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Abstract

Background: Reverse transcription quantitative PCR (RT-qPCR) is considered the gold standard for quantifying
relative gene expression. Normalization of RT-qPCR data is commonly achieved by subtracting the Ct values of the
internal reference genes from the Ct values of the target genes to obtain ΔCt. ΔCt values are then used to derive
ΔΔCt when compared to a control group or to conduct further statistical analysis.

Results: We examined two rheumatoid arthritis RT-qPCR low density array datasets and found that this
normalization method introduces substantial bias due to differences in PCR amplification efficiency among genes.
This bias results in undesirable correlations between target genes and reference genes, which affect the estimation
of fold changes and the tests for differentially expressed genes. Similar biases were also found in multiple public
mRNA and miRNA RT-qPCR array datasets we analysed. We propose to regress the Ct values of the target genes
onto those of the reference genes to obtain regression coefficients, which are then used to adjust the reference
gene Ct values before calculating ΔCt.

Conclusions: The per-gene regression method effectively removes the ΔCt bias. This method can be applied to
both low density RT-qPCR arrays and individual RT-qPCR assays.

Keywords: RT-PCR, Normalization, ΔCt, Housekeeping genes, Regression
Background
Reverse transcription quantitative PCR (RT-qPCR) has
long become the gold standard for quantifying relative
gene expression to study normal and pathological cell pro-
cesses. Low density RT-qPCR arrays improve the through-
put without losing the benefit of individual PCR reactions
[1-3]. Although some data-driven normalization methods,
such as quantile [4] and rank invariant [5] procedures,
have been proposed and applied [6], the most common
practice is based on the endogenous internal references,
often referred to as “housekeeping” genes as for individual
RT-qPCR experiments. Comparison to reference genes of-
fers multiple practical advantages but the use of this strat-
egy relies on the premise that these genes are expressed at
the same level across a number of experimental conditions
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under investigation. However, no endogenous controls
have been found to be constantly expressed across all dif-
ferent tissues, developmental stages, and study conditions
[7,8]. Thus, a large number of papers focus on identifying
stable references for various organisms, tissues, and condi-
tions [9-16], given the critical nature of the quality of the
comparisons and the implications for hypothesis testing of
expression levels.
Conventional normalization of RT-qPCR data entails first

identifying the appropriate reference genes, then subtract-
ing the Ct (threshold cycle) values of the best reference
gene or the Ct mean of several reference genes from all the
target genes to obtain the normalized (calibrated) ΔCt for
further comparison [17,18]. This type of normalization is
based on the assumption that the Ct values of the target
genes have a linear relationship with those of the reference
genes and that the regression coefficient is 1. In this paper,
we show, with RT-qPCR array data collected from rheuma-
toid arthritis patients, that the relationship is linear but the
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coefficient is not 1 and varies among different reference
genes. Under this circumstance, ΔCt is biased. Using a var-
iety of publicly available datasets, we show that this bias is
widespread and not related to the physiologic or pathologic
process under analysis. Furthermore, we demonstrate that
PCR amplification efficiency varies substantially across
genes, which is likely the cause of this bias. Methods have
been proposed to take into account of the amplification ef-
ficiency in the normalization [19,20]; however, they involve
estimating amplification efficiencies of targets and refer-
ences using dilution series, which is not practical for RT-
qPCR arrays. We propose a simple regression method for
removing ΔCt bias. This method can be applied not only to
RT-qPCR arrays but also assays for individual genes.

Results
ΔCt normalization introduces bias
The commonly used normalization method for RT-qPCR
data is subtracting the Ct values of the internal reference
genes from those of the target genes to obtain the difference
in the Ct (ΔCt). The premise is that differences in the load-
ing amount of template would be represented by the differ-
ent Ct values of the reference genes. Therefore, subtracting
the Ct of the reference genes (or taking the ratio on the ex-
ponential scale) would adjust for these RNA loading differ-
ences. To assess the validity of this premise, we plotted the
mean Ct values of the target genes from a low-density PCR-
based array (SAB array), which represent the average signal
strength of the target genes, against the reference gene Ct

