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Abstract

The phase structure of the bosonized multi-flavor Schwinger model is investigated by means of the differential renormalization group (RG)
method. In the limit of small fermion mass the linearized RG flow is sufficient to determine the low-energy behavior of the N -flavor model,
if it has been rotated by a suitable rotation in the internal space. For large fermion mass, the exact RG flow has been solved numerically. The
low-energy behavior of the multi-flavor model is rather different depending on whether N = 1 or N > 1, where N is the number of flavors. For
N > 1 the reflection symmetry always suffers breakdown in both the weak and strong coupling regimes, in contrary to the N = 1 case, where it
remains unbroken in the strong coupling phase.
© 2008 Elsevier B.V.
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1. Introduction

Two-dimensional quantum electrodynamics (QED2) or the
Schwinger model [1] exhibits many analogies with four-
dimensional quantum chromodynamics (QCD4) including con-
finement, chiral condensate, topological θ -vacuum. The La-
grangian of QED2 with massive N -flavor fermions which is
called the N -flavor (or multi-flavor) Schwinger model reads
[2–5]

(1)L =
N∑

n=1

ψ̄n

(
iγ μ∂μ − m − gγ μAμ

)
ψn − 1

4
FμνF

μν,

where Fμν = ∂μAν − ∂νAμ. Using bosonization technique
[2–8] the fermionic theory (1) can be mapped onto an equiv-
alent Bose form [2–5,8–19]

L = Nm

[
N∑

n=1

1

2
(∂μϕn)

2 + μ2

2

(
N∑

n=1

ϕn

)2
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(2)− cm2
N∑

n=1

cos

(√
4πϕn − θ

N

)]
,

with μ2 = g2/π , c = eγ /(2π) where γ = 0.5774 is the Euler’s
constant, θ is the vacuum angle parameter, Nm denotes normal-
ordering w.r.t. m and ϕn n = 1, . . . ,N are one-component
scalar fields. Both the fermionic and the bosonic form of
the model has been analyzed by various methods from vari-
ous aspects, e.g. mass perturbation theory [12], density matrix
renormalization group (RG) method [10], lattice calculations
[10,14,15], momentum RG method [20], etc. Physical prop-
erties (like, e.g., chiral condensate [5,13,15–17], boson mass
spectrum [14,16]) have been investigated for arbitrary values
of θ , fermion mass and temperature.

The (N = 1)-flavor Schwinger model for θ = ±π has two
phases [3,9–12]. Illustrative and detailed analysis of the phase
structure is presented in [11]. The behavior of the theory is con-
trolled by dimensionless ratio g/m. For g/m large, i.e., for
strong coupling, the symmetry ϕ ↔ −ϕ is unbroken, there is
a unique vacuum at ϕ = 0 and there are no half-asymptotic
particles. For g/m small, i.e., for weak coupling, the reflection
symmetry suffers spontaneous breakdown, there are two vacua
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approximately located at ϕ = ±√
π/2 and half-asymptotic par-

ticles appear.
The multi-flavor (N � 2) model has not been studied as ex-

tensively as the 1-flavor model. However, the relative ignorance
toward the multi-flavor Schwinger model is perhaps not fully
justified as it shows more resemblance to QCD4, because the
model features a chiral symmetry breakdown. Based on the
study of chiral condensate [5,13,17,18], the behavior of the
Schwinger model has been found to be distinctively different
for N = 1 and for N � 2. Recently, the phase structure of the
(N = 1)-flavor Schwinger model has been investigated by ex-
act functional RG method [21] and it has been recovered in a
rather straightforward way. Our aim in this work is to extend the
RG analysis for the bosonized multi-flavor (N � 2) Schwinger
model to consider its phase structure and clarify the difference
between the 1-flavor and the multi-flavor models.

