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a b s t r a c t

Cross-validation methodologies have been widely used as a means of selecting tuning
parameters in nonparametric statistical problems. In this paper we focus on a newmethod
for improving the reliability of cross-validation. We implement this method in the context
of the kernel density estimator, where one needs to select the bandwidth parameter so
as to minimize L2 risk. This method is a two-stage subsampling-extrapolation bandwidth
selection procedure, which is realized by first evaluating the risk at a fictional sample size
m (m ≤ sample size n) and then extrapolating the optimal bandwidth from m to n. This
two-stage method can dramatically reduce the variability of the conventional unbiased
cross-validation bandwidth selector. This simple first-order extrapolation estimator is
equivalent to the rescaled ‘‘bagging-CV’’ bandwidth selector in Hall and Robinson (2009)
if one sets the bootstrap size equal to the fictional sample size. However, our simplified
expression for the risk estimator enables us to compute the aggregated risk without any
bootstrapping. Furthermore, we developed a second-order extrapolation technique as an
extension designed to improve the approximation of the true optimal bandwidth. To select
the optimal choice of the fictional size m given a sample of size n, we propose a nested
cross-validation methodology. Based on simulation study, the proposed new methods
show promising performance across a wide selection of distributions. In addition, we also
investigated the asymptotic properties of the proposed bandwidth selectors.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cross-validationmethodology has long been a popular method for selecting tuning parameters in non and semiparamet-
ric models. However, it has also been criticized for its high variability and its corresponding tendency to overfit the data.
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This paper develops newmethods for the improvement of the conventional cross-validation procedures. It is based on a
blending ofU-statistic estimation and asymptotic theory. These newmethods are realized by estimating the cross-validation
risk with small training sets, then extrapolating the results to the desired sample size. The extrapolation step requires
some asymptotic theory, but only the rate of convergence, not any unknown constants. We will show that such a two-
stage procedure can dramatically reduce the high variability and overfitting that is the major liability of the conventional
unbiased cross-validation.

We view our results as part of the following paradigm: when one is estimating nonparametrically a statistical property
of samples of target size m, such as the risk inherent in using a particular model, then one can do a much more accurate
estimation when the target m is much smaller than the actual sample size n. The intuition is that there are many, many
more subsamples of size n/2, say, than there are subsamples of size n or n − 1.

Tomotivate our extrapolationmethodology, wewill here show how it works when used in risk estimation in the context
of nonparametric kernel density estimation. In the process we will also show that for this problem the risk function for
arbitrary m is surprisingly simple. In particular, cross-validation estimation at an arbitrary training sample size of m does
not require repeated subsampling at sizem, thereby greatly speeding up and improving accuracy of themethodswepropose.
We believe this to be a major new insight in the kernel density estimation literature.

To simplify notation, consider a univariate random variable X ∈ R. In statistical practice, we often know little about the
underlying distribution of X which is crucial in exploratory or inferential analysis (Silverman, 1986). So, our main task is to
estimate the unknown density function f (x) based on a set of observations. In this paper, we focus on the nonparametric
kernel density estimator (Fix and Hodges, 1951). Given an i.i.d. sample of size n, Xn = (X1, . . . , Xn), the kernel density
estimator at x is defined for a kernel K as

f̂h(x | Xn) = n−1
n

i=1

Kh(Xi − x) (x ∈ R), (1.1)

where h > 0 is called the bandwidth parameter. Here Kh(t) = h−1K(t/h) and function K is the kernel function. As the choice
of K does not greatly affect the density estimation (Hardle et al., 1994), throughout this paper we consider a commonly used
location kernel function, the Gaussian kernel.

Kh(x − x0) = (h
√
2π)−1e−(x−x0)2/(2h2) ∼ N(x0, h2). (1.2)

However, our proposed methodologies do not depend on the choice of K , and the theoretical results in this paper will be
stated in terms of an arbitrary symmetric kernel function K of order r (r ≥ 2). For the definition of the order of a kernel
function, please see Turlach (1993).

Although one has free choice of the kernel function in a density estimator, the choice of the bandwidth h is generally
viewed as much more crucial. In order to select the optimal smoothing parameter h, we need to evaluate how closely f̂h can
approximate f for a given data set. Most bandwidth selectors are based on first choosing a risk function that measures the
error made in using a particular bandwidth h. One can then estimate the risk function for a given data set and choose the
bandwidth that minimizes the empirical risk. Such bandwidth selectors are referred to as data-driven methods.

The main result of this paper is to propose a two-stage subsampling-extrapolation bandwidth selection procedure. This
work is closely related to the rescaled bagging cross-validation method of Hall and Robinson (2009) and the partitioned
cross-validation method of Marron (1987). Recent work involving bagging and subsampling in problems other than kernel
density estimation includes Meinshausen and Buhlmann (2010) and Shah and Samworth (2012). Unlike the bandwidth
selectors discussed in Park and Marron (1990) and Sheather and Jones (1991), which are based on asymptotic theory, our
proposed methodology is a hybrid of the cross-validation method and the asymptotic theory. As such it does not require
the estimation of R(f ′′) or a third-stage estimation of R(f ′′′). (By convention, we denote R(g) =


g2(x)dx for any given

function g .) Hence, it is more straightforward to implement than plug-in estimators. Most importantly, it can be used in a
wide variety of problems where plug-in methodology is not available.

We present an extensive simulation study in Section 4.1 to compare the proposed methods with the conventional
cross-validation estimator. It will be seen that our bandwidth selectors achieve a smaller expected integrated square
error that is much closer to the theoretical optimum than the standard cross-validation. Moreover, a comparison of
the proposed methods to indirect cross-validation (Savchuk et al., 2011, 2010; Mammen et al., 2012) can be found in
Section 4.2. In addition, we compare our methods to the asymptotic selection of the subsample sizem that was described in
Marron (1987).

2. U-statistic estimate of L2 risk

In this section, we will derive a simple U-statistic form estimator for the risk that arises from L2 distance. It is a
new representation for the unbiased risk estimator and enables us to calculate the aggregated risk at subsamples of size
m (m ≤ n) much more efficiently than the repeated bootstrapping done in Hall and Robinson (2009) or the partitioning
method used in Marron (1987).
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2.1. L2 distance-based assessment

Define the integrated square error (ISE) as

ISE(h) =

 
f̂h(x | Xn)− f (x)

2
dx. (2.1)

If one wants to evaluate f̂h over all possible samples of size n, one can consider the mean integrated squared error (MISE),
also known as the L2 risk.

RiskL2(h, n) = MISE(h) = EXn

 
f̂h(x | Xn)− f (x)

2
dx

. (2.2)

By Fubini’s theorem, the risk in (2.2) can be decomposed in the following fashion: RiskL2(h, n) =

EXn{f

2(x)−2f (x)f̂h(x)
+ f̂ 2h (x | Xn)}dx. Furthermore, one can omit terms independent of h and focus on the relative risk, denoted as RL2(h, n) =

−2EXn{

f (x)f̂h(x | Xn)dx} + EXn{


f̂ 2h (x | Xn)dx}. It can be shown by simple algebra that the first expectation in RL2(h, n)

can be represented as E{Kh(X1 −X2)}. Moreover, the second expectation equals E{(Kh ∗Kh)(X1 −X2)}+n−1E{(Kh ∗Kh)(0)−
(Kh ∗ Kh)(X1 − X2)}, where ∗ is the convolution operator.

If we denote

Ah(X1, X2) = (Kh ∗ Kh)(X1 − X2)− 2Kh(X1 − X2), (2.3)
Bh(X1, X2) = (Kh ∗ Kh)(0)− (Kh ∗ Kh)(X1 − X2), (2.4)

then

RL2(h, n) = E{Ah(X1, X2)} + n−1E{Bh(X1, X2)}. (2.5)

Note that the only dependence on sample size n on the right hand side of (2.5) occurs in the multiplier n−1. In the case
of Gaussian kernel, (Kh ∗ Kh)(X1 − X2) = K√

2h(X1 − X2) and (Kh ∗ Kh)(0) = 1/(2h
√
π). One can also denote MISE(h)

as

bias2(f̂h(t))dt +


Var(f̂ (t))dt . Then, E{Bh(X1, X2)} = n


Var(f̂h(t))dt corresponds to the integrated variance, and

E{Ah(X1, X2)} =

bias2(f̂h(t))dt −


f (t)2dt is the relative integrated squared bias.

