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Abstract

Transformation formulas for four-parameter re&nements of the q-trinomial coe(cients are
proven. The iterative nature of these transformations allows for the easy derivation of several
in&nite series of q-trinomial identities, and can be applied to prove many instances of Bressoud’s
generalized Borwein conjecture.
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1. Introduction

This is the second in a series of papers addressing Bressoud’s generalized Borwein
conjecture. De&ning the Gaussian polynomial or q-binomial coe(cient as[

m + n

m

]
=




m∏
k=1

1− qn+k

1− qk m; n∈Z+

0 otherwise;

(1.1)

(with Z+ = {0; 1; 2; : : :}) Bressoud [11] considered the polynomials

G(N;M ; 
; �; K) =
∞∑

j=−∞
(−1)jqKj((
+�) j+
−�)=2

[
M + N

N − Kj

]
:
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Writing P¿ 0 if P is a polynomial with nonnegative coe(cients, he then conjectured
the truth of the following statement concerning G.

Conjecture 1.1. Let K be a positive integer and N;M; 
K; �K be nonnegative integers
such that 16 
+�6 2K−1 (strict inequalities when K=2) and �−K6N−M6K−
.
Then G(N;M ; 
; �; K)¿ 0.

This generalizes an earlier conjecture of P. Borwein [5] stating that the coe(cients
of the polynomials An(q), Bn(q) and Cn(q), de&ned by

n∏
k=1

(1− q3k−2)(1− q3k−1) = An(q3)− qBn(q3)− q2Cn(q3)

are all nonnegative. By the q-binomial theorem it readily follows that [5]

An(q) = G(n; n; 4=3; 5=3; 3)

Bn(q) = G(n + 1; n− 1; 2=3; 7=3; 3)

Cn(q) = G(n + 1; n− 1; 1=3; 8=3; 3):

For a more comprehensive introduction to the above conjectures we refer to our &rst
paper in this series [31] and to the original publications by Andrews [5] and Bressoud
[11].

Several special cases of the generalized Borwein conjecture have already been settled
in the literature. When 
 and � are integers G(N;M ; 
; �; K ; q) has a combinatorial
interpretation as the generating function of partitions that &t in a rectangle of dimensions
M ×N and satisfy certain restrictions on their hook-diHerences [7]. For later reference
and comparison we formalize the M = N case of this in a theorem.

Theorem 1.2. G(M;M ; 
; �; K)¿ 0 for 
; �; K ∈Z such that 06 
; �6K and 1 6

 + �6 2K − 1

When at least one of 
 and � is fractional, no combinatorial interpretation of G(N;M ;

; �; K ; q) is known, except for a few very simple cases. G(M;M ; 1=2; 1; 2), for example,
is the generating function of partitions with largest part at most M and no parts below
its Durfee square. Despite this lack of a combinatorial interpretation, Ismail, Kim and
Stanton [19, Theorem 5] have proven Conjecture 1.1 to hold for 
 + � = K with

 = (K − N +M ± 1)=2 and M + N even. Again we put the M = N case of this in a
theorem. Because of the symmetry

G(M;M ; 
; �; K) = G(M;M ; �; 
; K); (1.2)

we may without loss of generality assume 
 = (K − 1)=2.

Theorem 1.3. For K a positive integer G(M;M ; (K − 1)=2; (K + 1)=2; K)¿ 0.

When K is odd this is of course contained in Theorem 1.2. Finally we quote a result
obtained in our &rst paper by use of the Burge transform [31, Corollory 3.2].
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Theorem 1.4. G(M;M ; b; b+1=a; a)¿ 0 for a; b coprime integers such that 0¡b¡a.

Similar results were obtained for N �= M with both 
 and � noninteger [31, Corollory
5.1]. It is quite clear, however, that proving G(M;M ; 
; �; K)¿ 0 when both 
 and �
are fractional and not 
=(K − 1)=2 and �=(K +1)=2—An(q) of the original Borwein
conjecture falls in this class—is rather more di(cult. In this paper new transformation
formulas will be applied to make some progress in this direction. To state our results
we de&ne

d La = d = a0 + a1 + · · ·+ an (1.3a)

� La = � =
2
3
(4d−1 − 1)−

n∑
i=1

4ai+···+an−2; (1.3b)

where La = (a0; a1; : : : ; an)∈Zn+1
+ . Note that �∈Z+ provided an¿ 2− �n;0. With these

de&nitions our main results are the following three theorems, which generalize Theo-
rems 1.2–1.4.

