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Abstract Normally, the highly interacted MIMO process – such as two coupled distillation

columns – is decoupled into a group of independent loops and a conventional PID controller is

assigned to control each loop. Tuning of conventional PID controllers is very difficult. Scientists

consider tuning of PID controllers is an art more than science. In this paper, fuzzy PID controllers

are proposed to replace the conventional ones. Moreover, the values of the parameters of the pro-

posed fuzzy PID controllers are optimized using particle swarm optimization (PSO) technique. Sum

square errors (SSEs) – for different loops – are used as fitness functions for PSO. SSEs minimization

assures optimal values of different fuzzy PID controllers’ parameters. For the purpose of validation,

PSO is also used to optimize the design of conventional PID controllers. The simulation of the pro-

posed optimized fuzzy PID controllers proves their excellence in improving the transient and steady

state characteristics.
� 2012 Ain Shams University. Production and hosting by Elsevier B.V.
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1. Introduction

In the highly interactedMIMOprocess such as two coupled dis-
tillation columns, the specifications for top and bottom product

purity can be met through keeping the tray temperatures within
a specified range around their steady state values. Keeping the
temperatures of the different trays constant in the two-coupled

distillation columns process is one of the most important con-
trol actions in the chemical industries. Recently, many research-
ers have devoted much effort in this area. The process of the

two-coupled distillation columns can be decoupled into a group
of independent loops [1]. Temperature control for each loop can
be achieved via conventional PID control law [2]. Traditionally,
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the parameters of the conventional PID controller, i.e., Kp, Ti,
and Td are adjustable and should be tuned appropriately
according to the process dynamics. Consequently, the conven-

tional PID controller is hardly efficient to control the system
while the system is disturbed by unknown factors. Several meth-
ods for parameter tuning of non-fixed PID controller were

proposed [3–5].
Fuzzy set theory, which was introduced by Zadeh in 1965,

provides an effective method of dealing with the problem of

knowledge representation in an uncertain and imprecise envi-
ronment [6]. The conceptual framework of fuzzy logic is much
closer to human thinking than the traditional logic systems.
During the past years, fuzzy logic has been successfully applied

in chemical process control systems,motor drives systems, robot
systems, steam turbines systems, medicine diagnosis, and so on.
PID controllers can now be implemented using fuzzy set theory.

Particle swarm optimization (PSO) is a population based sto-
chastic optimization technique developed by Dr. Eberhart and
Dr. Kennedy in 1995, inspired by social behavior of bird flocking

or fish schooling [7,8]. PSO shares many similarities with other
evolutionary computation techniques such as Genetic Algo-
rithms (GAs) [9,10]. Compared to GA, the advantages of PSO

are that PSO is easy to implement and there are few parameters
to adjust. PSO has successfully applied in many areas such as
function optimization, artificial neural network training, fuzzy
system control, and other areas where GA can be applied. PSO

has alreadybeen anewand fast developing research topic [11–14].
The main aim of this research paper is to design optimal

fuzzy PID controllers for the decoupled distillation columns

process. PSO algorithm is used to determine the optimal
parameters’ values of the proposed fuzzy PID controllers.

2. The two-coupled distillation columns process

Distillation units are the most widely used in separation tech-
niques for fluid mixtures in chemical and petrochemical indus-

tries. Schematically, a distillation column is composed of a
cascade of trays between which liquid and vapor phases flow
in counter-current directions according to hydrodynamic dia-

grams depending on tray model. These interactions lead to a
mass transfer so that the less volatile components are recover-
able at the lower trays, whereas the lightest are recovered
mainly in the upper trays of the column in addition to the

condenser which is called distillate.
The main disadvantage of the distillation is its high-energy

requirements. Several techniques are used to overcome this

problem like integration of the distillation column with the
overall process where significant energy savings can be
reached, as the use of complex distillation arrangements such

as thermally coupled distillation sequences (TCDS), heat inte-
grated distillation systems, and the heat pumping techniques.
The thermally coupled distillation configurations have received
considerable attention because of their efficiency to reduce the

energy required for the separation of ternary mixtures. The
structure of the TCDS systems offers some control challenges
arising from the transfer of vapor (or liquid) streams between

the columns [15,16].
The model of a thermally coupled distillation column with

side withdrawal and an additional rectifying column that we use

for simulationpurposes has been derived in [17], where further de-
tails about the control of coupled columns can be found.
The plant consists of two coupled distillation columns,
main column (A) and rectifying column (B), shown in Fig. 1,
serving for the separation of a ternary mixture of component

