observed in the
presence of noise. With this aim, in Section 2 widely
factorizable signals are defined and also the basic nota-
tion and concepts about complex-valued signals are
summarized. Next, the linear augmented complex pre-
diction problem is addressed in Section 3 where a recur-
sive algorithm is provided for computing the optimal
WL prediction estimate as well as its associated error.
This section also includes three numerical examples
which show the enhancement of the proposed WL pre-
dictor in relation to the SL solution. Finally, by follow-
ing a similar reasoning to the extended Kalman filter
(EKF), the nonlinear augmented complex prediction
problem is solved in Section 4 where a numerical exam-
ple is also developed in order to compare the proposed
WL algorithm with two conventional nonlinear augmen-
ted complex techniques, the WL EKF and the WL
unscented Kalman filter (UKF) suggested in [1]. Further-
more, these solutions are also compared with the SL
EKF and SL UKF.

2 Preliminaries
This section covers some of the more basic notions
associated with the complex-valued random signals field
and introduces a new class of signals, called widely fac-
torizable. Moreover, the notation and hypotheses held
throughout the article are also established in this
section.
First of all, note that all vectors will be denoted by

bold small letters and bold capital letters will be used
for matrices. Also, row k of any matrix A(·) will be
denoted by a[k](·). Furthermore, 0p and 0p × q represent
the p-vector and the p × q-matrix, respectively, whose
elements are all zeros.
Unless indicated to the contrary, throughout this article

we consider an improper complex-valued signal {s(ti), ti Î
T}, T = {t1, t2, ...}, with zero-mean and correlation function
rs(ti, tj) = E[s(ti)s* (tj)], where the superscript ‘*’ represents
the complex conjugate.
The signal {s(ti), ti Î T} is said to be factorizable if

there exist two l-vectors a(ti) and b(ti) such that its cor-
relation function rs(ti, tj) can be expressed in the form

rs(ti, tj) =

{
αT(ti)β∗(tj), ti ≥ tj

βT(ti)α∗(tj), ti ≤ tj
(1)

where the superscript ‘T’ denotes the transpose. Note
that this type of signal is very general and includes both
stationary and nonstationary signals. However, a new class
of signals is possible by imposing the condition of factoriz-
able kernel on the correlation function Rs(ti, tj) = E[s(ti)s

H

(tj)], with the superscript ‘H’ denoting the conjugate trans-
pose, of the augmented vector s(ti) = [s(ti), s* (ti)]

T. This
type of signal, called widely factorizable, is introduced
next.
Definition 2.1 A signal {s(ti), ti Î T} is said to be widely

factorizable if and only if there exist two 2 × m-matrices A
(ti) and B(ti) such that the correlation function Rs(ti, tj) of
the augmented vector s(ti) can be expressed in the form

Rs
(
ti, tj

)
=

{
A (ti)BH (

tj
)
, ti ≥ tj

B (ti)AH (
tj
)
, ti ≤ tj

(2)

where the superscript ‘H’ denotes the conjugate
transpose.
Note that condition (2) implies (1), however condition

(1) does not assure that the correlation function of the
augmented vector satisfies (2). As a consequence, we have
that all widely factorizable signals are also factorizable but
the converse does not hold.
Some illustrative examples of widely factorizable sig-

nals are the following:
i) The rotation of a real factorizable zero-mean signal

x(ti) by an independent random phase θ, s(ti) = eθ jx(ti),
with j =

√−1 . Assume

rx
(
ti, tj

)
=

{
aT (ti) b

(
tj
)
, ti ≥ tj

bT (ti) a
(
tj
)
, ti ≤ tj

(3)

with a(ti) and b(ti) two real l-vectors. Thus,

A (ti) =
(

0Tl aT (ti)
aT (ti) 0Tl

)
, BH (ti) =

(
ϕθ (−2) b (ti) b (ti)

b (ti) ϕθ (2) b (ti)