Theorem 1.5. For n¿ 0, let La= (a0; : : : ; an)∈Zn+1
+ such that a0¿ 0, a1; : : : ; an−1¿ 1

and an¿ 2− �n;0. Then

G(M;M ; (
 + �K)=2d−1; (� + �K)=2d−1; 2d−1K)¿ 0;

for 
; �; K ∈Z such that 06 
; �6K , and d and � given by (1.3).

For La = (1) there holds d = 1 and � = 0 so that we recover Theorem 1.2.

Theorem 1.6. With the same conditions as in Theorem 1.5 there holds

G(M;M ; ((2� + 1)K − 1)=2d; ((2� + 1)K + 1)=2d; 2d−1K)¿ 0;

for K a positive integer and d and � given by (1.3).

For La = (1) this reduces to Theorem 1.3.

Theorem 1.7. With the same conditions as in Theorem 1.5 there holds

G(M;M ; b=2d−1; (b + 1=a)=2d−1; 2d−1a)¿ 0;

for a; b coprime integers such that �a¡b¡ (� + 1)a, and d and � given by (1.3).

For La=(1) this reduces to Theorem 1.4. A slight reformulation of Theorem 1.7 will
be given in Theorem 6.9 of Section 6.

1.1. Outline of the paper

The &rst part of this paper deals with the theory of q-trinomial coe(cients. In the
next section we review the basics of q-trinomial coe(cients and then extend the theory
to re&ned q-trinomial coe(cients. Our main results are Theorems 2.1 and 2.2, which
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are two elegant transformation formulas for re&ned q-trinomial coe(cients that can be
viewed as trinomial analogues of the Burge transform. The technical Section 3 contains
proofs of some of our main claims concerning re&ned q-trinomials.

The second part of the paper contains applications of the transformation formulas of
Section 2, with Sections 4 and 5 devoted to proving q-trinomial identities and Rogers–
Ramanujan-type identities, and Sections 6 and 7 devoted to the generalized Borwein
conjecture. In the appendix some simple summation formulae needed in the main text
are established.

2. Re�ned q-Trinomial coe cients

We employ the following standard notations for the q-shifted factorial: (a; q)n =
(a)n =

∏n
j=1(1 − aqj−1) for n¿ 0, (a; q)n = (a)n = 1=(aqn; q)−n for n∈Z (so that

1=(q)−n = 0 for n¿ 0) and (a1; : : : ; ak ; q)n = (a1; : : : ; ak)n = (a1)n · · · (ak)n. Whenever
series are nonterminating it is tacitly assumed that |q|¡ 1.

In analogy with the de&nition of binomial coe(cients, the trinomial coe(cients ( La )2
are de&ned by the expansion

(1 + x + x2)L =
L∑

a=−L

(
L

a

)
2

xa+L: (2.1)

Double application of the binomial expansion shows that(
L

a

)
2

=
L∑

k=0

(
L

k

)(
L− k

k + a

)
: (2.2)

The analogy with binomials breaks down when it comes to de&ning q-analogues. The
binomial expansion is readily generalized to the q-case by [2, Eq. (3.3.6)]

(x)L =
L∑

a=0

(−x)aq

( a
2

) [
L

a

]
; (2.3)

but no q-analogue of (2.2) seems possible that yields a q-version of (2.1). Despite this
complication, Andrews and Baxter [6] successfully de&ned useful q-trinomial coe(-
cients. Here we need just two of the simplest q-analogues of (2.2) given by [6, Eq.
(2.7); B = A][

L

a

]
2;q

=

[
L

a

]
2

=
L∑

k=0

qk(k+a)

[
L

k

][
L− k

k + a

]
(2.4)

and [6, Eq. (2.8)]