(I) (the more volatile ‘‘methanol; MeOH’’), component (II)
(intermediate volatility ‘‘ethanol; EOH’’) and component
(III) (the less volatile ‘‘propanol; POH’’). The main column

consists of 42 stages (including boiler and condenser stage).
The side withdrawal is located at stage 11, and the feed enters
the column at stage 21. The rectifying column consists of 10

stages and an additional condenser stage, where almost pure
products can be withdrawn: methanol from the top of the main
column, propanol from the bottom of the main column and
ethanol from the top of the side column.

The model is derived under some typical assumptions:

(a) Chemical and thermal equilibrium on each stage.

(b) Constant liquid holdup on all stages.
(c) Negligible vapor holdup.
(d) Perfect mixing with ideal gas phase.

(e) Constant pressure throughout the columns.
(f) Total condenser behavior.
(g) Saturated feed and reflux liquid flows.

Thus, for any sequence, the control of the lightest compo-
nent of the ternary mixture was manipulated with the top re-
flux flow rate, the heaviest component with the re-boiler heat

duty and the control of the intermediate component, on the
other hand, depended on the reflux flow rate of the side recti-
fier. However changes in reflux also affect bottom product

composition and component fractions in the top product
stream are also affected by changes in heat input.

As described in [18] there are four manipulated variables

available for multivariable control as following:

(a) Heat input to the re-boiler (QE).

(b) The vapor flow rate in the vapor transfer line (SAB).
(c) The reflux ratio in the main column (RLA).
(d) The reflux ratio in the second column (RLB).

The temperature is measured on each tray of both columns
where it responds quickly to disturbances in opposite to con-
centration measurements which very often have dead times,

and cause further control problems, for these reasons plates
temperature are chosen as controlled variables. Thus there
are four temperature trays measurement taken as controlled

variables (outputs); T11, T30, T34 and T48.
3. The control scheme for the two-coupled distillation column

process

The manipulated variables of the process are QE, SAB, RLA
and RLB, where

QE: Heat added.
SAB: Steam goes from column A to column B.
RLA: Reflux produced from column A.

RLB: Reflux produced from column B.

While the outputs of the process are T11, T30, T34 and T48,

where;



Figure 2 Decoupling scheme for the two coupled distillation

column process.

Figure 1 The two coupled distillation columns process.
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T11: Temperature measured for tray 11.
T30: Temperature measured for tray 30.
T34: Temperature measured for tray 34.

T48: Temperature measured for tray 48.

The transfer matrix of the two thermally coupled distilla-

tion columns scheme with time constant in hours – given in
[18] – has the form:

HðsÞ¼

2:6
1:69sþ1

�6:098
3:5sþ1 � � � �4:99ð0:2sþ1Þ

ð4:5sþ1Þð0:06sþ1Þ
0:071
3:5sþ1

7:32ð1:05sþ1Þ
ð10:4sþ1Þð0:14sþ1Þ

�1:45
0:4sþ1 � � � �1:57ð0:23sþ1Þ

ð1:34sþ1Þð0:2sþ1Þ
�0:14
1:92sþ1

4:6ð0:53sþ1Þ
ð2:78sþ1Þð0:09sþ1Þ

�2:37ð0:23sþ1Þ
ð2sþ1Þð0:3sþ1Þ � � � �2:7

1:75sþ1
�0:36ð0:02sþ1Þ
ð2:47sþ1Þð0:04sþ1Þ

2:11
0:92sþ1

�2:11ð0:06sþ1Þ
ð2:38sþ1Þð0:05sþ1Þ � � � �1:75

2:16sþ1
�0:3ð1:89sþ1Þ

ð4:35sþ1Þð0:16sþ1Þ

2
6666664

3
7777775
ð1Þ

Keeping the tray temperatures T11, T30, T34 and T48 within
a specified range around their steady-state values is essential
for specifications of top and bottom product purity. As the