The multi-flavor Schwinger model has relevance in solid
state physics, too. It has been used to describe antiferromagnetic
spin chain (see, e.g., [22]) and the Bose form of the 1-flavor
model has been proposed as an adequate model for the descrip-
tion of the vortex properties of two-dimensional (2D) isolated
thin superconducting films [23] and the multi-flavor model has
been used for description of vortex dynamics in magnetically
coupled layered superconductors [24]. The number of flavors
of the bosonized multi-flavor Schwinger model is equal to the
number of layers of the superconducting layered system and the
Fourier amplitude of the bosonic model (2) is related to the fu-
gacity of the vortex gas. The RG techniques, like the real space
RG method developed for spin systems usually rely on the di-
lute gas approximation which is equivalent to the linearized RG
flow. However, in order to determine the phase structure and the
vortex dynamics of layered systems in a reliable manner one
has to incorporate the effect of the interlayer coupling which
requires corrections to the dilute gas result. Our goal here is
to show that the dilute gas approximation, i.e., the linearized
RG flow, can be used to determine the phase structure of lay-
ered (multi-flavor) models in the limit of low fugacity (small
fermion mass) if the original multi-layer (multi-flavor) model
has been rotated in the internal space. For high fugacities (large
fermion mass) one has to solve the exact RG flow numerically.

2. Multi-flavor models

The bosonized multi-flavor Schwinger model (2) can be con-
sidered as the specific form of a generalized multi-layer sine-
Gordon (SG) model whose Euclidean action is written as

(3)

S =
∫

d2r

[
1

2
(∂μϕ)(∂μϕ)T + 1

2
ϕ M2ϕT +

N∑
n=1

yn cos(bϕn)

]
,

with the O(N) multiplet ϕ = (ϕ1, . . . , ϕN). For the specific

choice, b2 = 4π , and ϕ M2ϕT = μ2(
∑N

n=1 ϕn)
2, one recov-

ers Eq. (2). The Fourier amplitude related to the fermion mass
(y ∼ m) and the exact relation can be determined by using
normal-ordering w.r.t. the boson mass. The vacuum angle pa-
rameter has to be chosen as θ = ±Nπ for yn > 0 and θ = 0 for
yn < 0. In general, SG-type models have also been successfully
used to investigate vortex dynamics in 2D or quasi-2D super-
conductors [24,25]. Recently, it was shown in [24] that the LSG
model with a suitable interlayer interaction,

(4)
1

2
ϕ M2

M-LSG
ϕT = 1

2
G

(
N∑

n=1

anϕn

)2

,

can be used for magnetically coupled layered superconductors
where the coupling strength between the layers denoted by G

and an = ±1 are free parameters of the model. Based on sym-
metry considerations [24] any choice with a2

n = 1 should repro-
duce exactly the same phase structure, as a consequence, the
Fourier amplitudes (i.e., fugacities) yn ≡ y for n = 1,2, . . . ,N .
The frequency b2 is related inversely to the temperature of the
corresponding solid-state system. Let us note that, different re-
gions of the parameter space have to be considered for the con-
densed matter and for the high-energy physics problem. For the
description of the multi-flavor Schwinger model, one should in-
vestigate the phase diagram in the two-dimensional plane y −G

(for b2 = 4π ) and for the vortex dynamics one has to consider
the phase structure in terms of the frequency b2. Let us note,
the LSG model with magnetic type coupling has a single non-
vanishing mass-eigenvalue M2

N = NG. Another definition for
the mass term of Eq. (3)

(5)
1

2
ϕ M2

J-LSG
ϕT = 1

2

N−1∑
n=1

J (ϕn+1 − ϕn)
2,

is based on the discretization of the anisotropic 3D-SG model
[26] which has been proposed as a suitable model for the vor-
tex dynamics of Josephson coupled layered superconductors
[27]. Although, it has been shown in [28], that the LSG model
with the mass matrix (5) cannot be used for Josephson cou-
pled layered superconductors, in order to distinguish between
the two types of mass matrices, in this Letter we refer to (5)
as the Josephson-type interlayer interaction. Let us note that
the Josephson-type LSG model can also be considered as a
bosonized version of an N -flavor fermionic model [26,29,30],
but not that of the multi-flavor Schwinger model (1). In general,
the LSG model with Josephson type coupling has a single zero
and N −1 non-zero mass-eigenvalues, therefore, the Josephson
coupled LSG model is invariant under the particular exchange
of the layers ϕn ↔ ϕN−n+1, hence, yn ≡ yN−n+1.