)
(4)

where �θ(·) is the characteristic function of θ.
ii) The seismic ground acceleration can be represented

by a uniformly modulated nonstationary process given by
s(ti) = d(ti)x(ti), where x(ti) is a stationary process with
zero mean and known second-order statistics, and d(ti) is
the time modulating function. Both x(ti) and d(ti) can be
either real or complex-valued [16]. Thus, if d(ti) is com-
plex and x(ti) is real and factorizable with correlation
function given by (3) then, s(ti) is widely factorizable
being

A (ti) =

(
d (ti) a

T (ti)

d∗ (ti) aT (ti)

)
, BH (ti) =

(
b (ti) d∗ (ti) b (ti) d (ti)

)
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Common choices are d (ti) = ej2πω0ti with ω0 a con-
stant frequency and x(ti) the Ornstein-Uhlenbeck
process.
On the other hand, if both d(ti) and x(ti) are complex

and x(ti) is also widely factorizable with

Rx
(
ti, tj

) {
E (ti) FH

(
tj
)
, tj ≥ tj

F (ti)EH
(
tj
)
, ti ≤ tj

then, s(ti) is widely factorizable with

A (ti) =
(
d (ti) 0
0 d∗ (ti)

)
E (ti) , BH (ti) = FH (ti)

(
d∗ (ti) 0
0 d (ti)

)

iii) In electromagnetic theory, the time-varying posi-
tion of the electric field vector can be represented as the

following signal s (ti) = Aejw0ti + Be−jw0ti where the
expressions for the random coefficients A and B can be
found in [[17], p. 7]. Hence, s(ti) is widely factorizable
with

A (ti) =

⎛
⎜⎜⎜⎜⎝
rAe (ti) + r∗ABe

∗ (ti) γ∗
Ae

∗ + γ∗
ABe (ti)

rBe∗ (ti) + rABe (ti) γ∗
Be (ti) + γ∗

ABe
∗ (ti)

γBe
* (ti) + γABe (ti) rBe (ti) + r∗ABe

∗ (ti)

γABe∗ (ti) + γAe (ti) rAe∗ (ti) + rABe (ti)

⎞
⎟⎟⎟⎟⎠

T

(5)

BH (ti) =
(
e (ti) e∗ (ti)
0 0

0 0
e (ti) e∗ (ti)

)H

where e (ti) = ejω0ti , rA = E[AA∗], rAB = E[AB∗], γA = E[AA], γB = E[BB],
and gAB = E[AB].
iv) A signal widely used in many areas of signal pro-

cessing is a linear frequency modulation or chirp with
random phase. The chirp process can be expressed as

s (ti) = ejπ(2αti+βt2i +2θ) where θ is the random phase, a
determines the starting instantaneous frequency of the
chirp and b is the chirp rate. Then, the chirp process is
widely factorizable with

A (ti) =
(
c (ti) 0
0 c∗ (ti)

)

BH (ti) =

(
(1 − ∣∣ϕθ (2π)

∣∣2)c∗(ti) (ϕθ (4π) − ϕ2
θ (2π))c(ti)

(ϕθ (4π) − ϕ2
θ (2π))∗c∗(ti) (1 − ∣∣ϕθ (2π)

∣∣2)c(ti)
)

with c (ti) = ejπ(2αti +βt2i ) and �θ (·) the characteristic

function of θ.
v) An application of the complex Ornstein-Uhlenbeck

process is the description of the motion of the instanta-
neous axis of the Earth’s rotation [18]. This motion has an
1 year period and if it is removed, there remains the so-
called Chandler Wobble, which has a period of about 435

days (14 months). Kolmogorov proposed the complex sto-
chastic process s (ti) = x (ti) + jy (ti) = σ ej2π ti + ξ (ti) to

describe the Chandler Wobble, i.e., the motion of the pole,
where x(ti) and y(ti) are the coordinates of the deviation of
the instantaneous pole from the North Pole. In that model
the first term is a periodical component, and the second
term ξ(ti) is a complex Ornstein-Uhlenbeck process. It is
not difficult to check that the signal s(ti) is proper and
then,

A (ti) =
( 1

λ
e(ωj–λ)ti 0
0 1

λ
e−(ωj - λ)ti

)
, BH (ti) =

(
e(−ωj+λ)ti 0

0 e(ωj+λ)ti

)

where l > 0 is the drift parameter and ω Î ℝ is the
period.
On the other hand, we provide a simple example of a

factorizable signal which is not widely factorizable: a
zero-mean complex-valued signal {s(ti), ti = i/100, i = 1,

..., 100} with rs
(
ti, tj

)
= 2e−|ti − tj| and ρs

(
ti, tj

)
= j0.5etitj .