transfer function matrix demonstrates the highly interactions
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between manipulated variables and outputs. For proper con-
trol of the process, decoupling the process into four decoupled
loops is necessary. Some researches propose PSO based decou-

pling technique [1]. Such technique estimates the optimum val-
ues of steady state decoupling compensation matrix that
minimize the interactions between each manipulated variable

and its unpaired outputs. The decoupling technique yields to
four independent decoupled loops; namely loop (QE, T30),
loop (SAB, T11), loop (RLA, T34) and loop (RLB, T48).

Fig. 2 depicts the decoupling scheme for the two-coupled dis-
tillation column process.

Based on the decoupling scheme, the following relations are
satisfied in matrix form:

Yout ¼ HKM ð2Þ

where Yout is the actual outputs of the process, such that:

Yout ¼

Y1

Y2

Y3

Y4

2
6664

3
7775 ¼

T11

T30

T34

T48

2
6664

3
7775 ð3Þ

H is process transfer function matrix, given before in Eq. (1). K
is optimum steady state decoupling compensation matrix esti-
mated in [1], such that:

K ¼

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

2
6664

3
7775

¼

1 0:1788 0:0608 �0:0078
�1:9273 1 �0:7906 0:4555

2:9263 0:8865 1 �0:5466
3:5183 �10:9464 0:1548 1

2
6664

3
7775

ð4Þ
Figure 3 Step change
M is the manipulated inputs, such that:

M ¼

M1

M2

M3

M4

2
6664

3
7775 ¼

QE

SAB

RLA

RLB

2
6664

3
7775 ð5Þ

Fig. 3 illustrates the all process inputs subjected to step

changes originating at different time instants to check the
behavior of the decoupled loops. Fig. 4 exposes the outputs
of different decoupled loops in case of no controllers.

Step change in specific manipulated variable causes some
small and narrow perturbations (spikes) in its unpaired out-
puts, while; causes direct step response in its own-paired out-
put. From this point of view, the decoupling scheme proves

its suitability to control the four decoupled loops using four
individual controllers.

The following matrix form fulfills the relations of the con-

trol scheme:

Yout ¼ HKGc½R� Yout� ð6Þ

where R is the reference temperature set values, such that:

R ¼

R1

R2

R3

R4

2
6664

3
7775 ð7Þ

Gc is the controller transfer function matrix, such that:

Gc ¼

Gc11 0:0 0:0 0:0

0:0 Gc22 0:0 0:0

0:0 0:0 Gc33 0:0

0:0 0:0 0:0 Gc44

2
6664

3
7775 ð8Þ
s in system inputs.



Figure 4 The outputs of different decoupled loops in case of no controllers.
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where Gc11, Gc22, Gc33, and Gc44 are conventional PID control-

lers for the four decoupled loops, such that:

Gc11 ¼ KpðQE;T30Þ 1þ 1

TiðQE;T30Þs
þ TdðQE;T30Þs

� �
ð9-aÞ

Gc22 ¼ KpðSAB;T11Þ 1þ 1

TiðSAB;T11Þs
þ TdðSAB;T11Þs

� �
ð9-bÞ

Gc33 ¼ KpðRLA;T34Þ 1þ 1

TiðRLA;T34Þs
þ TdðRLA;T34Þs

� �
ð9-cÞ

Gc44 ¼ KpðRLB;T48Þ 1þ 1

TiðRLB;T48Þs
þ TdðRLB;T48Þs

� �
ð9-dÞ

where KpðQE;T30Þ;TdðQE;T30Þ;TiðQE;T30Þ; . . . ;KpðRLB;T48Þ;TdðRLB;T48Þ;