Following the footsteps of Ray and Lindsay (2008) and Lindsay and Liu (2009), we propose to estimate the risk at sample
sizes m that may be much smaller than the actual size n. Our m < n paradigm motivates us to hypothesize that these
estimators will have much lower variability. Our simulations verify this. We also know that the cross-validation criterion
for bandwidth selection tends to choose the bandwidths that are too small, and so overfit the density (Loader, 1999). As we
will show, the new methodology particularly avoids the overfitting problem by reducing the chances of selecting a small
bandwidth. Throughout this paper, we usem to represent the subsample size, which we might also call the fictional sample
size. As we will see, it is closely related to the training sample size in cross-validation.

Denote the relative risk evaluated at fictional sizem as

RL2(h,m) = E{Ah(X1, X2)} + m−1E{Bh(X1, X2)}. (2.6)

This formula gives an important insight into the risk estimation problem. The only place the fictional size m appears is as a
coefficient. If we take the derivative of RL2(h,m) (2.6) with respect to h and set it equal to zero, we thereby identify h as a
potential minimum to the risk for thatm. We can invert this thinking and solve R′

L2
(h,m) = 0 with h fixed, thereby finding

them that leads to optimization of the risk.

m∗(h) = −
d
dh

E{Bh(X1, X2)}


d
dh

E{Ah(X1, X2)}. (2.7)

The uniqueness of the solution shows that for each h there is exactly onem for which it is potentially optimal. In particular,
if K is the Gaussian kernel and f is the standard normal, we have

m∗(h) =
{(h2

+ 1)(h2
+ 2)}3/2 − h3(h2

+ 2)3/2

2
√
2h3(h2 + 1)3/2 − h3(h2 + 2)3/2

. (2.8)

If we desire the optimal h for a particular fixedm0, we solve the inverse problemm0 = m∗(hopt) for hopt. This normal theory
m∗ curve (2.8) will be examined later in light of the asymptotic theory (see Fig. 1). For now we note that in the normal
examplem∗ is decreasing in h. It follows that the optimal bandwidth h for each m is a decreasing function ofm.

Remark 1. For difficult densities, the theoretical curvem∗(h) is not monotonic, and somanymethods based on asymptotics
are likely to fail at some sample sizes. For example, if the curve has the shape v, with two regions of decrease separated
by a region of increase, then for some values of m there will be three solutions in h to m = m∗(h). These will correspond
to two local minima to the risk curve and the local maximum in-between. The central region in which m∗(h) is increasing
corresponds to values of h that are never optimal for any value of m. For an example of this, see Fig. 6, where we show the
m∗(h) curve for the claw density that will be discussed in Section 4.1.
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Fig. 1. Sample size against bandwidth when f is N(0, 1) on the log–log scale.

2.2. An unbiased estimate for L2 risk

Because the relative L2 risk at fictional size m, RL2(h,m) (2.6), involves the unknown density function f , we cannot use
it directly to find the optimal bandwidth. In practice, one needs to first estimate the risk based on a set of observations
and then select an estimated optimal bandwidth by minimizing the estimated risk score. A straightforward (and unbiased)
estimation for RL2(h,m) is by constructing a U-statistic based on a kernel function of size two.

Define

UL2,m =


n
2

−1 
1≤i<j≤n

ψL2,h(xi, xj), (2.9)

where ψL2,h(x1, x2) = Ah(x1, x2)+ m−1Bh(x1, x2) is a symmetric kernel function of size two, with Ah and Bh defined earlier
in (2.3) (2.4). Because a general U-statistic is a function of the order statistics, UL2,m (2.9) therefore is the best unbiased
estimator for the relative risk in this nonparametric context (Fraser, 1954).

Note that UL2,m is equivalent to the unbiased cross-validation formula when m = n. That is, both of them are unbiased
estimates for the relative MISE and are functions of the order statistics (modulo terms that do not depend on h). In addition,
the un-rescaled bagging cross-validation bandwidth selector proposed byHall and Robinson (2009) is actually nothingmore
than the bandwidth selector based on (2.9) if one makes the bootstrap size equal to m. However, the simple expression for
our U-statistic risk estimator enables us to compute the aggregated risk much more efficiently than bootstrapping. First,
we can generally compute the complete U-statistics, being of order two, much more efficiently than subsampling subsets
of sizem. Secondly, the calculations can be done for allm at once, in effect.

If we minimize (2.9) over h by setting the derivative in h to zero, we have

m̂∗(h) = −


1≤i<j≤n

d
dh

Bh(xi, xj)
 

1≤i<j≤n

d
dh

Ah(xi, xj). (2.10)

This equation describes the dependence structure betweenm and h inminimizing the estimated L2 risk for a given sample of
size n. In practice, one can construct a U-statistic form estimate for the risk at a fictional sample sizem. Then, by minimizing
the U-statistic risk estimate one can obtain the optimal bandwidth choice for a given value of m. We call this the simple
subsampling bandwidth selector. We note that the empirical curve m̂∗(h) is not necessarily strictly decreasing in h. If this
happens, root selection rules must be applied.

Remark 2. It is easy to plot the empirical curve m̂∗(h) for any particular data set. If the empirical curve is not monotonic
decreasing in the region ofm values of interest, we would recommend against using extrapolation or plug-in methods.

3. Bandwidth selection procedures

In this sectionwewill examine severalways to usem < n risk estimation to improve performance in L2 riskminimization.
They will proceed in order of increasing sophistication in their use of asymptotic theory.
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3.1. Using risk at m to select bandwidth

The simplest way to use the reduced variability of the risk estimator for smaller values of m is to pick the bandwidth h
selected based on UL2,m(h). In addition to reducing variance in h estimation, however, one is introducing bias, and so one
must consider the trade-off that occurs between bias and variance.

We carried out a simulation study that indicated that as m decreased the optimal bandwidth hm became larger (see
the 2012 Pennsylvania State University Ph.D. thesis of Q. Wang which is available electronically from Pennsylvania State
University library). The average integrated square error decreased as one used fictional sizem < n untilm reached a certain
threshold, beyond which further improvement in MISE could not be achieved. For instance, in the standard normal case
half-sampling with m = n/2 gave us the smallest simulated MISE, with an improvement of about 12% over m = n for
samples of size n = 100. This conclusion agrees with the result in Hall and Robinson (2009).

Although using a fictional size m < n can help to reduce the variability of the bandwidth selector and therefore achieve
a smaller MISE, it turns out there are simple techniques to reduce this bias without increasing variance. We will show next
in Section 3.2 how to do this.

3.2. First-order extrapolation in selecting h

We now propose a two-stage, subsampling-extrapolation, approach in bandwidth selection. We will first develop a
first-order extrapolated bandwidth selector. Motivated by the rule-of-thumb criterion, the two pieces we combine are the
estimated optimal bandwidth at m < n and the rate of convergence of the estimator as n → ∞. Later we will offer further
refinements to this method. We will then provide a simulation comparison of all methods.

Recall the U-statistic form risk estimator, UL2,m (2.9), computed based on squared distance and evaluated at a fictional
sample size m. We denote the corresponding simple subsampling bandwidth selector as ĥL2,m, which minimizes the U risk
estimate at size m. Although ĥL2,m (m < n) was less variable than ĥL2,n, it tended to be biased larger than the optimal
bandwidth choice hopt at sample size n. This is due to the fact thatm∗(h) (2.7) is decreasing in h, and we have evaluated the
risk at a sizem less than the original sample size n.

Our goal is to take advantage of the small variability of the risk estimate at fictional size m < n and also try to remove
the incurred bias in ĥL2,m by referring to the asymptotic relationship betweenm and h on the log–log scale. We canmotivate
our approach using the following well-known theory. If the density f is known, the optimal bandwidth for minimizing the
asymptotic MISE based on an order-2 kernel can be written as

hopt(m) = m−1/5C(f ),
where C(f ) is a constant depending on f . A typical rule-of-thumb bandwidth selector estimates the constant C(f ) from the
data in some way. For example, if we assume that both the true distribution and the kernel function are Gaussian, we then
have ĥrot = 1.06σ̂m−1/5, where σ̂ is an estimate for the population standard deviation.

We have derived an explicit formula for finding m∗(h), the value of m for which h is optimal. This asymptotic formula
can be rearranged to say that, in the limit asm gets large, this relationship can be represented as

logm = C − 5 log ĥrot. (3.1)

Here C is a constant independent of the bandwidth ĥrot. This equation represents a straight-line relationship with slope −5
on the log–log scale. Onemay ask whether this simple linear relationship is a good approximation for the exact relationship
between logm∗(h) and log h found in (2.7). Fig. 1 displays the comparison between the rule-of-thumb criterion and the
optimal risk criterion on the log–log scalewhen the underlying distribution f is the standard normal, and the kernel function
K is Gaussian. It can be seen that for a fixed value of m the rule of thumb always yields a smaller bandwidth than the one
given by the exact risk curve, but their left hand asymptotes match.