In the following, we also assume that the signal
of interest s(ti) is widely factorizable in the sense of
Definition 2.1.
Finally, Rsy(ti, tj) = E[s(ti)y

H(tj)] denotes the cross-correla-
tion function between any two augmented signals s(ti) and
y(ti), and rsy(ti, tj) = E[s(ti)y

H(tj)] represents the cross-corre-
lation function between s(ti) and the augmented vector y(ti).

3 Linear augmented complex prediction
Assume that the signal s(ti) established in Section 2 is
observed through the following linear equation:

y (ti) = g (ti) s (ti) + v (ti) , t1 ≤ ti ≤ tn (6)

where g(ti) is a deterministic complex-valued function
and v(ti) is a doubly white noiseb correlated with s(ti).
Moreover, the cross-correlation function and the aug-
mented signal s(ti) and the augmented noise v(ti) is of
the form

Rsv
(
ti, tj

)
=

{
C (ti)DH (

tj
)
, ti ≥ tj

E (ti) FH
(
tj
)
, ti ≤ tj

(7)

where C(ti), D(ti), E(ti), and F(ti) are matrices of
dimensions 2 × l, 2 × l, 2 × l’, and 2 × l’, respectively.
We consider the problem of obtaining the optimal (in

the sense of minimizing the WL mean square error)
estimatorc of the signal s(tk) as a function of the infor-
mation given by the observations {y(t1), ..., y(tn), y*(t1),
..., y*(tn)}, for tk ≥ tn. It is known that such an estimator
can be expressed as a linear function of the set of aug-
mented observations {y(t1), ..., y(tn)} as follows [2]

ŝ (tk|tn) =
n∑
j=1

hT (
tk, tj, tn

)
y
(
tj
)
, tk ≥ tn (8)
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where the 2D vector h(tk, tj, tn), called the impulse
response function, satisfies the equation

rsy
(
tk, tj

)
=

n∑
i=1

hT
(tk, ti, tn)R

(
ti, tj

)
+ hT (

tk, tj, tn
)∑

, t1 ≤ tj ≤ tn, tk ≥ tn (9)

where R(ti, tj) = G(ti)Rs(ti, tj)GH(tj) +G(ti)RSV(ti, tj) + RH
SV(tj, ti)G

H(tj) ,
with G(ti) denoting the 2 × 2-diagonal matrix G(ti) =
diag(g(ti), g*(ti)), and E[v(ti)v

H(ti)] = Σ.
From (2) and (7), it is easy to check that rsy(tk, tj) and

R(ti, tj) can be written as follows:

rsy
(
tk, tj

)
=

{
ψ [1] (tk) �H(tj), tk ≥ tj

π [1] (tk) �H (
tj
)
, tk ≤ tj

(10)

R
(
ti, tj

)
=

{
� (ti)�H (

tj
)
, ti ≥ tj

� (ti) �H (
tj
)
, ti ≤ tj

(11)

where ψ[1](tk) is the first row of the 2 × q-matrix
� (ti) = [A (ti) ,C (ti) ,02×l′ ], π [1](tk) is the first row of the
2×q-matrix Π(ti) = [B(ti), 02×l, E(ti)], F(ti) = [G(ti)A(ti), G
(ti) C(ti), F(ti)], and Γ(ti) = [G(ti) B(ti), D(ti), G(ti) E(ti)] are
also matrices of dimensions 2 × q, with q = m + l + l’.
Although the problem is completely determined from

the computation of the impulse response function by
solving Equation (9), our aim here is to provide a recur-
sive algorithm for its computation. Next, the recursive
formulas for computing the estimator (8) and its asso-
ciated error p(tk|tn) = E[|s(tk) - ŝ(tk|tn)|