TiðRLB;T48Þ are the controllers’ tuning parameters for different

loops.
Fig. 5 presents the detailed complete control scheme of the

two-coupled distillation column process. The values of kijs
represent the optimal values of compensation matrix for
input-output proper pairing, while; Gijs are the elements of
the process transfer function matrix H.
4. Proposed design of fuzzy PID controller

The tuning of the conventional PID controller is an expert

based process. To overcome the difficulties of conventional
PID controller various types of modified conventional PID
controllers such as auto-tuning and adaptive PID control-
lers were developed [19–21]. In addition, a class of non-

conventional type of PID controller employing fuzzy logic
has been designed and simulated for this purpose
[22–30].
A fuzzy logic system (FLS) is a rule-base system that imple-
ments a nonlinear mapping between its inputs and outputs.
FLS is characterized by four modules; namely: Fuzzifier, rule

base, fuzzy reasoning, and Defuzzifier. A fuzzy PID controller
is a fuzzified proportional- integral- derivative controller. It
acts on the same input signals, but the control strategy is for-

mulated as fuzzy rules.
Fuzzy PID tuning is no longer a pure knowledge or expert

based process and thus has potential to be more convenient to

implement. The approach taken here is to exploit fuzzy rules
and reasoning to generate controller parameters. The PID con-
troller parameters (Kp, Ti, Td) are determined based on the cur-
rent error e(t) and its first difference De(t), where

eðtÞ ¼ rðtÞ � youtðtÞ ð10Þ

DeðtÞ ¼ eðtÞ � eðt� sÞ ð11Þ
where s is the sampling time.

4.1. Fuzzification of e and De

It is assumed that e and De are in prescribed ranges [emin, emax]
and [Demin, Demax], respectively. For convenience, e and De are
normalized into the ranges between zero and one by using the

following linear transformation:

enðmÞ ¼
eðmÞ � emin

emax � emin

ð12Þ

DenðmÞ ¼
DeðmÞ � Demin

Demax � Demin

ð13Þ

Finer fuzzy partition with seven terms [31] is used to assign

the domain of each linguistic value for actual numerical values
of e and De. The finer fuzzy partition with seven terms assigns
the following linguistic values:



Figure 5 Detailed complete control scheme of the decoupled distillation process with all references, outputs and manipulated variables.

Table 1 Fuzzy tuning rules for Kpn.

Den(i)

NB NM NS ZE PS PM PB

en(i) NB B B B B B S B

NM B B B B S B B

NS B B B B B B B

ZE B B B B B B B

PS B B S B B B B

PM B B S B B B B

PB B S B B B B B

Table 2 Fuzzy tuning rules for Tdn.

Den(i)

NB NM NS ZE PS PM PB

en(i) NB B B B B B B S

NM B B B B B B S

NS B B B B B S S

ZE S S S B S S S

PS S S B B B B B

PM S B B B B B B

PB S B B B B B B
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NB: negative big.
NM: negative medium.
NS: negative small.

ZE: zero.
PS: positive small.
PM: positive medium.

PB: positive big.

A triangular membership function is assigned to each lin-

guistic value. The base of each triangle specifies the domain
of each linguistic value.

4.2. Fuzzification of the controller parameters

It is assumed that Kp and Td are in prescribed ranges
[Kp,min, Kp,max] and [Td,min, Td,max], respectively. For conve-
nience, Kp and Td are normalized into the range between zero

and one by the following linear transformation:

Kpn ¼
ðKp � Kp;minÞ
ðKp;max � Kp;minÞ

ð14Þ

Tdn ¼
ðTd � Td;minÞ
ðTd;max � Td;minÞ

ð15Þ

In the proposed scheme, PID parameters are determined based
on the current error e(t) and its first difference De(t). The inte-
gral time constant is determined with constants, i.e.,

Ti ¼ aTd ð16Þ

The linguistic values for Kpn and Tdn are assumed to be either
small or big and assigned the following membership functions:

lsmall ¼
�1
4

lnðyÞ ð17Þ

lbig ¼
�1
4

lnð1� yÞ ð18Þ
where y= Kpn or Tdn

The linguistic values for a are assumed to be either S

(small), MS (medium small), M (medium) or B (big). These
fuzzy sets are represented in singleton membership functions.