Our derivation of (3.1) from the rule-of-thumb selection rule was heuristic. We therefore show more formally that this
relationship is valid for any arbitrary smooth kernel function K and density function f . The following lemma verifies this
statement. For proof, please see Appendix.

Lemma 1. Assume K is a smooth symmetric kernel function of order r (r ≥ 2), and f is a probability density function that is
(2r − 1)th order differentiable. By minimizing the L2 risk, we can obtain the explicit expression of the fictional sample size m for
which h would be optimal:

m∗(h) = −
d
dh

E{Bh(X1, X2)}


d
dh

E{Ah(X1, X2)},

where Ah(x1, x2) and Bh(x1, x2) are defined in (2.3) and (2.4). Moreover, it can be shown that

logm∗(h)+ (2r + 1) log h → constant, as h → 0.

And,

d logm∗(h)/(d log h) → −(2r + 1), as h → 0.
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Fig. 2. Sampling distributions of simple subsampling and first-order extrapolated bandwidth selectors. The vertical dashed line marks the actual optimal
bandwidth.

According to Lemma 1, the optimal risk curve approaches the rule-of-thumb straight line on log–log scale as log h →

−∞. In particular, when one considers a Gaussian kernel, the order of the kernel function r is 2. In this case, we would have
d logm∗(h)/(d log h) → −5 as h → 0. This confirms that the asymptotic slope of the optimal risk curve in Fig. 1 is indeed
−5, the same as the slope of the rule-of-thumb straight line.

As a result, if one knows the bandwidth selected for m, one simple way to remove the bias introduced by using m < n
is to extrapolate the bandwidth selected at size m to the optimal value at n based on the approximate linear relationship
between logm∗ and log h. We summarize the two-stage bandwidth selection procedure based on linear extrapolation as
follows:

1. Subsampling stage: Construct the U-statistic estimate for the L2 risk at a fictional size m (m ≤ n) and obtain the
subsampling bandwidth selector, denoted as ĥL2,m.

ĥL2,m = argmin
h>0

UL2,m(h). (3.2)

2. Extrapolation stage: Extrapolate ĥL2,m to an approximation for ĥL2,n by referring to the approximate linear relationship
between logm∗ and log h as discussed in Lemma 1. This gives the estimator

ĥ1 = (m/n)1/5 ĥL2,m. (3.3)

We call ĥ1 the first-order extrapolated bandwidth selector. Intuitively ĥ1 should have lowbiaswhenm is close ton andwhen
(log h, logm∗(h)) relationship in minimizing the L2 risk resembles a straight line. The fact that ĥ1 is a shrunken version of
ĥL2,m means that it has less variance and so, as we shall see, the variability of the bandwidth selector is reduced significantly
compared with the traditional cross-validation bandwidth selector.

For any particular density f there will exist an optimal choice of the fictional size m such that it optimizes the trade-off
between bias and variance of the bandwidth selector. Fig. 2 shows the density curves for the sampling distributions of the
simple subsampling bandwidth selector ĥL2,m and the first-order extrapolated bandwidth selector ĥ1 at different fictional
sample sizes m. These density curves were plotted based on drawing R = 500 samples of size n = 100 from the standard
normal distribution. This plot demonstrates graphically how the first-order extrapolation corrected for the bias incurred
by using m < n while simultaneously reducing variability over standard cross-validation (m = n). In particular, it greatly
decreased the selection of values of h that were ‘‘too small’’, corresponding to overfitting. Later in Table 4 it will be seen that
the first order extrapolation improved theMISE efficiency ratio, MISEopt/EISE(ĥ1), of the standard cross-validation from 64%
to over 80%. Here EISE stands for expected integrated square error. The use of EISE rather than MISE in assessing bandwidth
selectors was suggested by Jones (1991). In our simulation section we will determine the optimal value of p = m/n for
a number of sampling distributions. It will be shown there that the optimal value of p varies somewhat based on the
smoothness of the density, but p = 0.3 worked well for many. One possible strategy for the extrapolation estimator is
to use a fixed value of p regardless of the data. We will compare this strategy with a few others in the simulation section.
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3.3. Second-order extrapolation in selecting h

The first-order extrapolated bandwidth selector introduced in Section 3.2 is based on an approximate linear relationship
between logm∗(h) and log h. We have shown in Lemma 1 that the true optimal risk curve approaches the rule-of-thumb
straight line as h goes to 0. That is, the linear approximation is most accurate when h is fairly small. Therefore, we wonder
whetherwe could improve the approximation and seek amore accurate relationship between logm∗(h) and log h thatwould
be useful for smaller values of n.

Notice from Fig. 2 that the first-order extrapolated bandwidth tends to be biased, more and more so as the range of
extrapolation increases. As the optimal risk curve of m∗(h) is decreasing in h, we propose to consider a second-order
correction. We start by noticing that the explicit expression form∗(h) can be written as

m∗(h) =
(1/2

√
π)h−2

+ 2hµ2(φ)C02 + o(h)
4h3C1 + 6h5C2 + o(h5)

,

where µj(φ) =

xjφ(x)dx and φ is a Gaussian kernel, and Cij =


f (i)(x)f (j)(x)dx for i, j ∈ Z with the assumption that

f (0)(x) = f (x). In addition, C1 = µ4(K)C04/24 + (µ2(φ))
2C22/8 and C2 = (3/96)µ2(φ)µ4(φ)C24.

To find the correct second order expansion, we need to take this expansion to the next term. We use the approximation
log(1 + x) ≈ x for x close to 0, and write

log

−

d
dh

E(Bh(X1, X2))(2h2√π)


= log{1 + 2h3µ2(φ)C02(2

√
π)+ o(1)}

≈ 2h3µ2(φ)C02(2
√
π)

log


d
dh

E(Ah(X1, X2))(4h3C1)
−1


= log{1 + (3C2/2C1)h2
+ o(1)}

≈ h2(3C2/2C1).

Therefore, the overall magnitude of the second-order error on the log scale is h2.
We then assume

m∗(h) ≈ m̃(h) = C0h−5eah
2
, (3.4)

where C0 is a constant and a ∈ R. Note that the adjustment term eah goes to 1 as h → 0 but is strictly bigger than 1 if h > 0
and a > 0.

We propose to approximate parameter a by matching m∗(h) and m̃(h) at two values of h and solving for the unknowns.
Let h0 and c0h0 (c0 > 1) be two chosen bandwidths. The two equations

m∗(h0) = C0h−5
0 eah0

m∗(c0h0) = C0(c0h0)
−5ec0ah0

then provide a way to solve for the unknown parameter a. In particular,

â =
1

h2
0(c

2
0 − 1)

log

c50

m∗(c0h0)

m∗(h0)


≥ 0.

Then, for any unknown h, formula (3.4) can be represented as

m∗(h) = m∗(h0)
m∗(h)
m∗(h0)

≈ m∗(h0) (h/h0)
−5 eâ(h−h0) := m∗∗(h).

We propose to invert the curve m∗∗ determined by the last approximation to estimate an optimal bandwidth for any
particular m including m = n. We note that the inversion relationship can be expressed as an explicit correction to the
log–log linear relationship.

logm∗∗(h) = logm∗(h0)− 5 (log h − log h0)+ â(h2
− h2

0). (3.5)

As seen in (3.5), m∗∗ is in fact just an exponential curve fitted through the two points (log h0, logm∗(h0)) and (log(c0h0),
logm∗(c0h0)) and with slope −5.

Fig. 3 illustrates the theoretical curves of (log h, logm(h)) relationship when f is the standard normal. The solid line is
based on the rule-of-thumb criterion; the dashed curve represents the exact relationship between logm∗(h) and log h in
minimizing the L2 risk (2.8); the dotted curve displays the relationship of the second-order extrapolation based on formula
(3.5), using c0 = 2 and h0 = 0.5 as an illustration.

It can be clearly seen that the second-order extrapolation curve was surprisingly close to the true optimal risk curve for
the standard normal case. It should provide less bias than the first-order extrapolation, but it could add variability. In other
words, we might expect the second-order extrapolation method to outperform the linear extrapolation bandwidth selector
for cases where the density function is fairly smooth.
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Fig. 3. Sample size against bandwidth on the log–log scale when f is standard normal. Here, h0 = 0.5 as an illustration.