values. If the premise were correct, there would be a positive
correlation. As expected, the mean Ct values of the target
genes were indeed positively correlated (r between 0.68 and
0.86) with the Ct values of the reference genes (Figure 1).
However, after subtracting the reference gene Ct values, a
negative correlation (r between −0.84 to −0.44) was gener-
ated between the mean of the ΔCt values of the target genes
and the Ct values of each reference gene (Figure 2). This
finding indicates a systematic over-correction (bias). If there
were no bias, there would be no significant correlation be-
tween the mean ΔCt values of the target genes and the refer-
ence gene Ct values. All five reference genes showed similar
negative correlation although the degree varied, which in-
dicates that this is a general phenomenon instead of the
property of a particular reference gene. The negative cor-
relation remained present (r = −0.83) when the geometric
mean of multiple reference genes (instead of individual
reference genes) was used (Figure 2).

Regression on reference genes
The negative correlation bias shown in Figure 2 indi-
cates that the target genes measurements are linearly re-
lated to the reference genes but the coefficients are less
than one. When direct subtraction is used, a negative re-
lationship is generated from over-correction. A simple
way to solve this problem is to run a linear regression to
estimate a coefficient and then adjust the reference gene
Ct values with the estimated coefficient. Regression ana-
lysis can be performed either on any selected individual
reference gene or on the mean Ct values of all reference
genes. The latter approach has the advantage of minim-
izing the potential undesirable effect of a single reference
gene. However, a more comprehensive method is to run
a multiple regression including all the reference genes to
estimate coefficients for each of them and remove the
dependency together (Figure 3). This multiple regression
approach is feasible when the number of samples is suf-
ficient (60 in the RA datasets); otherwise, there is the
risk of model over-fitting.

Similar bias from other mRNA RT-qPCR array datasets
To assess whether the ΔCt bias exists with other PCR-
based mRNA array datasets, we examined another of
our datasets (RA ABI dataset) generated from a different
array as well as three publicly available datasets from
Gene Expression Omnibus (GEO). Table 1 shows the re-
gression coefficients of the reference genes from these
datasets against the mean target Ct values from each
sample. The coefficients range from 0.19 to 1.09 but are
generally less than 1. It is interesting that different experi-
ments show quite different coefficients even for the same
reference gene, which necessitated the estimation of re-
gression coefficients in each experiment. For coefficients
close to 1, ΔCt does not generate much bias, but for the
coefficients far from 1, the bias can be substantial.

Similar bias from microRNA PCR array datasets
RT-qPCR based low-density arrays are also widely used
to assay the expression of microRNA (miRNA). Internal
controls built on the array, such as RNU44 and RNU48,
are similar to the reference genes on the low-density
mRNA arrays. There is evidence that normalizing
against the global mean is better than against internal
controls for miRNA array data [21,22]. However, the
majority of studies still rely on internal controls for
normalization. We analyzed four publicly available data-
sets for regression coefficients in the same fashion as for
the mRNA datasets. The results showed that the coeffi-
cients for the internal controls are even smaller (Table 2)
than those from the mRNA RT-qPCR array datasets.
Therefore, the bias resulted from ΔCt normalization
would be even more prominent.

Regression coefficients vary among target genes
To this point, our analyses used the Ct means of all target
genes on the array from each sample for examining the re-
lationship to the reference genes. When individual target
genes were examined, their Ct values all showed positive
correlations with the reference genes but their regression
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Figure 1 Mean Ct values of the target genes from each sample are positively correlated with the Ct values of the reference genes on
the array. Results are shown from the rheumatoid arthritis SAB dataset. The lower right panel is based on the Ct means of all five reference
genes while the others are based on individual reference gene. Ref, reference; r, Pearson correlation coefficient; p, p value from testing the
correlation coefficient against 0.
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coefficients varied widely (Figure 4 and Additional file 1:
Figure S1.). Only a small number of genes had coefficients
close to 1, in which case ΔCt is not biased. The majority of
the target genes have coefficients substantially smaller
than 1, for which bias will be introduced from the dir-
ect subtraction of reference gene Ct values in the ΔCt

normalization.