2] are devised.
Theorem 3.1 The optimal WL estimate ŝ(tk|tn) defined

in (8) can be recursively computed as follows:

ŝ(tk|tn) = ψ [1](tk)ε(tn), tk ≥ tn (12)

where the q-vector �(tn) is recursively computed from
the expression

ε (tn) = ε (tn−1) + J (tn, tn) [y(tn) − �(tn)ε(tn−1)]

ε(t0) = 0q

with the q × 2-matrix J(tn, tn) given by the equation

J(tn, tn) = [�H(tn) − Q(tn−1)�H(tn)]
−1(tn) (14)

with the 2 × 2-matrix Ω(tn) = Σ + [Γ(tn) - F(tn) Q (tn-1)]
FH(tn) and the q × q-matrix Q(tn) satisfying the recursive
equation

Q(tn) = Q(tn−1) + J(tn, tn)
[
�(tn) − �(tn)Q(tn−1)

]
Q (t0) = 0q×q

(15)

Moreover, the associated error is given by the expres-
sion

p(tk|tn) = rs(tk, tk) − ψ [1](tk)Q(tn)ψH
[1](tk), tk ≥ tn (16)

Proof. From (10) and (11), Equation (9) can be rewrit-
ten as

hT(tk, tj, tn)
∑

= ψ [1] (tk) �H (
tj
) −

n∑
i=1

hT(tk, ti, tn)R(ti, tj)

Then, if we introduce a function J(tj, tn) satisfying the
equation

J
(
tj, tn

) ∑
= �H (

tj
) −

n∑
i=1

J (ti, tn) R
(
ti, tj

)
(17)

we obtain that

hT(tk, tj, tn) = ψ [1](tk)J(tj, tn) (18)

and then, substituting (18) in (8), and defining the
function

ε(tn) =
n∑
i=1

J(ti, tn)y (ti)

ε (t0) = 0q

(19)

the Equation (12) for the optimal estimator is devised.
Now, subtracting the Equation (17) for tn and tn-1 and

taking (11) into account, we can write

[J(tj, tn) − J(tj, tn−1)]
∑

= −J (tn, tn) � (tn) �H(tj) −
n−1∑
i=1

[J(ti, tn) − J(ti, tn−1)]R(ti, tj)

Thus, from (17), we have the relation

J(tj, tn) − J(tj, tn−1) = −J(tn, tn)�(tn) J(tj, tn−1) (20)

As a consequence, subtracting the Equation (19) for tn
and tn-1 and using (20) in the resulting equation, the
recursive expression (13) is obtained.
Next, we proceed to derive expression (14) for J(tn, tn).

By taking tj = tn in (17) and using (11), we have

J(tn, tn)
∑

= �H(tn) −
n∑
i=1

J(ti, tn)�(ti)�H (tn) = [�H(tn) − Q(tn)�H(tn)] (21)

where we have introduced the q × q-matrix

Q(tn) =
n∑
i=1

J(ti, tn)�(ti)

Q(t0) = 0q× q

(22)

Moreover, if we subtract Q(tn-1) from Q(tn), and use (20)
and (22) in the resulting expression, the recursive Equa-
tion (15) for Q(tn) is derived. Finally, using (15) in (21), it
is easy to check that J(tn, tn) satisfies the expression (14).
Finally, in order to derive expression (16) for the error

p(tk|tn) associated with the above estimate, we remark
that, from the orthogonal projection lemma, this func-
tion can be expressed as
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p(tk|tn) = rs(tk, tk) − E[ŝ(tk|tn)ŝ∗(tk|tn)]
Then, substituting (12) in the above equation and

using (17) and (19), we check that

p(tk|tn) = rs(tk, tk)−ψ [1](tk)E[ε(tn)ε
H(tn)]ψH

[1](tk) = rs(tk, tk)−ψ [1](tk)
n∑
i=1

J(ti, tn)�(ti)ψH
[1](tk)