In our implementation of this second-order extrapolation in the simulation, we chose h0 in (3.5) to be the subsampling
bandwidth selector ĥL2,m at the fictional size m = pn. As a result, m∗(h0) ≈ m. We also used c0 = 2, and estimated m∗ by
using Eq. (2.10):

m∗(c0h0) ≈ m̂∗(c0ĥL2,m) = −


1≤i<j≤n

d
dhBc0 ĥL2,m

(Xi, Xj)
1≤i<j≤n

d
dhAc0 ĥL2,m

(Xi, Xj)
.

Parameter awas then estimated by â = {ĥ2
L2,m(c

2
0 − 1)}−1 log{c50 m̂

∗(c0ĥL2,m)/m}.
Under this scheme, given a sample of size n, the optimal bandwidth at n, as extrapolated from m (m < n) based on Eq.

(3.5) is the root of the following score function, denoted as ĥ2. We call it the second-order extrapolated bandwidth selector.

log n = logm − 5

log h − log ĥL2,m


+ â(h2

− ĥ2
L2,m). (3.6)

Eq. (3.5) indicates that m∗∗(h) is bigger than C0h−5, so we would expect ĥ2 to be smaller than the first-order extrapolation
bandwidth selector ĥ1 for a given value ofm.

To illustrate the advantage of the second-order extrapolation in comparison with the first-order extrapolation, we
revisited the numerical study presented in Fig. 2 but now implemented the second-order extrapolation technique. In Fig. 4
we compared the simulated density plots of the first-order and second-order bandwidth selectorswhen the fictional sample
size m = 0.1n, 0.3n, 0.5n or 1.0n. It is clearly seen that for small values of m, the improvement of the bandwidth selector
based on second-order extrapolation is noticeable.

3.4. Selecting the optimal fictional size: nested cross-validation

Wewill see in our simulation section that the optimal fictional size for both first and second-order extrapolation depends
on the choice of p = m/n. In real problems one cannot determine the optimal choice of the fictional size m = pn that
minimizes the risk at n. As a result, when implementing the two-stage bandwidth selection procedure, one needs to either
fix the choice ofm prior to bandwidth selection, or implement an automatic, data-driven method to pick the best choice of
m based on a data set. Previous literature, such as Hall and Robinson (2009), Shah and Samworth (2012), and Shao (1993),
suggest to use m ≤ n/2. However, in their papers there does not exist an automatic selection method for picking the best
choice ofm in the subsampling (or bagging) procedure. Here we propose a nested cross-validationmethodology in selecting
the optimal fictional sample size m that overcomes the drawback of choosing fictional size m subjectively. This method
seems to perform consistently well across a wide selection of distributions (Section 4.1). We note that this two-layer cross-
validation is made computationally feasible by our U-statistic estimation of the bandwidth selector curve.

Let p = m/n be the fixed proportion of data used in the fictional sample. We consider a cross-validation strategy for
selecting p. Let f̂p,n∗ be the estimator of the density based on extrapolation (first or second-order) for a data set of size n∗ by
subsampling of size m = pn∗. As we show below, from a sample of size n we can estimate the L2 risk of f̂p,n∗ unbiasedly as
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Fig. 4. Sampling distributions of first-order (left panel) and second-order (right panel) extrapolated bandwidth selectors when f is Standard Normal. The
vertical dashed line marks the actual optimal bandwidth.

a function of p provided that n∗ < n. We again acknowledge we will get more stable estimation when n∗ is not close to n,
and so use n∗

= n/2 in our simulation. We choose the value of p that minimizes the estimated risk at size n∗. We then use
this selected value of p to create the extrapolation estimator on the full sample of n data points.

Denote the data set of size n as Xn = (X1, . . . , Xn). We can take a random subsample S of size n∗ < n, say S =

(X∗

1 , . . . , X
∗

n/2) with n∗
= n/2, without replacement out of Xn. We then consider a grid of p values, i.e. pj (1 ≤ j ≤ J).

For each choice of p and a subsample S, one can realize the subsampling-extrapolation bandwidth selector by first finding
the optimal bandwidth at size pn∗ and then extrapolating it from pn∗ to n∗. We denote the extrapolated bandwidth at size
n∗ as ĥp,S . Note that ĥp,S is dependent on both the proportion choice p and the subsample S.

We want to consider the L2 risk of using bandwidth ĥp,S at sample size n∗ as a function of p and then determine the
optimal choice of p at size n∗. We denote the risk at size n∗ as

RL2(p, n
∗) ∝ E


f̂p,n∗(x)2dx


− 2E


f (x)f̂p,n∗(x)dx


, (3.7)

where f̂p,n∗(x) = n∗−1n∗

i=1 Kĥp(x − Xi), and ĥp is the bandwidth extrapolated from pn∗ to n∗.

Since the density estimator f̂p,n∗(x)depends onboth the randomsubsample S and the choice of p, the risk functionR(p, n∗)
cannot be estimated by the standardU estimator in (2.9). However, one can estimate the first expectation in (3.7) unbiasedly
by
 n
n∗

−1
S


n∗−2

i


j(Kĥp ∗ Kĥp)(xi − xj)

. The second expectation in (3.7) can be estimated unbiasedly by

n
n∗

−1
S


(n − n∗)−1


Xi∉S

f̂p,n∗(Xi | S)


,

where S represents a subset of size n∗ taken out of Xn.
In practice, one can repeatedly draw subsamples of size n∗ out of Xn, denoted as S1, . . . , SB. For a particular value of p,

we denote the first-order extrapolated bandwidth at size n∗ as ĥp,S1 , . . . , ĥp,SB . The estimated risk of using proportion p at
size n∗ is then

R̂L2(p, n
∗) ∝

1
B

B
b=1


1
n∗2


i


j

(Kĥp,Sb
∗ Kĥp,Sb

)(xi − xj)


−

2
B

B
b=1


1

n − n∗


Xi∉Sb

f̂p,n∗(Xi | Sb)


. (3.8)

There exists a choice of p that minimizes R̂L2(p, n
∗) which is the optimal proportion p at size n∗. We might hope that the

best p for n∗ also yields satisfactory performance at sample size n. If the optimal choice of p does not largely rely on the
subsample size n∗, then it would be reasonable to identify the optimal choice of p for n based on a smaller size n∗ using the
nested cross-validation methodology.

Remark 3. Marron (1987) presents a method that is closely related to bagging cross-validation which he calls partitioned
cross-validation. Marron (1987) shows that the proportion of subsample, p = m/n, achieves its optimal value at
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Table 1
Density functions considered in the simulation study.

Distribution Probability density function

Standard normal N(0, 1)
t(2) t(2)
Mixture 1 0.5N(−1.5, 1)+ 0.5N(1.5, 1)
Mixture 2 0.5N(0, 1)+ 0.5N(0, 0.1)
Mixture 3 0.5N(0, 1)+ 0.5N(0, 0.01)
Ten-fold mixture 0.1

10
i=1 N(10i − 5, 1)

Claw density 0.5N(0, 1)+0.1
4

i=0 N(i/2−1, 0.01)

pMarron = (σ/C1)
−5/4n−3/8, where

C1 =


K 2(x)dx

3/5  x4K(x)dx
 

(f (2)(x))2dx
2

20


x2K(x)dx
11/5 

(f (2)(x))2dx
8/5 ,

and σ 2
=

8

(f (x))2dx

 
[K ∗ (K − L)(x)− (K − L)(x)]2 dx


25


K 2(x)dx
7/5  x2K(x)dx

6/5 
(f (2)(x))2dx

3/5 .
Here, function L is defined as L(x) = −xK ′(x), and ∗ is the convolution operator. The constant


[K∗(K−L)(x)−(K−L)(x)]2dx

in the definition of σ 2 can be obtained with the help of Corollary 6.4.1. in Aldershof et al. (1995). We refer to Marron’s
formula as MCV. Based on Marron’s formula, p goes to zero as n goes to infinity. To compute the optimal partition size, one
needs to estimate the integrated square derivatives of the unknown density function using two-stage estimators such as
those proposed in Jones and Sheather (1991). We will compare Marron’s formula with our nested cross-validation proposal
through simulation studies in Section 4.1.

4. Simulation studies

We have now developed four possible methods for bandwidth selection based on subsampling plus extrapolation: we
have the first- and second-order extrapolations carried out at a fixed, pre-chosen p, plus the two extrapolation methods
using p chosen from a nested cross-validation. In order to investigate the performance of the proposed two-stage bandwidth
selection procedures, we conducted the following simulation studies.