T (L; a; q) = T (L; a) = q(1=2)(L2−a2)

[
L

a

]
2;q−1

: (2.5)
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An explicit expression for T (L; a) needed later is given by [6, Eq. (2.60)]

T (L; a) =
L∑

n=0
n+a+L even

q(1=2)n2
[

L− n
1
2 (L− a− n)

][
L

n

]
: (2.6)

It is easy to see from (2.4) and (2.6) that the q-trinomial coe(cients obey the symmetry
[ La ]2 = [ L

−a ]2 and T (L; a)=T (L;−a). Almost as easy to establish are the large L limits.
By a limit of the q-Gauss sum [16, Eq. (II.8)],

lim
L→∞

[
L

a

]
2

=
∞∑
k=0

qk(k+a)

(q)k(q)k+a
=

1
(q)∞

; (2.7)

and by Euler’s q-exponential sum [16, Eq. (II.2)],

lim
L→∞

L+a+� even

T (L; a) =
∞∑
n=0

n+� even

q(1=2)n2

(q)n
=

(−q1=2)∞ + (−1)�(q1=2)∞
2(q)∞

:

To conclude our brief review of q-trinomial coe(cients we mention that in identities
one often encounters the same linear combination of two such coe(cients. For this
reason it is helpful to de&ne [4]

U (L; a) = T (L; a) + T (L; a + 1); (2.8)

which has a limiting behaviour somewhat simpler to that of T (L; a),

lim
L→∞

U (L; a) =
(−q1=2)∞

(q)∞
: (2.9)

In the following we go well-beyond q-trinomial coe(cients, and introduce two polyno-
mials S and T that can be viewed as four-parameter extensions of [ La ]2 and T (L; a),
respectively. Assuming that L;M; a; b are all integers we de&ne

S(L;M; a; b; q) =S(L;M; a; b)

=
L∑

k=0

qk(k+a)

[
L + M − a− 2k

M

]

×
[
M − a + b

k

][
M + a− b

k + a

]
(2.10)

and

T(L;M; a; b; q) =T(L;M; a; b)

=
L∑

n=0
n+a+L even

q(1=2)n2
[
M

n

][
M + b + (L− a− n)=2

M + b

]

×
[
M − b + (L + a− n)=2

M − b

]
: (2.11)
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Comparison with (2.4) and (2.6) shows that

(q)L lim
M→∞

S(L;M; a; b) =

[
L

a

]
2

(2.12)

and

(q)L lim
M→∞

T(L;M; a; b) = T (L; a): (2.13)

Before we list the most important properties of S and T let us remark that the
polynomial T was recently introduced in [30]. Following the terminology of [30] we
will call T(L;M; a; b) a re&ned q-trinomial coe(cient (for reasons that will become
clear shortly, and not because of (2.13)).

The &rst three properties of S and T listed below follow directly from the de&ni-
tions. With Q to mean either S or T we have the range of support

S(L;M; a; b) �= 0 iH |a|6L; |b|6M and |a− b|6M; (2.14a)

T(L;M; a; b) �= 0 iH |a|6L; |b|6M and 1
2 (a + L)∈Z if M = 0; (2.14b)

the symmetry

Q(L;M; a; b) = Q(L;M;−a;−b) (2.15)

and the duality

Q(L;M; a; b; 1=q) = qab−LMQ(L;M; a; b; q): (2.16)

Whereas (2.14) and (2.15) are the obvious generalizations of analogous properties
of q-trinomial coe(cients, (2.16) is in clear contrast with (2.5). The next result, to
be compared with (2.7), will be important when we address the generalized Borwein
conjecture;

(q)M lim
L→∞

S(L;M; a; b) =
∞∑
k=0

qk(k+a)

[
M − a + b

k

][
M + a− b

k + a

]

=

[
2M

M − b

]
: (2.17)

Here the second equality follows from the q-Chu–Vandermonde sum [16, Eq. (II.7)]
n∑

k=0

(a; q−n)k
(q; c)k

(
cqn

a

)k
=

(c=a)n
(c)n

; (2.18)

with a → q−(M−a+b), n → M − b and c → qa+1.
We now come to the main results of this section.