As a consequence, from (22), (16) is obtained.
Remark 1 When {s(ti), ti Î T} is a factorizable real-

valued signal with correlation function of the form (1),
and the observations of the signal verify the complex-
valued linear Equation (6) with

rsv
(
ti, tj

)
=

{
cT (ti)DH (

tj
)
, ti ≥ tj

eT (ti) FH
(
tj
)
, ti ≤ tj

where c(ti) and e(ti) are vectors of dimensions l and l’,
respectively, and D(ti) and F(ti) are matrices of respec-
tive dimensions 2 ×l and 2 ×l’, we obtain that Algorithm
3.1 holds, replacing the involved 2 × q-matrices Ψ(ti),

Π(ti) by the vectors ψT(ti) = [αT(ti), cT(ti), 0Tl′ ] and

πT(ti) = [βT(ti), 0Tl , e
T(ti)] , and taking the matrices F

(ti) = [g(ti) aT(ti), g(ti)c
T(ti), F(ti)] and Γ(ti) = [g(ti)bT(ti),

D(ti), g(ti)e
T(ti)], with g(ti) = [g(ti), g*(ti)]

T.
Remark 2 The efficiency of Algorithm 3.1 is closely

related to the dimensions l, l ’, and m of the matrices
involved in the factorizations (2) and (7). Indeed, the com-
putational complexity of this algorithm is of order q, with
q = m + l + l’, and thus, it involves a further complication
in implementation and an increased computational bur-
den as q grows. Since the factorization of the covariance is
not unique then, the key question is in choosing the one
which minimizes the dimension q. There exist simple
cases, as illustrated previously, where the factorization is
easily obtained. Nevertheless, in those more complex cases
where this factorization is not trivial, one can use several
methods available in the literature to get a factorization
with minimum dimension (see, e.g., [19]).

3.1 Numerical examples
The advantages of the proposed Algorithm with respect to
the SL solution are illustrated here through three numeri-
cal examples. The first one involves real correlation
matrices and analyzes the effectiveness of the WL proces-
sing with respect to the SL one in terms of the impropriety
degree of the observations. In the second example, com-
plex correlation matrices are considered and the resulting
WL and SL estimation errors are graphically compared.
Finally, the third example shows a real application to seis-
mic signal processing.
3.1.1 Example
Let {x(ti), t1 ≤ ti ≤ t100}, with ti = i/100, i = 1, ..., 100, be an
Ornstein-Uhlenbeck process with correlation function

rx(ti, tj) = exp(−|ti − tj|), t1 ≤ ti, tj ≤ t100

which is transmitted over a channel that rotates it by a
standard normal phase θ and adds a doubly white Gaus-
sian noise v(ti) correlated with the signal with

Rxv(ti, tj) =
( 1

25 t
2
i tj

1
25 t

2
i tj

1
25 t

2
i tj

1
25 t

2
i tj

)

Thus, the signal of interest is s(ti) = eθjx(ti) and the
observations y(ti) are of the form (6) with g(ti) = 1. More-
over, we assume that θ is independent of x(ti) and v(ti).
Note that the correlation matrix of the augmented signal

s(ti) can be expressed in the form (2), where A and B are
as in (4) with l = 1, a(ti) = e−ti , b(ti) = eti , and �θ (-2) =
�θ (2) = e-2. Moreover, the cross-correlation matrix
between s(ti) and v(ti) is of the form (7) with D(ti) = F(ti) =

[ti/25, ti/25]
T and C(ti) = E(ti) = [e−1/2t2i , e

−1/2t2i ]
T .