4.1. Comparison to unbiased cross-validation

We consider R = 500 random samples of size n (n = 100 or 200) drawn independently from a certain distribution. A
list of the seven distributions under consideration can be found in Table 1, among which there are bimodal/multimodal,
outlying, and heavy-tailed distributions. A particularly difficult density is the claw, with 5 extreme spikes, each with only
10% of the data. As we will see later in Table 4, it will create an outlier in our results. Other literature that consider the claw
density and notice its unusual behavior include Marron and Wand (1992) and Loader (1999).

For each subset taken out of Xn, we consider ten possible values of p = m/n, i.e. p = 0.1, 0.2, . . . , 1.0. In selecting the
optimal choice of p, we first compare the performance between the nested cross-validation with n∗

= n/2 and Marron’s
formula (see Remark 3). We compute percent of times each p value is selected out of the 500 replications based on each
method. Tables 2 and 3 reveal that the selection of p is quite noisy for n = 100, but does improve for n = 200. In making
comparisons between the two methods, one should notice that Marron’s optimal p is not exactly the minimizer of Eq. (3.7)
but the asymptotic minimizer of MSE(p) = E{(ĥp − hMISE)

2
}, with hMISE being the minimizer of MISE. Regardless of the

different target functions for minimization, Marron’s formula has less variation than our nested method, and so might be
expected to show somewhat better performance. We will investigate this point in our simulation section.

Next, we conduct an empirical investigation of howwell one could estimate the optimal p using a nested cross-validation
with n∗

= n/2. The optimal proportion popt,n that is dependent on sample size n, is the minimizer of Eq. (3.7) with n∗
= n.

For several samples from each distribution, we plot the empirical expected integrated square error (EISE) curve as a function
of p based on formula (3.8) in order to see whether we could do a good job at estimating the risk as a function of p. In Fig. 5
each of the panels displays three empirical curves (dashed curve) based on three random samples of size n = 100, taken
from the corresponding distribution, and the theoretical true risk curve (solid curve) at size n = 100. (The curves for t(2)
distribution are omitted here, as they show similar pattern as in the normal case.) Although the empirical curves are quite
variable, the shape of each curve seems to follow the truth in most of the cases except the claw density. Thus, we will use
the nested cross-validation methodology in the following discussions.

We then compare the performance of different bandwidth selectors in terms of the efficiency ratio, MISEopt/EISE(ĥp),
where EISE stands for expected integrated square error. We use the exact MISE(h) formula in Theorem 2.1 of Marron and



Q. Wang, B.G. Lindsay / Computational Statistics and Data Analysis 89 (2015) 51–71 61

Table 2
Percentages of optimal p selections out of R = 500 replications.

R = 500, n∗
= n/2 p = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Standard normal

popt,n = 0.1 Nested cross-validation (n = 100)
Percent (%) 92.8 3.4 1.0 1.2 0.2 0.6 0.0 0.4 0.0 0.4
popt,n = 0.1 Marron’s Formula (n = 100)
Percent (%) 0.0 53.6 43.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0
popt,n = 0.1 Nested cross-validation (n = 200)
Percent (%) 93.0 3.8 1.0 0.2 0.2 0.2 0.0 0.2 0.2 1.2
popt,n = 0.1 Marron’s Formula (n = 200)
Percent (%) 7.4 91.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Mixture 1

popt,n = 0.3 Nested cross-validation (n = 100)
Percent (%) 45.6 8.6 14.8 12.0 8.8 4.6 2.0 0.6 1.6 1.4
popt,n = 0.3 Marron’s Formula (n = 100)
Percent (%) 0.2 1.6 17.2 80.8 0.2 0.0 0.0 0.0 0.0 0.0
popt,n = 0.3 Nested cross-validation (n = 200)
Percent (%) 18.2 18.8 30.8 17.6 7.2 2.6 1.6 1.2 0.6 1.4
popt,n = 0.3 Marron’s Formula (n = 200)
Percent (%) 0.0 3.2 96.6 0.0 0.0 0.0 0.0 0.0 0.0 0.2

Mixture 2

popt,n = 0.2 Nested cross-validation (n = 100)
Percent (%) 22.6 39.6 19.8 7.2 4.2 2.4 1.0 1.0 0.4 1.8
popt,n = 0.2 Marron’s Formula (n = 100)
Percent (%) 0.0 0.4 43.4 46.6 8.6 0.6 0.4 0.0 0.0 0.0
popt,n = 0.2 Nested cross-validation (n = 200)
Percent (%) 21.0 47.6 17.4 8.2 2.0 1.6 0.8 0.6 0.4 0.4
popt,n = 0.2 Marron’s Formula (n = 200)
Percent (%) 0.0 29.4 69.2 1.4 0.0 0.0 0.0 0.0 0.0 0.0

Table 3
Percentages of optimal p selections out of R = 500 replications.

R = 500, n∗
= n/2 p = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mixture 3

popt,n = 0.3 Nested cross-validation (n = 100)
Percent (%) 0.2 7.8 26.0 28.0 15.0 9.8 4.0 3.8 2.0 3.6

popt,n = 0.3 Marron’s Formula (n = 100)
Percent (%) 0.0 0.0 2.0 85.2 12.6 0.2 0.0 0.0 0.0 0.0

popt,n = 0.2 Nested cross-validation (n = 200)
Percent (%) 0.0 19.4 40.8 19.8 10.2 4.6 1.4 0.8 1.2 1.8

popt,n = 0.2 Marron’s Formula (n = 200)
Percent (%) 0.0 95.6 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Claw density

popt,n = 1.0 Nested cross-validation (n = 100)
Percent (%) 72.2 10.6 4.2 1.8 0.8 0.4 1.0 0.4 0.8 7.8

popt,n = 1.0 Marron’s Formula (n = 100)
Percent (%) 0.0 0.0 0.6 3.2 11.4 32.0 36.2 10.8 5.4 0.4

popt,n = 1.0 Nested cross-validation (n = 200)
Percent (%) 32.6 10.0 2.8 0.2 0.0 0.2 1.4 1.6 5.0 46.2

popt,n = 1.0 Marron’s Formula (n = 200)
Percent (%) 0.0 0.0 1.4 14.4 55.0 24.0 5.2 0.0 0.0 0.0

Ten-fold

popt,n = 0.6 Nested cross-validation (n = 100)
Percent (%) 58.4 0.0 0.0 0.2 9.4 17.0 10.8 3.2 0.2 0.8

popt,n = 0.6 Marron’s Formula (n = 100)
Percent (%) 0.0 0.0 0.0 1.2 14.6 31.2 29.0 18.4 5.6 0.0

popt,n = 0.4 Nested cross-validation (n = 200)
Percent (%) 0.0 0.0 0.2 13.2 46.2 28.6 8.6 2.6 0.0 0.6

popt,n = 0.4 Marron’s Formula (n = 200)
Percent (%) 0.0 0.0 0.4 22.0 51.2 25.0 1.4 0.0 0.0 0.0
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Fig. 5. Comparison of empirical curves of EISE(p) (dashed curves) and the theoretical truth (solid curve).
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Table 4
Comparison of efficiency ratio, MISEopt/EISE(ĥp), where the mixtures are in order of the cross-validation efficiency. Boldface indicates the best of the five
competing methods.

n = 100 CV EX1 EX2 EX1 EX2
MCV NCV Fixed p NCV Fixed p Optimal p Optimal p

Normal 63.7% 80.9% 81.5% 80.8% 84.1% 83.3% 87.4% 88.2%
p = 0.3 p = 0.2 p = 0.1 p = 0.1

t(2) 69.8% 82.8% 80.5% 82.6% 81.1% 83.2% 84.5% 85.0%
p = 0.3 p = 0.2 p = 0.1 p = 0.1

Mixture 2 68.5% 81.8% 79.5% 82.6% 83.5% 84.8% 84.4% 84.8%
p = 0.3 p = 0.2 p = 0.2 p = 0.2

Mixture 1 78.7% 84.3% 84.8% 85.5% 80.6% 84.8% 85.5% 85.2%
p = 0.3 p = 0.2 p = 0.3 p = 0.3

Mixture 3 80.1% 87.7% 87.8% 87.8% 88.2% 88.4% 87.5% 88.4%
p = 0.3 p = 0.2 p = 0.2 p = 0.2

Ten-fold 94.3% 98.3% 86.9% 94.3% 94.4% 97.2% 96.3% 98.9%
p = 0.3 p = 0.2 p = 0.6 p = 0.5

Claw 74.7% 72.9% 68.2% 68.5% 68.9% 68.8% 74.7% 74.7%
p = 0.3 p = 0.2 p = 1.0 p = 1.0