4.3. Rule base, fuzzy reasoning and defuzzification

The normalized gain parameters Kpn, Tdn are determined using
set of fuzzy rules having the following form:



Table 3 Fuzzy tuning rules for a.

Den(i)

NB NM NS ZE PS PM PB

en(i) NB S S S S S S S

NM MS MS S S S MS MS

NS M MS MS S MS MS M

ZE B M MS MS MS M B

PS M MS MS S MS MS B

PM MS MS S S S MS MS

PB S S S S S S S

Figure 6 Adjustable parameters of the antecedent membership

functions.
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If enðiÞ is A1l and DenðiÞ is A2l; then Kpn is B1l;Tdn is B2l;
and a is B3l:
Figure 7a Membership fun

Table 4 The adjustable parameters of PSO-based conventional and

PSO-based conventional

PID controller

No. of adjustable parameters 3

Parameters Kp Ti

Range of each parameter [�200, 200] [0, 200]
where en(i) is the ith observation for normalized error, Den(i) is
the ith observation for normalized first difference in error, A1l

is the fuzzy set for input (1) and lth rule, B1l is the fuzzy set for
output (1) and lth rule, l is the equal to 1, 2, 3, . . . , R and R is

the number of rules.
The rule base for the normalized gain parameters are given

in Tables 1–3.
The truth-value of the lth rule is obtained by using the t-

norm as the end connector for antecedent part, as follow:

lAlðxÞ ¼ lA1l
ðxi1Þ � lA2l

ðxi2Þ ð19Þ

where lAlðxÞ is the resultant membership function of the

t-norm, xi1 is the ith observation for input number 1 and equiv-
alent to en(i), xi2 is the ith observation for input number 2 and
equivalent to Den(i), A1l is the fuzzy set for input number 1

and lth rule, A2l is the fuzzy set for input number 2 and lth rule.
Hence, the final expression for the membership function of

the fuzzy set by the lth fuzzy rule when an engineering imple-

mentation operator is used, will be

lBl�ðyÞ ¼ lBlðyÞ � ½lA1l
ðxi1Þ � lA2l

ðxi2Þ� ð20Þ

where y: is either the normalized output Kpn, Tdn or a, lBlðyÞ
is the membership function for certain output in the conse-
quent and lth rule, lBl� ðyÞ is the resultant membership function
of the implication for certain output in the consequent and lth
rule.

Applying Eq. (20) to each rule of the R rules in the rule base
yields a fuzzy set output for each one of the rules. These R fuz-
zy sets (lBl� ) need to be connected to generate the total output
ctions for Kpn and Tdn.

fuzzy PID Controllers.

PSO-based fuzzy PID controller

42 (14 membership functions

X 3 adjustable parameters for each

membership functions)

Td a b c

[0, 200] [0, 1] [0, 1] [0, 1]



Figure 7c The initial antecedent membership functions for all loops.

Figure 7b Different membership functions of a for all loops.
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fuzzy set lY(y). It might seems reasonable to connect the rules
output fuzzy sets using a t-conorm, that is to connect them
taking the union of the output fuzzy sets. In order to be used
in the real world, the fuzzy output needs to be interfaced to the

crisp domain by the defuzzifier.
Calling dl is the center of gravity of fuzzy set Bl*output of

the lth rule, the output of the center of area (COA) defuzzifier

is given by:

ydn ¼
PR

l¼1dllBl� ðdlÞPR
l¼1lBl� ðdlÞ

ð21Þ
where ydn is either Kpn or Tdn.
For notational ease, we can define

�n
i¼1ai ¼ a1 � a2 � . . .� an ð22Þ

Hence, we rewrite Eq. (21) as follow,

ydnðxiÞ ¼ yðxi1; xi2Þ ¼
PR

l¼1dl½lBlðdlÞ�2
j¼1lAjl

ðxijÞ�PR
l¼1½lBlðdlÞ�2

j¼1lAjl
ðxijÞ�

ð23Þ

Fuzzy set Ajl is the fuzzy set corresponding to the jth input

variable and for the lth rule. In general, for each input (i.e., lin-
guistic variable) the universe of discourse is partitioned into



Figure 8a The final antecedent membership functions for loop (QE, T30).