In this example, we consider the problem of comput-
ing the fixed-lead predictor ŝ(tk+10|tk). As a measure for
comparing the performance of the WL and SL fixed-
lead predictors we use the one defined in [6], the mean
square of the difference between both errors, for

∑
=

(
2 τ

τ 2

)

with τ varying within the interval [1, 2):

1
100

100∑
k=1

(p̃τ (tk+10|tk) − pτ (tk+10|tk))2 (24)

with pτ(tk+10|tk) and p̃τ (tk+10|tk) denoting the WL and
SL fixed-lead prediction errors, respectively, for every
value τ. The results obtained are displayed in Figure 1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

τ

Figure 1 Performance of fixed-lead predictors. Quadratic mean of
the difference between the WL and SL fixed-lead prediction errors.
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which shows that, not only the WL fixed-lead predictor
presents a better behavior than the SL fixed-lead predic-
tor but also the difference between both errors (in the
mean square sense) increases with τ , and hence, the
WL technique becomes more effective.
3.1.2 Example
Let {s(ti), t1 ≤ ti ≤ t100}, with ti = i/100, i = 1, ..., 100, be
a signal of the form

s(ti) = Aejti + Be−jti

where A and B are complex random variables. In this
example, the signal is assumed to be widely stationary,
that is E[AA] = E[BB] = E[AB*] = 0 (see [[17], p. 24]),
and also we consider that E[AA*] = E[BB*] = 1 and E
[AB] = -0.8. Thus, by using (5), the correlation matrix of
the signal s(ti) can be expressed in the form (2). More-
over, we consider that the observations y(ti) are of the
form (6) with g(ti) = 1 and where the noise ν(ti) is
uncorrelated with the signal and its augmented variance
matrix is

∑
=

(
2 1

1 2

)

On the basis of the set of observations {y(t1), y(t2), ..., y
(t100)}, we consider the problem of computing the fixed-
lead predictor ŝ(tk+10|tk). Then, Algorithm 3.1 is used to
obtain the WL fixed-lead prediction error pτ(tk+10|tk)
which is compared with the SL fixed-lead prediction
error p̄τ (tk+10|tk) in Figure 2. As could be expected, this
figure shows that the WL fixed-lead predictor presents a
better behavior than the SL fixed-lead predictor. Finally,
Figure 3 depicts the performance measure given by (24)
with τ Î [1, 2) and Σ as in (23). Again, the improved
precision attained with the WL fixed-lead predictor with

respect to the SL fixed-lead predictor is observed as τ
increases.
3.1.3 Example
As indicated in Section 2, uniformly modulated nonsta-
tionary processes are often used to model seismic
records, especially acceleration records. The modulated
nonstationary process is given by s(ti) = d(ti)x(ti), where
x(ti) is a stationary process with zero mean and known
second-order statistics, and d(ti) is the time modulating
function. A stochastic earthquake model commonly
used for x(ti) is the Kanai-Tajimi process (see, e.g., [20]).
It is well-known that the Kanai-Tajimi earthquake
model is covariance equivalent with the subset of the
ARMA(2,1) model corresponding to a unit value of the
spring-dashpot input ratio [21]. For firm ground condi-
tions, at moderate epicentral distance, Kanai and Tajimi
have suggested specific values for the parameters in the
equation of motion in continuous time whose corre-
sponding discrete ARMA(2,1) model is [21]

x(ti) − 1.604x(ti−1) + 0.686x(ti−2) = e(ti) − 0.767e(ti−1)

with σ 2
e = 39.08 and Δt = ti -ti-1 = 0.02 s. This

ARMA model has a factorizable correlation function
given by (3). Moreover, we have chosen the modulating
function d(ti) = ejti and the augmented error covariance

matrix of the form

∑
=

(
1 τ

τ 1

)

with τ Î [0, 1). Here we have studied the filtering pro-
blem. Figure 4 illustrates the enhancement of the WL
filter in relation to the SL one by using the measure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t
k

WL fixed lead prediction errores
SL fixed lead prediction errors

Figure 2 Fixed-lead prediction errors. WL (solid line) and SL
(dashed line) fixed-lead prediction errors.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.02

0.04

0.06

0.08

0.1

0.12

τ

Figure 3 Performance of fixed-lead predictors. Quadratic mean
of the difference between the WL and SL fixed-lead prediction
errors.
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1
100

100∑
k=1

(p̃τ (tk|tk) − pτ (tk|tk))2

Similar to the previous examples, we observe the
superiority of the WL estimate as τ increases.