MISE CV EX1 EX2 EX1 EX2
n = 200 MCV NCV Fixed p NCV Fixed p Optimal p Optimal p

Normal 68.0% 86.6% 83.8% 83.8% 89.9% 86.1% 90.0% 90.0%
p = 0.3 p = 0.2 p = 0.1 p = 0.1

t(2) 73.9% 86.2% 83.8% 86.3% 86.0% 86.7% 87.9% 88.5%
p = 0.3 p = 0.2 p = 0.1 p = 0.1

Mixture 2 67.3% 86.3% 84.0% 86.1% 86.5% 87.4% 87.1% 88.5%
p = 0.3 p = 0.2 p = 0.2 p = 0.1

Mixture 1 73.7% 88.6% 80.1% 93.3% 91.4% 89.1% 93.5% 89.5%
p = 0.3 p = 0.2 p = 0.4 p = 0.3

Mixture 3 77.4% 87.1% 86.1% 87.1% 87.2% 87.8% 87.2% 87.8%
p = 0.3 p = 0.2 p = 0.2 p = 0.2

Ten-fold 93.6% 98.8% 95.3% 95.3% 99.2% 99.5% 95.7% 99.6%
p = 0.3 p = 0.2 p = 0.4 p = 0.4

Claw 82.1% 69.1% 61.7% 52.0% 48.4% 46.6% 82.1% 82.1%
p = 0.3 p = 0.2 p = 1.0 p = 1.0

Wand (1992) to compute the theoretical optimal bandwidth for normal mixtures, and approximate the theoretical optimal
bandwidth for t(2) by simulation. Notice that in practice without replication of size-n samples, the optimal choice of p at size
n is not obtainable. We first determine how the optimal choice of p varies over our sampling distributions. In Table 4 EX1
and EX2 stand for first- and second-order extrapolations respectively. In the last two columns of Table 4, one can see the
relative efficiency ratio that can be attained when one uses the optimal value of p for that density. The optimal p seems to
vary somewhat over the densities. One can also see that the second-order extrapolation, with optimal p, seems to do better
than first-order extrapolation. After comparing the EISE over a grid of values of p, we choose to use p = 0.3 for the fixed-p
first-order extrapolation and p = 0.2 for the fixed-p second-order extrapolation; these values seem to yield satisfactory
results across a wide range of distributions.

Then, we focus on the comparison between the four proposed bandwidth selectors, i.e. the first- and second-order
extrapolated bandwidth selectors with pre-chosen p or with nested cross-validation, and the unbiased cross-validated
bandwidth selector. In addition,we also include the comparison betweenMarron’s formula (see Remark 3) and nested cross-
validation in selecting the optimal p in the context of first-order extrapolation. Because Marron (1987) only focuses on the
study of first-order extrapolation, the comparison between Marron’s optimal p and the nested cross-validation method is
only fair for the first-order extrapolated bandwidth selector ĥ1. We useMCV to stand forMarron’s formula and NCV to stand
for nested cross-validation. In formula (3.8) ĥp is set to be the first-order extrapolated bandwidth for EX1 and the second-
order extrapolated bandwidth for EX2. The realization of the second-order extrapolated bandwidth selector is based on
setting h0 = ĥL2,m and c0 = 2.

Our first observation from Table 4 is that the results from the claw density are distinctly different from the rest. This
density is considered in Loader (1999) to demonstrate that plug-in methodologies could perform very poorly relative
to conventional cross-validation. Van Es (1992) shows that the relative rate of convergence of ordinary cross-validation
bandwidth selector is faster for non-smooth cases, such as in the case of claw density. It is noted in Marron and Wand
(1992) that the trueMISE curve of the claw density has local minimawhen the sample size n ≤ 53 (see Fig. 6). That is,m∗(h)
function has thev shape in the region ofm of interest as seen in Fig. 7. It is clear from this plotwhy extrapolation of this curve
can work so poorly at some sample sizes. Only when n increases to above 100, does the MISE curve start to have an obvious
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Fig. 6. The theoretical curve of MISE(h) for claw density at different sample sizes n. The dashed line in each panel marks the global minima of MISE(h).

Fig. 7. The theoretical and extrapolated curves of m∗(h) in the case of claw density on the log–log scale. The extrapolated point for the first-order
extrapolation is h0 = 0.1 (−2.3 on log scale); the extrapolated points for the second-order extrapolation is h0 = 0.1 and 0.2 (−2.3 and −1.6 on log
scale).

global minima. In this example, we have found that the efficiency ratio for the plug-in bandwidth selector of Sheather and
Jones (1991) is as small as 9.9% for n = 100 and 6.1% for n = 200. Our extrapolation methods do performmuch better than
plug-in methods in the case of claw density. Moreover, a user who follows our advice not to use extrapolation methods or
plug-in when m̂∗(h) is non-monotonic in the region of interest would end up using conventional cross-validation most of
the time.

If we ignore the claw density, we canmake the following general observations: If we compare themethods that use first-
order extrapolation, it is clear that for both sample sizes n = 100 and n = 200, the fixed-p method yields slightly better
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Table 5
Comparison to indirect cross-validation based on Ê{ISE(ĥ)/ISE(ĥ0)}.

Standard normal

n UCV ICV EX1 EX2
fixed p = 0.3 opt. p = 0.1 fixed p = 0.2 opt. p = 0.1

100 2.4670 1.7218 1.6478 1.4171 1.7018 1.4434

n UCV ICV EX1 EX2
fixed p = 0.3 opt. p = 0.1 fixed p = 0.2 opt. p = 0.1

250 1.9159 1.4757 1.4637 1.3062 1.4186 1.3238

Bimodal normal mixture

n UCV ICV EX1 EX2
fixed p = 0.3 opt. p = 0.3 fixed p = 0.2 opt. p = 0.3

100 1.6995 1.3614 1.3667 1.3667 1.3827 1.3640

n UCV ICV EX1 EX2
fixed p = 0.3 opt. p = 0.3 fixed p = 0.2 opt. p = 0.2

250 1.5160 1.2874 1.2453 1.2453 1.2331 1.2331

results than nested cross-validation. The performance ofMarron’s formula is similar to our proposed nested cross-validation
in the context of first-order extrapolation at sample size n = 100, butMCV shows a small systematic superiority over NCV at
n = 200. However, the realization of Marron’s formula involves complex formulas as defined in Remark 3. Overall, we could
obtain over 80% efficiency in all cases. The fixed-p second-order extrapolation is almost a clear winner over the fixed-p first-
order extrapolation.Moreover, the nested cross-validation using second-order extrapolation gives very similar performance
as the fixed-p second order extrapolation. Both seem promising bandwidth selection tools.

In conclusion, we note that fixed-p first-order extrapolation is a computationally inexpensive way to improve upon
standard cross-validation when m∗(h) is reasonably behaved. For additional refinements, one can apply the second-order
extrapolation.

4.2. Comparison to indirect cross-validation

Savchuk et al. (2011, 2010) and Mammen et al. (2012) discuss a modification of the unbiased cross-validation (UCV)
method, called indirect cross-validation (ICV), that aims to reduce the large variability of UCV bandwidth selector with the
help of a selection kernel.

Given a selection kernel of the following form

L(u;α, σ ) = (1 + α)φ(u)−
α

σ
φ(u/σ),

indirect cross-validation is to first find the UCV bandwidth selector based on L, say ĥL, and then rescale it to a bandwidth
using Gaussian kernel φ. We denote the latter bandwidth selector as ĥφ . They argue that the conventional cross-validation
works more stably with a more complicated kernel function than a second-order Gaussian kernel in bandwidth selection.
The relationship between ĥL and ĥφ is approximated based on expressions of their asymptotic optimal bandwidth, which
can be written as

ĥφ =


R(φ)µ2

2L

R(L)µ2
2φ

1/5

ĥL,

where the rescaler only depends on the selection kernel.
Following a referee’s suggestion, we will show below a numerical comparison between our proposed subsampling-

extrapolation bandwidth selectors and the ICV bandwidth selector. To be comparable to the results in Savchuk et al.
(2011, 2010), we consider the same simulation setting and choices of distribution functions: we consider R = 1000
independent samples of size n (n = 100 and 250) generated randomly from standard normal or a bimodal normal mixture
0.5N(−1, 4/9) + 0.5(1, 4/9). Notice that their bimodal normal mixture is essentially the same as our Mixture 1 shown
in Table 1. In addition, we compute Ê{ISE(ĥ)/ISE(ĥ0)} as the measure to evaluate the performance of each method. This
measure is used in Savchuk et al. (2011, 2010) to evaluate the performance of the ICV bandwidth selector. It can be seen
in Table 5 that our proposed bandwidth selectors perform comparably, or even better, than the indirect cross-validation
bandwidth selector.