Amplification efficiencies differ among genes
The deviation of the regression coefficients from 1 is
very likely due to amplification efficiency differences be-
tween target and reference genes. To check the amplifi-
cation efficiency, we selected 6 genes (3 reference genes
and 3 target genes) and measured their efficiency in 4
CLEAR samples that were used in generating RA data-
sets in a dilution series. A simple regression of Ct values
on the log2 transformed dilution factors showed that the
amplification efficiencies are quite different across genes
but fairly similar across samples (Table 3) in our experi-
ment. When the target genes are regressed onto the ref-
erence genes, the differences in amplification efficiencies
resulted in coefficients deviating from 1 (Figure 5).

Impact on differential expression analyses
To assess the impact of the ΔCt bias on differential gene
expression analysis, we compared the regression-based
strategies (Ct mean regression and per-gene regression)
with the conventional ΔCt method for difference in ex-
pression fold change and p values using the RA-SAB
dataset. For convenience, we only examined the 42 target
genes without any undetectable values from a subset of
the samples with the most extreme differences in clinical
phenotype (RA subjects with early disease and significant
radiographic damage, and controls without autoimmune
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Figure 2 Negative correlation between the mean of the ΔCt values from the target genes and Ct values of the reference genes after
normalization via conventional subtraction. The lower right panel is based the Ct mean of all five reference genes while the others are based
on individual reference gene. Ref, reference; dCt, ΔCt; r, Pearson correlation coefficient; p, p value from testing the correlation coefficient
against 0.
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disease) using the Wilcoxon Rank Sum test. The fold
change estimations (group mean Ct differences) from the
three methods are highly correlated (left panel of Figure 6).
Those from the Ct mean regression are simply shifted by a
constant from the ΔCt method. On the contrary, the per-
gene regression method generated smaller fold changes
than the other two methods (above the identity line for
the down-regulated genes and below the identity line for
the up-regulated genes in the left panel of Figure 5). When
p values were compared, the ΔCt and Ct mean regression
methods identified almost exactly the same genes as being
differentially expressed between the two groups of sub-
jects; however the p values tended to be larger from the Ct

mean regression (right panel of Figure 6). In contrast, the
per-gene regression method identified fewer significantly
differentially expressed genes and the p values were larger
than those from the other two methods.
We conducted some simple simulation studies to com-
pare the fold change estimates and false/true positive rates
between ΔCt normalization and per-gene regression
normalization. Our results showed that the per-gene re-
gression normalization increase the precision of fold
change estimates (Additional file 1: Figure S2) and the
power for detecting differential expressions especially
when the regression coefficient is far from 1 and the vari-
ation is not too large. The false positive rate of the regres-
sion normalization is well controlled around the expected
level while that of the ΔCt normalization is inflated when
there is a mean Ct difference between the comparing
groups for the control gene (Additional file 2: Table S3
and Additional file 2: Table S4). The inflation of false posi-
tive rate from ΔCt normalization enlarges along the de-
crease of target gene Ct variance and the increase of
sample size.
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Figure 3 Multiple regression based normalization removes dependency of target Ct means on reference genes. No obvious correlation is
observed between normalized target gene Ct means and Ct values of reference genes.
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Discussion
Our study showed that even with a universally constant
reference gene, the ΔCt method tends to introduce
large bias. Although the Ct values of the target genes
are positively correlated with the reference gene, the
Table 1 Reference gene regression coefficients from gene exp

Genes GSE15488
GPL8370

GSE11690
GPL6933

B2M 0.6782 0.8999

HPRT1 0.8605 0.6618

HPL13A 0.9259 0.9004

GAPDH 0.8820 0.8054

ACTB 0.6166 0.9611

18S NA NA

GUSB NA NA

PGK1 NA NA

TFRC NA NA

NA, not assayed.
regression coefficients are often substantially different
from 1. We believe that a more appropriate method is
to estimate the coefficient using regression and then
subtract the reference gene Ct values adjusted by the
regression coefficient.
ression datasets