3. RG approach for multi-flavor models

In this section we summarize briefly the results of the RG
analysis of LSG type models discussed in our previous publica-
tions [24,26,28–31] by means of the approximated form of the
Wegner–Houghton [32] differential RG approach (WH–RG).
The WH–RG method provides us the complete elimination of
the modes in the Wilsonian RG method [33] above the moving
momentum scale k which serves as a sharp cutoff. In principle
any types of RG methods (see, e.g., [34]) can be used to con-
sider the behavior of LSG type models. However, the usage of
sharp momentum cutoff RG is reasonable since a spinodal in-
stability [35,36] may occur during the flow [21,37–40] and this
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can be used as a signature of spontaneous breakdown of the
symmetry ϕ ↔ −ϕ. The WH–RG equation in the local poten-
tial approximation (LPA) for the LSG type models presented in
Refs. [24,26,28–31] reads as

(6)(2 + k∂k)Ṽk(ϕ) = − 1

4π
ln

[
det

(
δij + Ṽ

ij
k (ϕ)

)]
,

where the dimensionless blocked potential Ṽk = k−2Vk is intro-
duced and Ṽ

ij
k (ϕ) denotes the second derivatives of the poten-

tial with respect to ϕi , ϕj . We make the following ansatz for the
dimensionless blocked potential of the LSG type models

(7)Ṽk(ϕ) = 1

2
ϕ M̃

2
(k)ϕT +

N∑
n=1

ỹn(k) cos(bϕn),

where ỹn(k) = k−2yn(k). Inserting the ansatz (7) into Eq. (6),
the right-hand side becomes periodic, while the left-hand side
contains both periodic and non-periodic parts [26,29–31]. The
non-periodic part contains only mass terms, so that we obtain a
trivial tree-level RG flow equation for the dimensionless mass

matrix (2 + k∂k)M̃
2
(k) = 0, which provides the trivial scaling

J̃k = k−2J and G̃k = k−2G, where the dimensionful interlayer
couplings J , G remain constant during the blocking. Finally,
we recall that in LPA there is no wave-function renormalization,
thus the parameter b also remains constant during the blocking.
The argument of the logarithm in Eq. (6) must be positive. If
the argument vanishes or if it changes sign at a critical value
kSI, the WH–RG equation (6) loses its validity for k < kSI. This
is a consequence of the spinodal instability (SI) [35,36]. Below
the critical scale k < kSI the tree-level blocking relation (see
Eq. (13) of [31]) can be used to determine the RG flow. In this
Letter we do not investigate the tree-level RG flow of LSG type
models but we use the appearance of the spinodal instability
as a signature of the spontaneous breakdown of the reflection
symmetry.

In general, the solution of Eq. (6) can only be obtained nu-
merically, however, various approximations of Eq. (6) are also
available in Refs. [26,28–31]. We compare two types of approx-
imations, the dilute gas result which is equivalent to the lin-
earized RG and the mass-corrected RG flow which incorporates
the mass term correctly and is able to provide the phase struc-
ture of the LSG type models in a reliable manner. The lineariza-
tion of the WH–RG equation (6) in the full potential around the
UV Gaussian fixed point [41] by assuming |∂2

ϕi
Ṽk| � 1,

(8)(2 + k∂k)Ṽk(ϕ) ≈ − 1

4π

N∑
n=1

Ṽ nn
k (ϕ),

for the ansatz (7) leads to the linearized WH–RG flow [31] ex-
hibiting the solutions

(9)ỹn(k) = ỹn(Λ)