Remark 4. Although indirect cross-validation bears similarity with our subsampling-extrapolation method, we use
extrapolation techniques differently. Their method is to shift the optimal risk curve based on a selection kernel, say m∗

L , to
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one that is based on a second-order Gaussian kernel, say m∗

φ , at sample size n. In comparison, our method is to move along
the same m∗

φ curve from a subsample size m to the original sample size n. It seems possible to implement extrapolation
techniques in indirect cross-validation. That is, one can implement subsampling-extrapolation method on the risk curve
based on a selection kernel, then shift the selected bandwidth to one that is based on a Gaussian kernel. However, the
investigation of this possibility is beyond the scope of this paper.

5. Asymptotic properties

5.1. First-order extrapolation

The asymptotic properties of the first-order extrapolated bandwidth selector ĥ1 is easy to obtain, since it is a simple
multiple of the subsampling bandwidth selector. When p = m/n is considered as a fixed constant, Hall and Robinson (2009)
show that the relative convergence rate of ĥ1 is of order n−1/10. Although this is the same rate as for the UCV bandwidth
selector, the asymptotic variance in ĥ1 is reduced by using m less than n. More specifically, the asymptotic variance can be
written as (m/n)4/5 (C1 + (m/n)C2), where both C1 and C2 are constants. The asymptotic variance can be reduced by a
factor of (m/n)4/5 to say the least. If C1 is much smaller than C2, the reduction could be of a factor of (m/n)9/5. When one
considers half-sampling, the reduction in the asymptotic variance is around 50%.

Marron (1987) considers the case when p is dependent on sample size n. Marron (1987) shows that the optimal choice
of p that minimizes AMISE is of order n−3/8 (see Remark 3). With this optimal value of p the relative rate of convergence of
ĥ1 can achieve n−1/4, as shown in Eq. (3.3) in Marron (1987). We have verified that the result in Marron (1987) agrees with
Hall and Robinson (2009) when p is considered constant.

5.2. Second-order extrapolation

We have noticed from numerical results that the second-order extrapolated bandwidth selector does improve over the
first-order extrapolation method. Here we want to investigate whether ĥ2 has better asymptotic properties than ĥ1.

Denote g(h) = log(m/n)− 5(log h− log ĥL2,m)+ a(h2
− ĥ2

CV ,m), where ĥ2 is the solution of g(h) = 0. Using Taylor series
to expand g(h) around ĥ1, we have

ĥ2 ≈ ĥ1 −
a
5
p−2/5(1 − p2/5)ĥ3

1.

Because a > 0 and 0 < p < 1, ĥ2 reduces the positive bias inherited in ĥ1.
When p is a fixed constant, it is easy to see that the relative convergence rate of ĥ2 is the same as ĥ1. When p is dependent

on n, one can follow the proof in Marron (1987) and show that the optimal value of p, as a function of n, that minimizes the
asymptotic mean square error of ĥ2 is of order n−3/8. With this choice of p, the relative convergence rate of ĥ2 can achieve
n−1/4. (Please see Appendix for more details.)

In short, the relative rate of convergence for the second-order extrapolated bandwidth selector is the same as the
first-order extrapolation method in both cases that p is a fixed constant and p is dependent on n. However, we have
illustrated that it can improve upon the first-order extrapolation methodology and reduce the positive bias in finite sample
scenarios.

6. Discussion and future work

This paper has been focusing on the discussion of one particular scenario, risk estimation and bandwidth selection in a
kernel density estimator. However, the proposed subsampling-extrapolation procedures can be easily generalized to other
important problems in which one seeks an optimal smoothing parameter as long as some basic asymptotic results about
rates of convergence are known. In addition, the subsampling-extrapolation technique could be in theory extended to other
interesting applications, such as variance estimation and quantile estimation; we will study these applications in another
paper. In particular, when considering the estimation of a U-statistic variance, the application of extrapolation techniques
can enable one to relax the restriction of the kernel size needed in the unbiased variance estimator of a general U-statistic
devised in Wang and Lindsay (2014).

From another aspect, the two-stage bandwidth selection procedure can be easily applied to cases where the risk is
evaluated based on the Kullback–Leibler distance. We have preliminary simulation result showing that similar conclusions
holdwhen one changes the loss function from L2 to Kullback–Leibler distance. The asymptotic properties of Kullback–Leibler
risk (also called likelihood cross-validation) are quite complex, as discussed in Hall (1987). van Es (1991) found the rate of
convergence of a likelihood cross-validation bandwidth selector for a bounded kernel function K over the unit interval, a
more general result for any arbitrary kernel does not seem present.

There are a number of possible ways to tune our methods. For example, we used n∗
= n/2 for nested cross-validation

without further inspection. We did not try to tune the risk estimation for p, even though the selection mechanism showed
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some significant bias at n = 100. Notice from Tables 2 and 3 that at sample size n = 100, nested cross-validation tends to
over-select small values of p. One possible solution to avoid selecting small p is to implement the ‘‘1-SE rule’’ (Breiman et al.,
1984) in nested cross-validation based on a reasonable estimation of the standard error of the risk estimator. According
to the 1-SE rule, one would choose the largest p value that leads to a risk estimate R̂L2(p, n

∗) no more than one standard
error above the minimum risk score. We have investigated the application of jackknife variance estimator in the 1-SE rule.
However, due to the large positive bias of jackknife variance estimator, there was no gain in applying the 1-SE rule in this
scenario. In addition, as seen in Fig. 5 many of the empirical risk curves are fairly flat, indicating that choosing a smaller p
value in the stage of nested cross-validation may not have a large effect on the final bandwidth selector.
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Appendix A. Proof for Lemma 1

Consider an arbitrary kernel function K of order r ≥ 2. Recall that the relative L2 risk, denoted as RL2,n = EXn
f̂h(x)2dx


− 2EXn


f (x)f̂h(x)dx


.

Notice that the first expectation can be written as

EXn


f̂h(x)2dx


=

1
n2h

n
i=1

n
j=1

E


K(u)K

u −

Xi − Xj

h


du

.

Denote K̄(ν) = (K ∗ K)(ν) =

K(u)K(u − ν)du, and K̄h(ν) =

1
h K̄

ν
h


. We then have

EXn


f̂h(x)2dx


=

1
n2h

n
i=1

n
j=1

E

K̄

Xi − Xj

h


=

C
nh

+
n − 1
n

EX2{K̄h(X1, X2)},

where C = K̄(0) =

K(u)2du is a non-zero constant that is independent of h.

Because EXn


f (x)f̂h(x)dx


= EX2{Kh(X1, X2)}, we then have

RL2,n(h) =

E{K̄h(X1, X2)} − 2E{Kh(X1, X2)}


+

1
n


C/h − E{K̄h(X1, X2)}


.

If we want to evaluate the risk at a fictional sizemwhich may be smaller than the original sample size n, the closed form
expression ofm∗(h) for which hwould be optimal is

m∗(h) = −

d
dh


C/h − E{K̄h(X1, X2)}


d
dh


E{K̄h(X1, X2)} − 2E{Kh(X1, X2)}

 .
We claim that:

1. The order of the new kernel K̄ = K ∗ K is the same as the order for K .
2. Denote µr(L) =


urL(u)du (r ≥ 2) for a function L. We have:If 0 ≤ j < r, then µj(K̄) = 0.

If r ≤ j < 2r, then µj(K̄) = 2µj(K).
If j ≥ 2r, then µj(K̄) > 2µj(K).

Proof for Claim 1:
Notice that

xjK̄(x)dx =


K(u)


(u + y)jK(y)dy


du (j ∈ N ).

The inner integral is non-zero only if

yjK(y)dy ≠ 0. If K is of order r , then K̄ must be of order r as well.
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Proof for Claim 2:

µj(K̄) =


K(u)


(u + y)jK(y)dy


du =


K(u)


j

i=0


k
i


ui


yj−iK(y)dy


du

=

j
i=0


j
i


uj−iK(u)du


yiK(y)dy



=

j
i=0


j
i


µj−i(K)µi(K).

Because µj−i(K) ≠ 0 if and only if j − i ≥ r , and µi(K) ≠ 0 if and only if i ≥ r , we have

• If 0 ≤ j < r , then µj−i(K) = 0 and µi(K) = 0 for all 0 ≤ i ≤ j.