Theorem 2.1. For L;M; a; b∈Z such that ab¿ 0
M∑
i=0

q(1=2)i2
[
L + M − i

L

]
T(L− i; i; a; b) = q(1=2)b2T(L;M; a + b; b): (2.19)
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This transformation was announced in [30, Theorem 3.1]. Our next transform has not
appeared before.

Theorem 2.2. For L;M; a; b∈Z such that ab¿ 0, and such that |a|6M if |b|6M
and |a + b|6L,

M∑
i=0

q(1=2)i2
[
L + M − i

L

]
T(i; L− i; b; a) = q(1=2)b2S(L;M; a + b; b): (2.20)

A discussion of the conditions imposed on the parameters (which are not sharp)
precedes the proofs given in Sections 3.1 and 3.2.

Theorems 2.1 and 2.2 justify calling T(L;M; a; b) a re&ned q-trinomial coe(cient
because they imply

L∑
i=0

q(1=2)(i2−b2)T(L− i; i; a− b; b) = T (L; a)

and
L∑

i=0

q(1=2)(i2−b2)T(i; L− i; b; a− b) =

[
L

a

]
2

:

Here it is assumed in both formulae that 06 b6 a or a6 b6 0. The &rst equation
follows by taking the large M limit in (2.19) using (2.13). The second equation follows
from the &rst by application of (2.5) and (2.16) or from (2.20) by taking M to in&nity
and using (2.12).

Given the above two theorems, an obvious question is whether there also exist
transformations from S to T or from S to S. The only result we found in this
direction is the following not-so-useful summation.

Lemma 2.3. For L;M; a; b∈Z such that L6M and |a − b|6L if |a|6L, |b|6M
and |a− b|6max{L;M},

M−L∑
i=0

qLi

[
M − L

i

]
S(L− i; M − i; a; b) =S(M; L; b; a):

Since we will not use this transformation we omit its proof. We note however that
for a = b = 0 it coincides with Theorem 2.5 below (with a = b = 0 and L and M
interchanged), and the proof for more general a and b is a simple modi&cation of the
proof of that theorem as given in Section 3.3.

Before we can state our next two results we &rst need to de&ne

B(L;M; a; b; q) =B(L;M; a; b) =

[
M + b + L− a

M + b

][
M − b + L + a

M − b

]
; (2.21)

for L;M; a; b∈Z=2 such that L + a and M + b are integers. Note that B(L;M; a; b) is
nonzero for |b|6M and |a|6L only.
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Lemma 2.4. For L;M; a; b∈Z
M∑
n=0

n+L+a even

q(1=2)n2
[
M

n

]
B((L− n)=2; M; a=2; b) =T(L;M; a; b): (2.22)

Proof. Substituting the de&nitions of T and B gives the desired result.

Theorem 2.5. For L;M; a; b∈Z such that M6L and |a − b|6M if |a|6M=2,
|a + b|6L and |a− b|6max{L;M},

L−M∑
i=0

L∑
k=0

qMi+k2

[
L−M

i

][
L + M − 2i − 2k

L− i

]
B(k; L− i − k; a; b)

=qa2S(L;M; a + b; 2a): (2.23)

The conditions imposed on the above summation formula are sharp. Their origin will
be discussed in the proof given in Section 3.3.

Next we derive two corollaries of Theorems 2.2 and 2.5. First, taking (2.20), inserting
the de&nition of T and letting L tend to in&nity using (2.17) yields

M∑
i=0

i∑
n=0

n+b+i even

q(1=2)(i2+n2)

[
M

i

][
i − n

1
2 (i − b− n)

][
i

n

]
= q(1=2)b2

[
2M

M − b

]
:

Replacing b by 2a and n by i − 2k gives rise to the following result.

Corollary 2.6. For M; a∈Z
∞∑
k=0

CM;k(q)

[
2k

k − a

]
= q2a2

[
2M

M − 2a

]
;

where

CM;k(q) =
M∑
i=0

q(i−k)2+k2

[
M

i

][
i

2k

]
¿ 0:

Taking (2.23), inserting the de&nition of B and sending L to in&nity using (2.17)
yields a very similar result.