4 Nonlinear augmented complex prediction
Given the same conditions on the signal established in
Section 2, we suppose that the ob-servation process can
be given by a nonlinear relation of the form

y (ti) = z (s (ti) , ti) + ν (ti) , t1 ≤ ti ≤ tn (25)

where z(·) is a complex-valued nonlinear function and
the signal s(ti) is uncorrelated with the noise ν(ti). As in
the linear case, the aim here is to estimate the signal s
(tk) on the basis of the observation set {y(t1), ..., y(tn), y*
(t1), ..., y*(tn)}, with tk ≥ tn.
The solution to this problem is addressed by following a

similar philosophy to the EKF [22]. Specifically, following
the basic idea of the EKF the nonlinear function z(s(tn), tn)
is linearized at each time instant by a first-order Taylor
series expanded about the estimated signal ŝ(tn|tn-1)

z(s(tn), tn) ≈ z(ŝ(tn|tn−1), tn) +
∂z(s, tn)

∂s
|s=ŝ(tn|tn−1)(s(tn) − ŝ(tn|tn−1))

Consequently, we can proceed to approximate the
nonlinear observation Equation (25) as shown by

ȳ(tn) ≈ g(tn)s(tn) + v(tn) (26)

where

ȳ(tn) = y(tn) − z(ŝ(tn|tn−1), tn) + g(tn)ŝ(tn|tn−1)

and

g(tn) =
∂z(s, tn)

∂s

∣∣∣∣
s=ŝ(tn|tn−1)

(27)

and thus, s(tk) can be estimated in terms of the set of
observations {ȳ(t1), . . . , ȳ(tn), ȳ∗(t1), . . . , ȳ∗(tn)} from the
relation (26). For that, the formulas given in Algorithm
3.1 for the WL predictor can be used. Note that in the
case of the signal and observation noise being uncorre-
lated, Algorithm 3.1 holds with Ψ(ti) = A(ti), Π(ti) = B
(ti), F(ti) = G(ti)A(ti) and Γ(ti) = G(ti)B(ti). Then, as in
the EKF, in the resulting formulas we also use the line-
arized observation function (27) in place of the previous
function g(tn) and the term G(tn)A(tn)�(tn-1) is replaced
by the vector

z
(
ŝ
(
tn|tn−1

)
, tn

)
=

[
z
(
ŝ
(
tn|tn−1

)
, tn

)
, z∗

(
ŝ
(
tn|tn−1

)
, tn

)]T
Next the formulas of the proposed Algorithm are

summarized.
Theorem 4.1 A nonlinear augmented complex predic-

tor of the signal s(tk) based on the set of nonlinear obser-
vations {y(t1), ..., y(tn), y* (t1), ..., y*(tn)} of the form (25)
can be determined through the equation

ŝ(tk|tn) = a[1](tk)ε(tn)

where the m-vector � (tn) is recursively computed from
the expression

ε(tn) = ε(tn−1) + J(tn, tn)[y(tn) − z(ŝ(tn|tn−1), tn)]

ε(t0) = 0m

with

J(tn, tn) = [BH(tn) − Q(tn−1)AH(tn)]GH(tn)
−1(tn)

where Ω(tn) = Σ + G(tn) [B(tn) - A(tn)Q(tn-1)] A
H(tn)

GH(tn), G(tn) = diag(g(tn), g*(tn)), with
g(tn) = ∂z(s, tn)/∂s|s=ŝ(tn|tn−1),and Q(tn) satisfies the
recursive equation

Q(tn) = Q(tn−1) + J(tn, tn)G(tn)[B(tn) − A(tn)Q(tn−1)]

Q(t0) = 0m×m

Remark 3 Similarly to Remark 1, if the signal {s(ti), ti
Î T} is a real-valued signal with factorizable kernel of
the form (1) which is observed through a complex-valued
nonlinear equation of the form (25), Algorithm 4.1 holds
with a[1](ti) = aT(ti), g(ti) = [g(ti), g*(ti)]

T and replacing
the 2 × q-matrices A(ti) and B(ti) by the vectors a(ti)
and b(ti), respectively.