Figure 8b The final antecedent membership functions for loop (SAB, T11).
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fuzzy sets (e.g., negative big, negative medium, large, negative

small, zero, positive small, positive medium, positive big) that
could correspond numeric indices (e.g., respectively 1, 2, 3, 4,
5, 6, 7). This second index l and with values in the set of numbers

describing the partition of the input space. In more formal
terms, if the jth input is partitioned into kjmembership functions
where each of one uniquely identifiable with an integer between
1 and kj then the fuzzy set for the jth input in the lth rule should

be Ajk(j,l) where k(j, l) is a function k:{1, 2} · {1, 2, . . ., R} fi N,
where N is the set of integers. More specifically 1 6 k(j, l) 6 kj.
Moreover, we can ease the notation if we denote by lij(x) the
membership function for Aij. The same discussion holds for
the consequent part of the FLS. In this case, we define
h(l), h:{1, 2, . . ., R} fi {1, 2,. . ., H}, where H is the number of

membership functions defined for the consequent. Note that
the function k(j, l) and h(l) univocally describe the rule base.
With thismodified andmore precise notation, Eq. (23) becomes:

ydnðxiÞ ¼ yðxi1; xi2Þ ¼
PR

l¼1dhðlÞ½lBhðlÞ ðdhðlÞÞ�2
j¼1lAjkðj;lÞ

ðxijÞPR
l¼1½lBhðlÞ ðdhðlÞÞ�2

j¼1lAjkðj;lÞ
ðxijÞ�

ð24Þ



Figure 8c The final antecedent membership functions for loop (RLA, T34).

Figure 8d The final antecedent membership functions for loop (RLB, T48).
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Once the values of Kpn, Tdn and a are obtained, the PID

controller parameters are calculated from the following
equations:

Kp ¼ ðKp;max � Kp;minÞ � Kpn þ Kp;min ð25Þ

Td ¼ ðTd;max � Td;minÞ � Tdn þ Td;min ð26Þ

Ti ¼ aTdn ð27Þ
5. Particle swarm optimization technique

Particle swarm optimization (PSO) is a population-based
search algorithm initialized with a population of random

solutions, called particles. Each particle in PSO has its
associated velocity. Particles fly through the search space with
velocities, which are dynamically adjusted according to their

historical behaviors. Remarkably, in PSO, each individual in
the population has an adaptable velocity (position change),

according to which it moves in the search space.
Suppose that the search space is D-dimensional, then the

ith particle of the swarm can be represented by a D-dimen-
sional vector Xi = [xi1xi2...xiD]

T. The velocity of the particle

can be represented by another D-dimensional vector
Vi = [i1i2...iD]

T. The best previously visited position of the ith
particle is denoted as Pi = [pi1pi2...piD]

T. Defining ‘‘g’’ as the

index of the best particle in the swarm, where the gth particle
is the best, and let the superscripts denote the iteration num-
ber, then the swarm is manipulated according to the following

two equations.

zþ1
id ¼ wzþ1

i
n
id þ c1r

z
1ðpzid � xz

idÞ þ c2r
z
2ðpzgd � xz

idÞ ð28Þ

xzþ1
id ¼ xz

id þ zþ1
id ð29Þ

where d = 1, 2, . . . , D; i= 1, 2, . . . , M, and M is the size of
the swarm (i.e. number of particles in the swarm); c1, c2 are



Figure 9a The evolution of different fitness functions for PSO-based conventional PID controller.

Figure 9b The evolution of different fitness functions for PSO-based fuzzy PID controllers.
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the positive values, called acceleration constants; r1, r2 are the
random numbers uniformly distributed in [0,1]; z = 1, 2, . . . ,
Z determines the iteration number; Z is the maximal times of

iteration; w is the inertia weight function, denoted as:

wz ¼ 0:5z

1� Z
þ 0:4� 0:9Z

1� Z
ð30Þ
The inertia weight decreases from 0.9 to 0.4 through the run

to adjust the global and local searching capability. The large
inertia weight facilities global search abilities while the small
inertia weight facilities local search abilities.