Corollary 2.7. For M; a∈Z
∞∑
k=0

LCM;k(q)

[
2k

k − a

]
= qa2

[
2M

M − 2a

]
;
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where

LCM;k(q) =
M∑
i=0

qM (M−i)+k2

[
M

i

][
i

2k

]
¿ 0:

This can also be obtained from Corollary 2.6 by the substitution q → 1=q.
We conclude our discussion of re&ned q-trinomial coe(cients by introducing the

re&ned version of the polynomial U of Eq. (2.8) and another polynomial frequently
needed;

U(L;M; a; b) =T(L;M; a; b) +T(L;M; a + 1; b); (2.24)

V(L;M; a; b) =S(L;M; a; b) + qb+1=2S(L;M; a + 1; b + 1): (2.25)

The following limits of U and V will be useful later

lim
L→∞

U(L;M; a; b) =
(−q1=2)M
(q)2M

[
2M

M − b

]
(2.26)

and

lim
L;M→∞

U(L;M; a; b) =
(−q1=2)∞

(q)2∞
(2.27)

lim
L;M→∞

V(L;M; a; b) =
1 + qb+1=2

(q)2∞
: (2.28)

The &rst limit follows from the de&nitions of U and T and the q-binomial theorem
(2.3) with x = −q1=2. The second limit is obvious from the &rst, and the last limit
follows from (2.7) and (2.12).

We &nally compare some of our results for re&ned q-trinomial coe(cients with
known results for the polynomial B of equation (2.21). First we note that B obeys

B(L;M;−a;−b) =B(L;M; a; b);

B(L;M; a; b) =B(M; L; b; a);

B(L;M; a; b; 1=q) = q2ab−2LMB(L;M; a; b; q): (2.29)

The &rst and last of these relations are similar to (2.15) and (2.16) satis&ed by S and
T. Surprisingly, the analogy goes much further, and the following two theorems are
clear analogues of Theorems 2.1 and 2.2.

Theorem 2.8. For L;M; a; b∈Z such that |a− b|6L if |b|6M and |a + b|6L,

M∑
i=0

qi2
[
2L + M − i

2L

]
B(L− i; i; a; b) = qb2B(L;M; a + b; b):
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Theorem 2.9. With the same conditions as above

M∑
i=0

qi2
[
2L + M − i

2L

]
B(i; L− i; b; a) = qb2B(L;M; a + b; b):

These two theorems are known as the Burge transform, see e.g., [8,13,15,24,31]. A
proof follows from the q-PfaH–SaalschOutz sum (A.1). Unlike (2.19) and (2.20), which
are independent transformations, the above transformations imply one another thanks to
the symmetry (2.29). Another more important diHerence between the Burge transform
and the transformations for T and S is that the two Burge transformations can be
iterated to yield a binary tree of transformations [13,15,31], while the transformations
for T and S only give rise to an in&nite double chain.

Later in the paper we also need the following extension of Theorem 2.8 involving
the polynomial

Br; s(L;M; a; b) =

[
M + b + s + L− a + r

M + b + s

][
M − b + L + a

M − b

]
: (2.30)

Theorem 2.10 ([13,24]). For L;M; a; b; r; s∈Z such that −L6 a − b − s6L + r if
−M − s6 b6M and −L6 a + b6L + r,

M∑
i=b

qi(i+s)

[
2L + M + r − i

2L + r

]
Br+s; s(L− i − s; i; a; b) = qb(b+s)Br; s(L;M; a + b; b):