(
k

Λ

)−2+ b2
4π

,

where ỹn(Λ) are the initial (bare) values of the fugacities at the
high energy ultra-violet (UV) cutoff Λ. These are the scaling
laws valid at the asymptotically large UV scales (k ∼ Λ), and
being independent of the interlayer coupling (i.e., mass terms)
predicting a phase structure very similar to that of the massless
2D-SG model [37,42]. The critical frequency b2

c = 8π sepa-
rates the two phases of the model [6] and the critical tempera-
ture is related inversely to the critical frequency T �

KTB ∼ 1/b2
c

[35,37,41]. Let us note that the linearized WH–RG equations
obtained in LPA for the (N = 2)-layer LSG model, are the same
as those have been found in [27] in the dilute gas approxima-
tion except of the loss of the scale-dependence of b due to the
usage of the LPA [31]. The couplings J̃k and G̃k are always a
relevant parameters in the LSG models and, consequently, the
linearization, i.e., the asymptotic UV scaling law (9), loses its
validity with decreasing scale k for any value of b.

The simplest way to go beyond the linearized (i.e., the dilute
gas) approximation and to improve the extrapolating power of
the UV scaling laws is to take corrections into account of the
order O(J/k2) for the Josephson and O(G/k2) for the mag-
netic case, which results in the mass-corrected UV scaling laws
derived for the LSG model in Refs. [24,26,29]. This is achieved
by linearizing the WH–RG equation in the periodic piece of the
blocked potential,

(10)(2 + k∂k)Ũk(ϕ1, . . . , ϕN) ≈ − 1

4π

F1(Ũk)

C
,

where Ũk(ϕ1, . . . , ϕN) = ∑N
n=1 ỹn(k) cos(bϕn) and C and

F1(Ũk) stand for the constant and linear pieces of the deter-
minant det[δij + Ṽ

ij
k ] ≈ C + F1(Ũk) + O(Ũ2

k ). Let us first
determine the mass-corrected UV scaling laws for the LSG
model with Josephson type interlayer interaction for N = 2.
In this case the solution of Eq. (10) is [26,29]

(11)ỹ(k) = ỹ(Λ)

(
k

Λ

) b2
8π

−2(
k2 + 2J

Λ2 + 2J

) b2
16π

,

with the initial value ỹ(Λ) at the UV cutoff k = Λ. From the
extrapolation of the UV scaling law Eq. (11) to the IR limit,
we can read off the critical values b2

c = 16π , for N = 2. The
coupling ỹ is irrelevant for b2 > b2

c and relevant for b2 < b2
c .

The general expressions for the critical frequency and the cor-
responding critical temperature [28] read

(12)b2
c (N) = 8πN → T

(N)
J-LSG = 2π

b2
c (N)

= T �
KTB

1

N
,

which are determined previously in a similar manner in the
framework of the rotated LSG model in Refs. [26,29,30]. The
presence of the coupling J between the layers modifies the
critical parameter b2

c of the Josephson coupled LSG model as
compared to the massless 2D-SG model. This important modi-
fication can only be deduced if one goes beyond the linearized
(i.e., dilute gas) approximation, e.g., by the usage of the mass-
corrected UV scaling laws. The similar consideration can be
done for the LSG model with magnetic type coupling [24,29].
Since the layers are assumed to be equivalent for the mag-
netically coupled LSG model, the RG flow equations for the
fugacities of different layers should be the same (ỹn(k) ≡ ỹ(k))
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and the solution can be obtained analytically

(13)ỹ(k) = ỹ(Λ)

(
k

Λ

) (N−1)b2
N4π

−2(
k2 + NG

Λ2 + NG

) b2
N8π

,

where ỹ(Λ) is the initial value for the fugacity at the UV cut-
off Λ and G, b2 are scale-independent parameters. The criti-
cal frequency and the corresponding critical temperature which
separates the two phases of the model can be read directly

(14)

b2
c (N) = 8πN

N − 1
→ T

(N)
M-LSG = 2π

b2
c (N)

= T �
KTB

N − 1

N
.