The PSO algorithm is simple in concept, easy to implement
and computational efficient. The original procedure for imple-
menting PSO is as follows:



Table 5 The optimal parameters values of PSO-based conventional and fuzzy PID controllers.

Loops PSO-based conventional PID controller PSO-based fuzzy PID controller

Parameters Parameters

Kp Ti Td Kp Ti Td

Loop (QE, T30) 0.9554 50.0 1.0 0.01001 0.89968 0.085501

Loop (SAB, T11) �1.0 100.0 0.0512 �2.5 0.004 25.0

Loop (RLA, T34) �50.0 50.0 0.0001 �52.5 0.0250 2.5001

Loop (RLB, T48) �150.0 50.0 0.0001 �175.0 0.008 25.0

Figure 10 The response of the four decoupled loops using PSO-based fuzzy PID controllers.
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Step 1: Initialize a population of particles with random
positions and velocities on D dimensions in the problem

space.
Step 2: For each particle, evaluate the desired optimization
fitness function in D variables.

Step 3: Compare particle’s fitness evaluation with its pbest
(best previously visited positions). If current value is better
than pbest, then set pbest equal to the current value, and Pi

equals to the current location Xi in D-dimensional.
Step 4: Identify the particle in the neighborhood with the
best success so far, and assign its index to the variable g.
Step 5: Change the velocity and position of the particle

using Eqs. (28)–(30).
Step 6: Loop to step (2) until a criterion is met, usually a suf-
ficiently good fitness or a maximum number of iterations.

6. Proposed design of PSO-based optimal fuzzy PID controller

Optimal design for both conventional and fuzzy PID control-
lers can be fulfilled using PSO technique. Based on the PSO
technique, the PID controller can be tuned to some parameters
values that minimize a predefined fitness function. Sum
Squared Error (SSE) is used as a fitness function in this re-

search paper, SSE is given as follows:
SSE ¼
Pn
i¼1
ðrðiÞ � youtðiÞÞ

2 ð31Þ

where r(i) is the step input at sample instant i, yout(i) is the ac-
tual output of the process at sample instant i, n is the number
of samples.

For conventional PID controller, fitness function is evalu-
ated directly by tuning the parameters Kp, Ti, and Td. For
our proposed fuzzy PID controllers [32,33], tuning of Kp, Ti,

and Td is provided in an indirect way through the adjustment
of membership functions of en and Den (i.e.: antecedent mem-
bership functions). The adjustable parameters of the anteced-

ent triangular membership functions are the centers and the
support as shown in Fig. 6.

The mathematical expression of the triangular antecedent
function is:



Figure 11 The response of the four decoupled loops using PSO-based conventional PID controllers.

Figure 12 The detailed outputs at instants of step input changes for PSO-based conventional PID (- - -) and PSO-based fuzzy PID (-).
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fðx; a; b; cÞ ¼

0; x 6 a
x�a
b�a ; a 6 x 6 b
c�x
c�b ; b 6 x 6 c

0; c 6 x

8>>><
>>>:

9>>>=
>>>;

ð32Þ
In terms of antecedent membership function parameters wa

– from all parameters w – and based on the detailed analysis of

the proposed design of fuzzy PID controller, the normalized
values of controller parameters nominated ydn can be formu-
lated as follows:



Table 6 The minimized SSE for different loops in case of

PSO-based conventional and fuzzy PID controllers.

Loop PSO-based

conventional PID

controller

PSO-based

fuzzy PID

controller

SSE SSE

(QE, T30) 0.046292 0.007658

(SAB, T11) 0.002498 0.000397

(RLA, T34) 0.003850 0.001307

(RLB, T48) 0.077939 0.035988
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ydnðxi;wÞ ¼ yðxi1; xi2;waÞ

¼
PR

l¼1dhðlÞ½lBhðlÞ ððdhðlÞÞ�n
j¼1lAjkðj;lÞ

ðxij;waÞÞPR
l¼1½lBhðlÞ ðdhðlÞÞ�n

j¼1lAjkðj;lÞ
ðxij;waÞ�

ð33Þ

The output of the process yout as a function of antecedent
membership function parameters can be calculated at different
sampling instants. The SSE fitness function given in Eq. (31)
can be calculated and evaluated by PSO with seeking for its

minimum value. In addition to fitness function, the following
parameters should be defined to PSO algorithm.