3. Proof of Theorems 2.1, 2.2 and 2.5

3.1. Proof of Theorem 2.1

Before we commence with the proof a few comments are in order. From Eq. (2.14b)
it follows that the summand on the left is zero if not |b|6 i6min{L− |a|; M}. This
implies that the left-hand side vanishes trivially if |b|¿M or |a| + |b|¿L. By the
same Eq. (2.14b) the right-hand side vanishes if |b|¿M or |a + b|¿L. One might
thus hope that a su(cient condition for Theorem 2.1 to hold nontrivially would be
|a|+ |b|6L and |b|6M . However this appears not to be the case and |a|+ |b|6L
needs to be replaced by (i) |a|+|b|6L with ab¿ 0, or (ii) |a|+2|b|6L with ab6 0.
Since in all interesting applications of the theorem it turns out that a and b have the
same signature, we have omitted the cases where a and b have opposite sign in the
statement of the theorem and in the proof given below. However, in [24, Theorem
1.2] a very general transformation formula is proven which for N = 2, M → M − b,
‘ → 2b, L1 → (L − a + 2b)=2 and L2 → (L + a − 2b) coincides with Theorem
2.1. The condition L1; L2¿ 0 as given in [24] establishes the validity of (2.19) for
|a− 2b|6L.
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Proof of Theorem 2.1. Substituting the de&nition of T in (2.19) we are to prove

∑
i; n

q(1=2)(i2+n2)

[
L + M − i

L

][
i

n

][
i + b + (L− i − a− n)=2

i + b

]

×
[
i − b + (L− i + a− n)=2

i − b

]

= q(1=2)b2
∑
n

q(1=2)n2
[
M

n

][
M + b + (L− a− b− n)=2

M + b

]

×
[
M − b + (L + a + b− n)=2

M − b

]
; (3.1)

with a; b in the ranges speci&ed by the theorem, and where we assume that L+ i+n+b
is even on the left and L + n + a + b is even on the right.

Since both sides of (3.1) are symmetric under simultaneous negation of a and b we
may without loss of generality assume that a; b¿ 0 in the following. In view of the
previous discussion we may also assume that b6M and L¿ 0. As a &rst step we use
the symmetry[

m + n

m

]
=

[
m + n

n

]
(3.2)

to rewrite (3.1) in the less-symmetric form

∑
i; n

q(1=2)(i2+n2)

[
L + M − i

L

][
i

n

][
i + b + (L− i − a− n)=2

(L− i − a− n)=2

]

×
[
i − b + (L− i + a− n)=2

i − b

]

= q(1=2)b2
∑
n

q(1=2)n2
[
M

n

][
M + b + (L− a− b− n)=2

(L− a− b− n)=2

]

×
[
M − b + (L + a + b− n)=2

(L + a + b− n)=2

]
: (3.3)

According to de&nition (1.1) of the q-binomial coe(cient,
[m+n

m

]
is zero if m¡ 0. We

will now show that in the case of Eq. (3.3) this condition together with a; b¿ 0, b6M
and L¿ 0 implies that all of the top-entries of the various q-binomials are nonnegative.
First consider the left side. The summand vanishes if not both L− i− a− n and i− b
are nonnegative. This gives the following inequalities for the top-entries of the four
q-binomials: L+M − i¿L+M − b¿ 0, i¿ b¿ 0, i+ b+(L− i− a− n)=2¿ 2b¿ 0
and i− b+ (L− i + a− n)=2¿ a¿ 0. For the right side of (3.3) it is equally simple.
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Since L− a− b− n¿ 0 one has M¿ 0, M + b+ (L− a− b− n)=2¿M + b¿ 0 and
M − b + (L + a + b− n)=2¿M + a¿ 0.

Now recall the following modi&ed de&nition of the q-binomial coe(cient:

[
m + n

m

]
=




(qn+1)m
(q)m

for m∈Z+; n∈Z

0 otherwise:

(3.4)

The only diHerence between (1.1) and (3.4) is that in the latter,
[m+n

m

]
is nonzero for

m¿ 0 and m + n¡ 0. Since we have just argued that in Eq. (3.3) the top-entries of
the q-binomials cannot be negative by the conditions on the lower entries we may in
the remainder of our proof of (3.3) assume de&nition (3.4).