• If r ≤ j < 2r , then µj−i(K) ≠ 0 and µi(K) ≠ 0 only if i = 0 or i = j. Therefore, µj(K̄) = 2µj(K).

• If j ≥ 2r , then µj(K̄) ≥ 2µj(K)+
 j
k


µj−k(K)µk(K). In particular, when j = 2r , we have

µ2r(K̄) = 2µr(K)+


2r
r


{µr(K)}2.

Notice that E{Kh(X1, X2)} =

(Kh ∗ f )(x)f (x)dx, where

(Kh ∗ f )(x) =


h−1K


u − x
h


f (u)du =


K(z)f (hz + x)dz

=


K(z)


f (x)+ f ′(x)hz + · · · + f (r)

(hz)r

r!
+ o(hr)


dz

= f (x)+
hrµr(K)

r!
f (r)(x)+ · · · +

h2r−1µ2r−1(K)
(2r − 1)!

f (2r−1)(x)+ o(hr).

Therefore,

E{Kh(X1, X2)} =


f 2(x)dx +

hrµr(K)
r!

E{f (r)} + · · · +
h2r−1µ2r−1(K)
(2r − 1)!

E{f (2r−1)
} + O(h2r),

where K is of order r and is symmetric.
In addition, based on the results in Claims 1 and 2 we also have

E{K̄h(X1, X2)} =


f 2(x)dx +

hrµr(K̄)
r!

E(f (r))+ · · · +
h2r−1µ2r−1(K̄)
(2r − 1)!

E(f (2r−1))+ O(h2r)

=


f 2(x)dx + 2


hrµr(K)

r!
E(f (r))+ · · · +

h2r−1µ2r−1(K)
(2r − 1)!

E(f (2r−1))


+ O(h2r).

We have

E{Ah(X1, X2)} = E{K̄h(X1, X2)} − 2E{Kh(X1, X2)} = −


f 2(x)dx + O(h2r),

E{Bh(X1, X2)} = C/h − E{K̄h(X1, X2)}

= C/h −


f 2(x)dx − 2E(f (r))


hrµr(K̄)


/r! + O(hr+2).

Thus,m∗(h) = {C/h2r+1
+(2/hr(r − 1)!) µr(K)E(f (r))+O(h−r+2)}/O(1), which implies that h2r+1m∗(h) = {C+(2/(r−

1)!)hr+1µr(K)E(f (r))+ O(hr+3)}/O(1) → C as h → 0 (C ≠ 0). In other words,

logm∗(h)+ (2r + 1) log h → constant, as h → 0.

The other statement can be verified easily based on the above result.
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Appendix B. The derivation of second-order extrapolation

The explicit expression ofm∗(h) for a h that yields the optimal MISE is

m∗(h) = −
d
dh

E{Bh(X1, X2)}


d
dh

E{Ah(X1, X2)},

where

Ah(x1, x2) = K√
2h(x1, x2)− 2Kh(x1, x2),

Bh(x1, x2) = 1/(2h
√
π)− K√

2h(x1, x2).

Without loss of generality, assuming a Gaussian kernel function i.e. Kh(x1, x2) = (1/h)φ((x1 − x2)/h), we have

E{K√
2h(x1, x2)} =


K√

2h(x1, x2)dF(x1)dF(x2)

=

 
Kh(x1, x)Kh2(x2, x)dx


dF(x1)dF(x2)

=

 
Kh(x1, x)f (x1)dx1


Kh(x2, x)f (x2)dx2


dx.

Notice that
Kh(x1, x)f (x1)dx1 =


φ(t)f (x + th)dt

=


φ(t)


f (x)+ thf ′(x)+ · · · +

h4

4!
f (4)(t)+ o(h4)


dt

= f (x)+
h2

2!
f (2)(x)µ2(φ)+

h4

4!
f (4)xµ4(φ)+ o(h4)

where µk(φ) =

tkφ(t)dt for k ≥ 2 and φ(t) is a Gaussian kernel that is symmetric and of order 2.

Therefore,

E{K√
2h(X1, X2)} =

 
f (x)+

h2

2!
f (2)(x)µ2(φ)+

h4

4!
f (4)xµ4(φ)+ o(h4)

2

dx

=


f (x)2dx + h2µ2(φ)C02 +

h4

12
µ4(φ)C04 +

h4

4
{µ2(φ)}

2C22 +
h6

24
µ2(φ)µ4(φ)C24 + o(h6)

where Cij =

f (i)(x)f (j)(x)dx for i, j ∈ Z, assuming f (0)(x) = f (x).

Similarly, we have

E{Kh(X1, X2)} =


f (x)2dx +

h2

2
µ2(φ)E(f (2))+

h4

48
µ4(φ)C04 +

h4

16
{µ2(φ)}

2C22

+
h6

192
µ2(φ)µ4(φ)C24 + o(h6).

As a result,

E{Ah(X1, X2)} = −


f (x)2dx + h4


C04µ4(φ)

24
+

C22{µ2(φ)}
2

8


+

3h6

96
µ2(φ)µ4(φ)C24 + o(h6).

We denote it as E{Ah(X1, X2)} = −

f (x)2dx + C1h4

+ C2h6
+ o(h6). And,

E{Bh(X1, X2)} = 1/(2h
√
π)−


f (x)2dx − h2µ2(φ)E(f (2))+ o(h2).

Thus, we have

m∗(h) =
(1/2

√
π)h−2

+ 2hµ2(φ)C02 + o(h)
4h3C1 + 6h5C2 + o(h5)

.
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Appendix C. Estimation of the expected integrated squared error as a function of p

Recall that the MISE of using a fixed bandwidth h is defined as

MISE(h) = EXn


{f (x)− f̂h(x)}2dx


=


f (x)2dx + EXn


f̂h(x)2dx


− 2EXn


f (x)f̂h(x)dx


.

Consider a random bandwidth selector based on two-stage bandwidth selection procedures, say ĥp. Wewant to consider
MISE as a function of p (denoted as EISE(p)), where p is the proportion of the data in the subsampling stage, and then evaluate
the mean integrated squared error of using proportion p in the two-stage bandwidth selection procedure.

Assume that the true underlying distribution is a normal mixture with k different normal components, i.e. f ∼k
j=1 ωjN(µj, σ

2
j ). We denote

f (x) =

k
j=1

ωjKσj(x − µj),

where


j ωj = 1 and Kσj(x − µj) = φ


x−µj
σj


.

The constant

f (x)2dx in the mean integrated squared error is easy to compute when the underlying distribution is a

normal mixture. It can be shown that
f (x)2dx =

 
k

j=1

ωjKσj(x − µj)

2

dx =

k
i=1

k
j=1

ωiωjKσ 2
i +σ 2

j
(µi − µj).

When considering nonparametric kernel density estimatorwith Gaussian kernel function, the estimated density at xwith
extrapolated bandwidth ĥp is

f̂p,n∗(x) =
1
n

n
i=1

Kĥp(x − Xi).

Thus, given a choice of p and a sample of size n i.e. Xn = (X1, . . . , Xn), we have
f̂p,n∗(x)2dx =

1
n2

n
i=1

n
j=1

K√
2ĥp(xi − xj)


f (x)f̂p,n∗(x)dx =

1
n

n
i=1

k
j=1

ωjK
σ 2
j +ĥ2p

(xi − µj).

Therefore, the EISE, as a function of p, can be estimated by simulation based on R random samples of size n in the following
way:

EISE(p) =
1
R


Xn


1
n2

n
i=1

n
j=1

K√
2ĥp(xi − xj)−

2
n

n
i=1

k
j=1

ωjKσ 2
j +h2

(xi − µj)


.

Appendix D. Relative rate of convergence of ĥ2 with optimal p

Because ĥCV ,m ∼ (np)−1/5, we have ĥ2 ∼ p1/5ĥCV ,m − (a0/5)n−3/5p−2/5
+ o(n−3/5p−2/5)where a0 is a constant.

From Theorems 1 and 2 in Marron (1987), we have

bias(ĥ2) = Cn−3/5p2/5 + o(n−3/5p−2/5)

Var(ĥ2) = σ 2n−3/5p4/5

where C and σ 2 are constants, independent of sample size n. Thus, the asymptotic mean square error of ĥ2 is

AMSE(ĥ2) = σ 2n−3/5p4/5 + (Cn−3/5p−2/5)2.

The choice of p that minimizes AMSE is popt = (C/σ 2)5/8n−3/8
= O(n−3/8). With this choice of p, it is easy to see that the

relative rate of convergence of ĥ2 is of order n−1/4.
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