For N → ∞ the magnetically coupled LSG behaves like a
massless 2D-SG model with the critical frequency b2

c = 8π .
In principle, one can try to determine the phase structure of
the LSG models relying on the dilute gas approximation as it
has been discussed in Ref. [43] for the 2-layer model. How-
ever, in this case a 2-stages RG procedure is required. In the
first step, the real space RG equations are integrated out from
the UV cutoff (a0 ∼ 1/Λ) to the effective screening length
λeff = 1/

√
2G = 1/

√
2J , where the topological defects are

taken into account with full flux. In the second RG step, from
λeff to infinity, an a priori assumption has been done by in-
troducing topological excitations with fractional flux and, con-
sequently, the predicting power of the RG approach has been
weakened. In the next sections we show that after an appropri-
ate rotation of layered models in the internal space, the dilute
gas RG results can be used to determine the phase structure of
LSG type models without using any a priori assumptions.

4. RG analysis for rotated models

After performing an O(N) rotation of the layered models
which diagonalizes the mass matrix, the rotated models do not
have interlayer interactions, consequently, the rotated fields can
be treated separately. Let us note that the rotation has gener-
ally been used for coupled two-dimensional models, e.g., for the
SU(N) Thirring model [5] and for the 2-flavor [3,4,14,15] and
for the N -flavor Schwinger models [8,13,17,18]. The details of
the rotation of the N -layer Josephson coupled LSG model has
also been discussed in Refs. [26,30]. Depending on the number
of the non-trivial mass eigenvalues, some of the rotated fields
have explicit mass terms (massive modes) and the other ones
are massless, SG-type fields [3,4,17]. For example, the dimen-
sionless potential of the rotated Josephson coupled LSG model
contains N − 1 massive fields

(15)ṼJ-rot =
N∑

n=2

1

2
M̃2

nα2
n +

∑
σ1,...,σN

w̃σ1,...,σN

N∏
n=1

eiσnbnαn,

with the rotated O(N) multiplet αT = OT ϕT where O repre-

sents the rotation with b2
1 = b2/N , b2

n>1 = b2/(n(n − 1)) and
the integer valued σn represent the charges of the topological
excitations. The rotated magnetic-type LSG model consists of
a single massive field

(16)ṼM-rot = 1

2
M̃2α2

1 +
∑

w̃σ1,...,σN

N∏
eiσnbnαn,
σ1,...,σN n=1
where M2 = NG and the amplitudes wσ1,...,σN
are different

for the Josephson and magnetic LSG models. At low energies,
below the mass-scale the quantum fluctuations are suppressed
by the mass terms producing a trivial scaling for the massive
modes [41], so, the massive modes can be considered perturba-
tively [30,41] and they do not influence the phase structure of
the rotated models. Therefore, one should only consider the re-
maining massless SG fields in order to determine the phases of
the layered system. At the lowest order of the perturbation the-
ory, all the massive modes are set to be equal to zero. In this
case the effective potential for the rotated Josephson type LSG
model reads as

(17)ṼJ-rot(α1) =
∑
σ1

w̃σ1e
iσ1b1α1,

and for the magnetically coupled LSG model the effective po-
tential is

(18)ṼM-rot(α2, . . . , αN) =
∑

σ2,...,σN

w̃σ2,...,σN

N∏
n=2

eiσnbnαn .

Let us consider the fundamental modes σn = ±1. The lin-
earized WH–RG equation (8) with Ṽ nn

k = ∂2
αn

Ṽk , for the ansatz
(17) and (18) leads to the linearized RG flow equations

(2 + k∂k)w̃J(k) = b2
1

4π
w̃J(k),

(19)(2 + k∂k)w̃M(k) = 1

4π

(
N∑

n=2

b2
n

)
w̃M(k),

exhibiting the solutions

w̃J(k) = w̃J(Λ)

(
k

Λ

)−2+ b2
N(4π)

,

(20)w̃M(k) = w̃M(Λ)

(
k

Λ

)−2+ (N−1)b2

N(4π)

,

where w̃J(Λ) and w̃M(Λ) are the initial values for the Fourier
amplitudes at the high energy UV cutoff Λ. The critical value of
the frequency parameter and the corresponding critical temper-
atures are found to be equivalent to Eq. (12) for the Josephson
and Eq. (14), for the magnetic case. Consequently, the dilute
gas RG results for the rotated models predict the same layer-
dependence of the critical temperature as that of obtained by
the mass-corrected RG for the original LSG-type models. This
proves that the dilute gas approximation is suitable to determine
the phase structure of rotated layered systems for low fugac-
ities. However, for b2 < b2

c , the fugacities ỹn are increasing
parameters, consequently, only the exact RG flow is able to de-
termine the phase structure of the LSG-type models in a reliable
manner.