GSET11690
GPL6926

RA-SAB RA-ABI

1.0480 0. 2622 NA

0.1907 0.3598 NA

0.6230 0.3835 NA

0.7669 0.6427 0.4720

1.093 0.6831 0.4405

NA NA 0.0783

NA NA 0.5834

NA NA 0.5607

NA NA 0.3861



Table 2 Control gene regression coefficients from microRNA datasets

Controls GSE19229
GPL9732

GSE2264
GPL10522

GSE39105
GPL15765

GSE25868
GPL11239

MammU6 0.3733 NA NA NA

RNU44 0.3143 0.4924 0.0515 NL

RNU48 0.3096 0.4578 0.1450 NL

RNU43 NA NA 0.3554 NA

RNU49 NA NA 0.2981 NA

RNU6B NA 0.6446 NA NA

NA, not assayed. NL, no significant linear relationship.
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Using three target genes and three reference genes as ex-
ample, we demonstrated that the RT-qPCR amplification
efficiencies are different among genes, which results in the
deviation of the regression coefficients from 1 for some
combinations of target and reference genes. Under ideal
conditions, all primers/probes pairs should have amplification
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Figure 4 Histograms of single-gene regression coefficients (slopes) of
efficiency at close to 100% (http://www3.appliedbiosystems.
com/cms/groups/mcb_marketing/documents/generaldo-
cuments/cms_040377.pdf). Otherwise, the amplification ef-
ficiency should be estimated [23-25] and incorporated into
the normalization procedure. Unfortunately, dilution curves
or amplification dynamics for estimating the amplification
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Table 3 Regression coefficients of Ct values on dilution
factors

Samples RPS9 GAPDH RPL13A IFNGR1 IRF1 LY96

X5028 −1.133 −1.224 −1.062 −1.541 −1.082 −1.249

X5030 −1.078 −1.229 −1.072 −1.63 −1.081 −1.194

X7057 −1.094 −1.218 −1.088 −1.583 −1.072 −1.145

X7062 −1.09 −1.229 −1.081 −1.621 −1.091 −1.189

Dilution factors were log2 transformed. The ideal 100% efficiency corresponds
to coefficient of −1.

Cui et al. BMC Genomics  (2015) 16:82 Page 7 of 11
efficiency of each gene is not a pragmatic method in
RT-qPCR experiments. Given the cost of low density
RT-qPCR arrays, it is even less practical to run dilution
curves. Therefore, a simple remedy is to use regression
for each target gene in the normalization instead of dir-
ect subtraction of Ct values.
Linear regression is a simple and effective way to es-

timate the normalization coefficients. However, one
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Figure 5 Regression coefficients between targets and references vary
references. The dilution series from all four samples were used to obtain t
potential downside is that it can be easily affected by
outlier data points. In our analysis, we removed outlier
data points before normalization to avoid this problem.
An alternative way is to apply a robust regression to com-
bine these two steps together. Attention is also needed
when combining RT-qPCR datasets. When individual
datasets are normalized separately, the regression coeffi-
cients and intercepts can be different. If this is the case,
the normalized data based on different regression coeffi-
cients will still have potential mean differences, which
needs to be adjusted before combining the datasets.
When multiple reference genes are used as controls,

they do not always give similar regression coefficients.
We showed that using the mean Ct values of all refer-
ence genes for regression can achieve most of the
normalization goal. However multiple regression analysis
does a better job at simultaneously removing all depend-
ency on all reference genes. We have found that the
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coefficients for some reference genes are fairly large while
they are close to zero for others (Additional file 2: Table
S2). Therefore, using only the reference genes with large
coefficients will usually work well. One downside of mul-
tiple regression is that when the sample size of the RT-
qPCR experiment is small, for example no bigger than the
number of reference genes, the multiple regression will
over-fit due to the lack of degree of freedom for resid-
uals. In this situation, the number of reference genes
used has to be reduced by selecting the best one or
using the average. It is important to point out that mul-
tiple regression normalization is less stringent than glo-
bal mean normalization because it does not force the
mean Ct values of all samples to be the same. It only
removes the correlation with reference genes.
When regression-based normalization is conducted for