4.1 Numerical example
In this Example, the estimation of a real signal on the
basis of a set of complex-valued observations is consid-
ered. Specifically, let {s(ti), t1 ≤ ti ≤ t100} be a real
Wiener process with unit variance parameter and the
observation equation
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Figure 4 Performance of filters. Quadratic mean of the difference
between the WL and SL filtering errors.
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y(ti) = es(ti)j + v(ti), ti = i/100, i = 1, . . . , 100

where v(ti) = eθju(ti), with θ a standard normal phase
and u(ti) a white Gaussian noise with unit spectral
height and uncorrelated with the signal s(ti).
In this case, the correlation function of the signal s(ti)

can be expressed in the form (1) with a(ti) = 1 and b(ti)
= ti.
With the aim of examining the good behavior of the WL

solution proposed in Algorithm 4.1, the estimation error
of the WL filter is compared with the errors associated
with SL and WL conventional Algorithms. Specifically, the
standard EKF and UKF and the WL EKF and WL UKF
proposed in [1] have been implemented. For that, we use
the fact that the signal s(ti) obeys the state equation

s(ti) = s(ti−1) + w(ti), ti = i/100, i = 1, . . . , 100

with w(ti) a centered Gaussian signal with variance
parameter 10-2.
On the other hand, for computing the estimation

errors, Monte Carlo simulations have been performed.
Figure 5 shows the results obtained with 5000 sample
paths, confirming the better behavior of a WL proces-
sing in the nonlinear estimation problem. In fact, the
dashed line represents the errors associated with the SL
EKF and SL UKF (the differences between them are
negligible) and the solid line depicts the errors asso-
ciated with the WL UKF, WL EKF and the filter given
in Algorithm 4.1 (again the differences between them
are negligible). Obviously, the similar behavior shown
here by the three WL filters has not to be repeated in
other examples. As occurs in the standard estimation

techniques, there is not a best nonlinear estimator
either. In each application one has to pick the appropri-
ate nonlinear estimation method. Really, in every parti-
cular case one has to choose the estimator which is
found to best trade off various properties such as esti-
mation accuracy, ease of implementation, numerical
robustness, and computational burden [22]. Note that
unlike UKF and EKF, Algorithm 4.1 does not require a
state space model but only the knowledge of the sec-
ond-order statistics of the processes involved.

Endnotes
aA zero-mean complex-valued signal {s(ti), ti Î T}, T =
{t1, t2, ..., } is said to be proper if the pseudocorrelation
function, rs(ti, tj) = E [s(ti)s(tj)], is null for all ti, tj Î T.
Otherwise, it is called improper. bv(ti) is said to be a
doubly white noise if E[v(ti)v* (tj)] = s1δij and E[v(ti)v
(tj)] = s2δij, with |s2| < s1 and δij stands for the Kro-
necker delta function [3]. cA simple application of the
Hilbert space projection theorem shows that WL esti-
mation outperforms SL estimation for general complex-
valued signals. Specifically, denote sp{y (t1) , . . . , y (tn)}
and sp{y (t1) , . . . , y (tn) , y∗ (t1) , . . . , y∗ (tn)} the closed
spans of the following sets {y(t1), ..., y(tn)} and {y(t1), ...,
y(tn), y*(t1), ..., y (tn)}, respectively. Let s̃ (tk|tn) and ŝ(tk|
tn) be the projections of s(tk), tk ≥ tn, onto the spaces
sp{y (t1) , . . . , y (tn)} and sp{y (t1) , . . . , y (tn) , y∗ (t1) , . . . , y∗ (tn)}
respectively. Thus, s̃ (tk|tn) is the SL estimate of
s(tk) and ŝ(tk|tn) is its WL estimate. Since
sp

{
y (t1) , . . . , y (tn)

} ⊆ sp
{
y (t1) , . . . , y (tn) , y∗ (t1) , . . . , y∗ (tn)

}
,

then, by the projection theorem, it follows that
the mean square error of ŝ(tk|tn) is smaller than that of
ŝ(tk|tn).

Abbreviations
EKF: extended Kalman filter; SL: strictly linear; SOS: second-order stationary;
UKF; un-scented Kalman filter; WL: widely linear.
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