5. Exact RG flow for the (N = 2)-flavor model

Since the results (12) and (14) have been established by an
UV approximated RG method, it is certainly worthwhile to
confirm the analysis by a numerical calculation of the exact
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RG flow. Moreover, if one considers the appearance or non-
appearance of spinodal instability during the blocking which
can be used as a signature of spontaneous symmetry breakdown
of the reflection symmetry, the numerical solution of the ex-
act WH–RG equation is required. Indeed, the full RG analysis
of the 1-layer LSG model at b2 = 4π discussed in Ref. [21]
provides us the tool to investigate the symmetric and the sym-
metry broken phases of the 1-flavor massive Schwinger model.
The critical value of the ratio (m

g
)c = 0.311 which separates

the two phases of the 1-flavor model has been determined by
the exact RG method which coincides with the results of other
calculations (see, e.g., [10]). If g 
 m, i.e., below the critical
ratio, the spinodal instability does not appear during the RG
flow, therefore, the reflection symmetry remains unbroken. This
is the consequence of the trivial scaling of the Fourier ampli-
tudes below the mass-scale. However, for g � m, i.e., above
the critical value, the spinodal instability always appears. One
may assume a similar phase structure for the multi-layer model,
however, it has been argued in the literature [8,13,17] that the
low-energy behavior of the multi-flavor Schwinger model is dif-
ferent depending on whether N = 1 or N � 2. Our aim here
is to clarify this issue by the numerical solution of the exact
WH–RG equation derived for the 2-layer LSG model. We will
show that spinodal instability always appears for the 2-layer
LSG model for b2 = 4π .

We determine numerically the dimensionless effective po-
tential Ṽeff(ϕ1, ϕ2) for the double-layer LSG model as the limit
k → 0 of the dimensionless blocked potential

(21)Ṽk(ϕ1, ϕ2) = 1

2
G̃k(ϕ2 − ϕ1)

2 + Ũk(ϕ1, ϕ2),

where Ũk(ϕ1, ϕ2) is an arbitrary periodic function of the fields
(with Z2 symmetry) including all the Fourier modes generated
during the RG flow. In order to consider the effect of the higher
Fourier modes, which were not taken into account in the pre-
viously utilized linearized and mass-corrected linearized WH–
RG approach, we use the following ansatz for periodic part of
the blocked potential

Ũk = ũ01(k)
[
cos(bϕ1) + cos(bϕ2)

] + ũ11(k) cos(bϕ1) cos(bϕ2)

(22)+ ṽ11(k) sin(bϕ1) sin(bϕ2),

with the fundamental mode ũ01 = ũ10 = ỹ. Inserting the ansatz
(21) into the exact WH–RG equation (6) and separating the pe-
riodic and non-periodic parts, one arrives at the RG equation
for the periodic part, see Eq. (17) of Ref. [31]. For techni-
cal reasons, it is more convenient to consider derivative of the
WH–RG equation with respect to one of the field variables. By
Fourier decomposition, this RG equation can be reduced to a
set of ordinary differential equations for the couplings ũ01, ũ11
and ṽ11,

(23)