low density RT-qPCR array data, there is the choice of
using the mean target Ct values of all target genes for a
single regression or regression for each target gene on
the array. Our results from the RA-SAB dataset showed
that the mean regression was just one constant shift
from the ΔCt normalization when fold change is con-
cerned. The per-gene regression resulted in more differ-
ences due to the regression coefficient differences
among genes. The fold changes obtained from the per-
gene regression normalization were smaller and p values
were larger than those from conventional subtraction
normalization. This is likely the result of bias removal.
When correlation between normalized target gene Ct and
control Ct is introduced by subtraction normalization, fold
change has two components, the true fold change between
the two comparing groups and the difference related to
the mean control difference. For example, even if two
groups have equal mean expressions, the two group means
of the normalized ΔCt values will still be different when
the data points from the two groups are located in dif-
ferent areas in a panel of Figure 2. The size of this
difference depends on the slope of regression and the
mean difference of the control gene Ct values. There-
fore, ΔCt normalization gives larger fold changes, which
results in smaller p values. Our simulation results
largely confirmed this speculation. Bias related to ΔCt

normalization could be one reason for larger fold
changes obtained from RT-qPCR than those from other
high-throughput technologies, such as microarrays.
Given that RT-qPCR has been considered as “gold
standard” for quantifying gene expression, the general
thoughts about this discrepancy have been that micro-
array somehow “squashes” the fold changes. Given our
findings in this study, an alternative explanation is that
RT-qPCR sometimes inflates fold changes due to ΔCt

bias. This is consistent with the observations that fold
changes from microarray and RNA-Seq have been
found to be very similar in some studies [26,27].
One limitation of our regression-based normalization

is that it works well when the sample size of the experi-
ment is fairly large, such as our example (n = 60) and the
GEO datasets (n ≥ 12). It can be problematic for very
small sample sizes, such as just a few. Our simulations
showed that the reduction of false positives and gain of
power diminishes when total sample size goes down to
10 when variation is large. For RT-qPCR experiments on
single or a few genes, dilution series are needed and
practical for estimating amplification efficiencies, which
can then be taken into account in normalization. For
RT-qPCR array experiments with small number of sam-
ples, dilution series is less practical due to the cost. In
this case, the amplification efficiency can be estimated
based on the PCR kinetic curve [24,25]. However, kinetic
curves have to be obtained for each gene from the PCR
machine, which is not a standard practice of RT-qPCR.
If these methods are not applied, investigators need to
be aware of the existence of potential bias associated with
ΔCt normalization in differential expression. In addition,
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we recommend use regression-based normalization when
a statistically significant correlation between the Ct values
of target genes and controls is detected; otherwise, the
regression-based normalization is not beneficial.

Conclusions
The ΔCt normalization method often introduces bias due
to amplification efficiency differences, which affects the
estimation of fold change and the identification of differ-
entially expressed genes. This bias can be effectively cor-
rected by estimating the regression coefficient for each
target gene and adjusting their ΔCt values accordingly.
Methods
Datasets
Rheumatoid arthritis datasets
Two low-density PCR arrays were used to generate gene
expression data from peripheral blood cells of patients
with rheumatoid arthritis (RA). The first array was the
Innate and Adaptive Immune Responses PCR Array
from SABiosciences (Frederick, MD), which has 84
genes involved in the host response to bacterial infection
and sepsis with 5 reference genes (http://www.sabios-
ciences.com/rt_pcr_product/HTML/PAHS-052A.html).
The second array was the TaqMan Human Immune
Array from Applied Biosystems (Foster City, CA), which
contains 90 genes involved in stress response, signal
transduction, cytokines/receptors, cell surface receptors,
oxidoreductase, chemokines, protease, and cell cycle. Six
reference genes are included as internal controls (http://
tools.lifetechnologies.com/content/sfs/brochures/cms_042
394.pdf). 60 RNA samples from peripheral blood (col-
lected in PAXGene tubes) were studied from 40 African-
Americans with RA and 20 African-American healthy
controls. All patients and controls were from the CLEAR
(Consortium for the Longitudinal Evaluation of African-
Americans with Rheumatoid Arthritis) Registry [28,29]
(http://www.uab.edu/medicine/rheumatology/research/70-
clear). This study was approved by the Institutional Review
Board (IRB) for Human Use of the University of Alabama
at Birmingham (UAB IRB Human Subjects Protocol #
X080219016). All participants and controls signed in-
formed consent forms, and all human subject research was
in compliance with the Helsinki Declaration. Standard
protocols recommended by the manufacturer were used
for preparing cDNA, PCR amplification, and quantifica-
tion. PCR amplification was conducted using the Applied
Biosystems Prism 7900HT sequence detection system.