(a) Sampling time.
(b) Number of samples.
(c) Dimension (i.e.: number of adjustable parameters in

antecedent membership function).
(d) Maximum number of iterations.
(e) Number of particles in the swarm (size of the swarm).
(f) Range of variables.

7. Results and discussion

The proposed optimal design of PSO-based fuzzy PID control-
ler is simulated and applied on the four decoupled loops of the
two-coupled distillation columns process. For validation pur-

poses, the optimal design of PSO-based conventional PID con-
troller is also simulated and applied on the same process. For
all loops; sampling time is 0.1 hour, number of samples is 3001,

max number of iterations is 1000, dimension is 3 for conven-
tional PID and 42 for fuzzy PID, and number of particles is
20 for conventional PID and 70 for fuzzy PID.

The adjustable parameters of PSO-based conventional and
fuzzy PID controllers are given in Table 4.

The consequent parameters of membership functions for
Kpn and Tdn are identical for all loops and presented in

Fig. 7a, while different membership functions for a are as-
signed to each loop as scrutinized in Fig. 7b.

The parameters of the antecedent membership functions of

fuzzy PID controller for all loops are adjustable. The initial
antecedent membership functions assigned to all loops are
identical and shown in Fig. 7c.

Simulation of the proposed technique yields to the final
antecedent membership functions for different loops as illustr-
sted in Figs. 8a–8d.

The fitness functions (SSE) of different loops are evaluated
for both PSO-based conventional and fuzzy PID controllers.
Figs. 9a and 9b evolute the fitness functions in all iterations
for the later two cases.
Table 5 lists the optimal values of controllers’ parameters
for all loops which achieve minimum SSE in PSO-based con-
ventional and fuzzy. The noticed large difference between val-

ues of controllers’ parameters in both cases is mainly due to
random selection of adjustable parameters in both types of
controllers.

Fig. 10 simulates the responses of the four decoupled
loops using PSO-based fuzzy PID controllers to the inputs
given before in Fig. 3. Fig. 11 simulates the response in case

of PSO-based conventional PID controllers. Fig. 12 focuses
on the detailed transient responses at the instants of step in-
put changes for both PSO-based fuzzy and conventional
PID controllers.

Table 6 lists the minimized SSEs for different loops in case
of both PSO-based conventional and fuzzy PID controllers.

PSO-based fuzzy PID controllers prove their usefulness

over the PSO-based conventional PID ones. Figs. 10 and 11
prove that the performance of PSO-based fuzzy controllers is
much better than of PSO-PID ones. Although it gave a slower

response compared with PSO-PID due to its large number of
adjustable parameters, the perturbations (spikes) occurred in
unpaired outputs at the instant of change of specific input

are remarkably reduced in case of PSO-fuzzy controllers.
Although Fig. 12 monitors some oscillations at transient re-
sponses at instants of step input changes in PSO-based fuzzy
PID controllers, Table 6 clarifies remarkable reduction in

SSE for all loops compared to PSO-based conventional PID
ones.

8. Conclusion

The problem of controlling the two-coupled distillation col-
umns process is addressed in this paper, the before-hand four

decoupled loops of the process are studied. Fuzzy PID control-
ler is proposed to replace the conventional PID controller of
each loop. A transparent framework systematic approach is

suggested to optimize the design of each PID controller. The
PSO technique is used to provide optimal values of each fuzzy
PID parameters that minimize the SSEs for its loop. The pro-

posed PSO-based optimal fuzzy PID controllers are simulated
and validated by comparing with PSO-based optimal conven-
tional ones. The fuzzy controllers prove their feasibility and
superiority.
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