A

(
Dkũ01
Dkũ11
Dkṽ11

)
= b2

4π

⎛
⎝ −2(1 + G̃)ũ01 + b2ũ01ũ11

−2(1 + G̃)ũ11 + 2G̃ṽ11 + b2ũ2
11

−2(1 + G̃)ṽ11 + 2G̃ũ11

⎞
⎠ ,

where Dk ≡ (2 + k∂k) and element of the matrix A are A
11

=
−2(1 + 2G̃) + b4

(ũ2 − ṽ2 ), A = A = −(1 + 2G̃), A =
2 11 11 22 33 12
Fig. 1. The exact RG scaling of the dimensionless coupling constants ũ01, ũ11
and ṽ11 of the double-layer LSG model is represented graphically for various
frequency parameters. The mass scale is M/Λ = √

0.002. The full, dotted and
dashed lines correspond to ũ01, ũ11 and ṽ11 respectively. Spinodal instability
(kSI/Λ) appears below the mass scale. For increasing value of b2 the momen-
tum scale kSI tends to zero and vanishes at b2 = 16π . Below kSI the WH–RG
equation (6) looses its validity and the tree-level RG relation (Eq. (13) of [31])
has to be used which is not discussed here.

A
21

= b2(1 + G̃)ũ01 − b4

4 ũ01ũ11, A
13

= A
31

= b4

4 ũ01ṽ11, and
A

23
= A

32
= 0. We invert the matrix A and solve the RG flow

equations for the Fourier amplitudes ũ01, ũ11 and ṽ11 numeri-
cally, by a fourth order Runge–Kutta method, whose numerical
stability was verified by varying the step size. The main advan-
tage of the numerical solution of the WH–RG flow equation
(23) is that all the non-linear terms are kept. The numerically
determined scaling of the couplings ũ01(k), ũ11(k) and ṽ11(k)

can be compared to the corresponding approximate UV scal-
ing laws. The results are the followings. The mass-corrected
UV scaling law (10) for the fundamental mode (u01) coin-
cides with the numerically obtained one. For the example, for
b2 = 12π , the deviation between the numerical solution of the
exact WH–RG equation and the solution of the mass-corrected
UV linearized WH–RG equation at the scale k = 1.0 × 10−5

is 9.69 × 10−7. This coincidence demonstrates that the flow of
the fundamental coupling ũ01 is well described by the mass-
corrected UV scaling law if no spinodal instability appears
during the blocking. Therefore, we find that for low fugacities
(small fermion mass), the phase structure of the double-layer
LSG model obtained numerically is the same as that predicted
by the extrapolation of the mass-corrected UV scaling laws, be-
cause the higher harmonics do not modify the scaling of the
fundamental mode (see Figs. 1 and 2). The IR behavior of the
higher harmonics and consequently the effective potential can
only be determined by the numerical solution of the exact WH–
RG equation when all the non-linear terms are kept. For exam-
ple, the UV approximated RG flow is not able to determine the
sign changes (see the peaks of the dotted and dashes lines in the
figures) of the higher harmonics. According to the exact RG
flow, in the IR limit u11 and v11 coincide independently of their
initial values at the UV cutoff (see Fig. 2). Therefore, the low-
energy effective potential of the 2-layer LSG model determined
by the exact RG approach is

Ṽeff = G̃

2
(ϕ2 − ϕ1)

2 + ũ01
[
cos(bϕ1) + cos(bϕ2)

]
(24)+ w̃11 cos(bϕ1 − bϕ2),
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Fig. 2. The scaling of the dimensionless coupling constants of the double-layer
LSG model is shown for two different frequencies b2 = 10π and b2 = 18π and
for the mass scale M/Λ = √

0.002. The UV (M � k) and IR (k � M) regions
are separated by the mass eigenvalue. The scaling of the fundamental mode ũ01
(full line) depends on the frequency, increasing (relevant) for b2 < 16π and
decreasing (irrelevant) for b2 > 16π . The initial values and consequently the
UV scalings are different for ũ11 (dotted) and ṽ11 (dashed) but in the IR region
the trajectories are coincides resulting in a trivial tree-level scaling (∼ k−2)
which is independent of the frequency.