Public datasets from Gene Expression Omnibus (GEO)
We selected RT-qPCR array datasets that have large or
moderate sample size. Raw data were downloaded for
each dataset (Additional file 2: Table S1). The median Ct
value from the technical replicates of each gene was
used for further analyses.

PCR amplification efficiency experiment
We selected six genes with three reference genes (GAPDH,
RPS9, and RPL13A) and three target genes (IFNGR1, IRF1,
and LY96). TaqMan® Assays recommended by the manu-
facture as most efficient for quantifying gene expression
from each gene were purchased from Life Technologies
(Grand Island, NY). Seven concentrations (1/16, 1/8, 1/4,
½, 1, 2, and 4 fold of the original cDNA concentration)
were used for examining amplification efficiency. The
reactions were performed on an Applied Biosystems
QuantStudioTM 6 Flex Real-Time PCR System (384-well,
15 uL reaction volume/well). Three technical replicates
were conducted for each sample and all samples were on
the same plate.

Analysis methods
RT-qPCR data filtering: The median was used to
summarize the three technical replicates from the same
sample. For the RA data, we filtered out the Ct values
that were equal to 40 (undetectable) for downstream
analysis. For GEO datasets, Ct values of 35, 39, 40, or
“undetermined” were filtered out depending on the trun-
cation value of the dataset for non-detection. Outlier Ct

values were identified for each reference gene as more
than 1.5 times of inter quartile range beyond the first
and third quartiles. Samples with more than one reference
genes deemed as outliers were removed from calculating
the regression coefficients to avoid outlier effect. For test-
ing of differential expression between two groups we used
the Wilcoxon Rank Sum test after filtering the un-
detectable samples. The differences of group means
were used to represent the fold changes for comparison
of normalization methods. The data organization were
coducted using Microsoft Excel. Statistical tests and
plots for figures were conducted in R (version 3.0.0). All
plots were generated using the plot function in R.

Proposed regression-based normalization
After removing undetectable target genes, follow three
simple steps for each target gene. 1) Remove samples with
outlier control gene expressions. 2) Regress target gene Ct

values onto a control gene Ct values to obtain regression
coefficient (b) and test for its significance; 3) If b is signifi-
cant, conduct the normalization as Ct_target – b x
Ct_control. When there are multiple control genes and a
large enough sample size, conduct multiple regression
with all control genes in the model as dependant variables to
estimate their regression coefficients. Perform normalization
by subtracting all control gene Ct values multiplied by their
corresponding regression coefficients.

http://www.sabiosciences.com/rt_pcr_product/HTML/PAHS-052A.html
http://www.sabiosciences.com/rt_pcr_product/HTML/PAHS-052A.html
http://tools.lifetechnologies.com/content/sfs/brochures/cms_042394.pdf
http://tools.lifetechnologies.com/content/sfs/brochures/cms_042394.pdf
http://tools.lifetechnologies.com/content/sfs/brochures/cms_042394.pdf
http://www.uab.edu/medicine/rheumatology/research/70-clear
http://www.uab.edu/medicine/rheumatology/research/70-clear
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Data access
The RA-qPCR array data associated with this study have
been submitted to NCBI GEO with accession number
GSE64708.
Additional files

Additional file 1: Figure S1. Shows the dot plots of Ct values of
individual target genes against the mean Ct values of control genes.
Figure S2. shows the comparison of fold changes estimated from dCt
and per-gene regression normalizations in a simulation.

Additional file 2: Table S1. Provides a summary of the datasets used
in the paper. Table S2. gives the multiple regression coefficients for
housekeeping genes on Ct means of target genes. Table S3. shows the
simulation results based on equal group means for control gene Ct
values. Table S4. shows the simulation results based on unequal group
means for control gene Ct values.
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