with w̃11 ≡ ũ11 = ṽ11 which corresponds to the massive mode
in the rotated form of the model, hence, w11 has a trivial tree-
level IR scaling (∼ k−2) which is independent of the frequency
b2. The numerical solution of the exact WH–RG equation
shows (Fig. 1) that for the 2-layer LSG model with b2 = 4π ,
the spinodal instability (SI) always appears during the RG flow
in contrary to the 1-layer model where the appearance of SI
can be avoided for sufficiently small initial value for the fugac-
ity. For the 1-flavor model for low fugacity, the SI cannot be
detected below the mass scale since the presence of the mass
term predicts a trivial tree-level scaling for all the Fourier am-
plitudes. For the 2-flavor model, below the mass scale, only the
massive modes have trivial scalings but not for the fundamental
one (u01). Hence, the appearance of SI is unavoidable.

6. Summary

In this Letter we investigated the phase structure and the
low-energy behavior of the bosonized multi-flavor Schwinger
model (2) by means of the Wegner–Houghton RG method. The
Bose form of the multi-flavor model consists of 2D sine-Gordon
fields coupled by an appropriate mass matrix (4) which has
also been used to describe the vortex properties of magnetically
coupled layered superconductors [24]. Another definition (see
Eq. (5)) for the mass matrix of the multi-flavor, i.e., layered
sine-Gordon model has also been discussed which is based on
discretization of the 3D sine-Gordon model [26]. Let us note,
that the layered model with the mass matrix (5) can in principle
also be considered as a Bose form of a fermionic model as it
has been argued in [26,30], however not that of the multi-flavor
Schwinger model (1).

It has been shown that in the limit of small fermion mass
the linearized RG flow (i.e., the dilute gas approximation) is
sufficient to determine the phase structure of the multi-flavor
model in a reliable manner, if it has been rotated by a suitable
rotation in the internal space which diagonalizes the mass ma-
trix. This receives important application in condensed matter
physics where the usual RG techniques are based on the dilute
gas approximation. For example, using the idea of rotation the
vortex dynamics of magnetically coupled layered superconduc-
tors can be considered by means of dilute gas RG methods and
no two-stages RG [43] is required. The calculation of the exact
Wegner–Houghton RG flow of the 2-flavor (i.e., 2-layer) lay-
ered sine-Gordon model, by a numerical approach including
higher-order Fourier modes confirms that the mass-corrected
UV scaling law (i.e., the linearized RG flow for the rotated
model) is sufficient to determine the phase structure of the lay-
ered sine-Gordon model in the low fugacity (small fermion
mass) limit.

The rigorous RG study of the layered sine-Gordon model
verifies that the low energy effective potential of the bosonized
multi-flavor Schwinger model is a sine-Gordon type model
which undergoes a KTB-type phase transition at the flavor-
number dependent critical frequency b2

c (N) = 8πN/(N − 1).
In the limit N → ∞, the layered sine-Gordon model tends to
the two-dimensional sine-Gordon theory with the critical fre-
quency b2

c = 8π . Therefore, in the large N limit, the low en-
ergy behavior of the bosonized multi-flavor Schwinger model
becomes independent of the boson mass, i.e., the coupling
g. This is consistent with the flavor-dependence of the chi-
ral condensate 〈ψ̄,ψ〉 ∼ m(N−1)/(N+1)g2/(N+1), and the mass
gap Mgap ∼ mN/(N+1)g1/(N+1) which are independent of g if
N → ∞ [17]. The numerical solution of the exact RG equation
shows that in case of the 2-flavor (i.e., 2-layer) layered sine-
Gordon model with b2 = 4π , the spinodal instability always
appear during the RG flow in contrary to the 1-layer model
where the appearance of spinodal instability can be avoided for
sufficiently small initial value for the fugacity. Consequently,
for N > 1 the reflection symmetry always suffers breakdown in
both the weak and strong coupling regimes, in contrary to the
N = 1 case, where it remains unbroken in the strong coupling
phase.

Finally, let us mention that the extension of the RG analysis
presented in this Letter can also be used to consider the θ -
dependence of the multi-flavor model and to map out the phase
structure of the multi-frequency sine-Gordon type models [44].
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