After these preliminaries we shall transform the left side of (3.3) into the right side.
First we make the simultaneous changes i → i + n and n → i to get

LHS(3:3) =
∑
i; n

q(1=2)n2+i(i+n)

[
L + M − n− i

L

][
i + n

i

]

×
[
(L− a + n)=2 + b

(L− a− n)=2− i

][
(L + a + n)=2− b

i + n− b

]
: (3.5)

To proceed we need Sears’ 4$3 transformation [16, Eq. (III.15)]

n∑
k=0

(a; b; c; q−n)kqk

(q; d; e; f)k
= an (e=a; f=a)n

(e; f)n

n∑
k=0

(a; d=b; d=c; q−n)kqk

(q; d; aq1−n=e; aq1−n=f)k
; (3.6)

true for def = abcdq1−n. Making the substitutions n → d − e, a → q−c, b → qa+1,
c → qg−f, d → qg+1, e → q−b and f → qe+1 results in the following transformation
for sums of products of q-binomial coe(cients:

d−e∑
i=0

qi(i−c+e+g)

[
a− i

a− b

][
i + c

i

][
d

d− e − i

][
f

i + g

]

=
d−e∑
i=0

qi(i−c+e+g)

[
a− d + e

i − c + e + f

][
c − g

i

][
b + d− i

d− e − i

][
i + f

i + g

]
; (3.7)

for a; b; c; d; e; f; g∈Z such that a+ c= b+d+f. Returning to (3.5), we utilize (3.7)
to transform the sum over i. As a result

LHS(3:3) =
∑
i; n

q(1=2)n2+i(i+n)

[
M + (L + a− n)=2

i + (L + a + n)=2

][
b

i

]

×
[
M + b + (L− a− n)=2− i

(L− a− n)=2− i

][
i − b + (L + a + n)=2

i + n− b

]
:
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By the simultaneous changes i → n− i and n → 2i − n + b this yields

LHS(3:3) = q(1=2)b2
∑
n

q(1=2)n2
[
M + b + (L− a− b− n)=2

(L− a− b− n)=2

]

×
∑
i

qi(i−n+b)

[
M + (L + a− b + n)=2− i

(L + a + b + n)=2

][
b

n− i

]

×
[
(L + a− b + n)=2

i

]
:

Now set c = g = 0 in (3.7) and eliminate b. This yields the well-known polynomial
version of the q-PfaH–SaalschOutz theorem [2,14,18]

d−e∑
i=0

qi(i+e)

[
a− i

d + f

][
d

d− e − i

][
f

i

]
=

[
a− d + e

e + f

][
a− f

d− e

]
; (3.8)

which, because of de&nition (3.4), is valid for all a; d; e; f∈Z. Using (3.8) to carry
out the sum over i results in the right-hand side of (3.3).

3.2. Proof of Theorem 2.2

The &rst part of the discussion at the start of Section 3.1 also applies here. That
is, the content of Theorem 2.2 is nontrivial for |b|6M and |a| + |b|6L only. It is
also true again that the bounds are not sharp, since for some a and b of opposite sign,
such that |a| + |b|6L, the theorem holds as well. The extra condition (compared to
Theorem 2.1) |a|6M when both |b|6M and |a|+ |b|6L does appear to be sharp.

Proof. Without loss of generality we may assume a; b¿ 0, b6M and L¿ 0. Of
course we also have a6M as a necessary condition. Substituting the de&nitions of T
and S in the above identity and using (3.2) to asymmetrize, we are to prove∑

i; n

q(1=2)(i2+n2)

[
L + M − i

L

][
L− i

n

][
L− i + a + (i − b− n)=2

(i − b− n)=2

]

×
[
L− i − a + (i + b− n)=2

L− i − a

]

= q(1=2)b2
∑
k

qk(k+a+b)

[
L + M − a− b− 2k

L− a− b− 2k

][
M − a

k

][
M + a

k + a + b

]
; (3.9)

where the parity rule that i + n + b on the left must be even is implicit.
As in the proof of Theorem 2.1 we will now show that the top-entries of all seven

q-binomial coe(cients are nonnegative by the conditions on the parameters and by the
condition that the lower entries are nonnegative. This allows us to again assume the
modi&ed de&nition (3.4) of the q-binomials in our proof.
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First consider the left-hand side. Because (i − b − n)=2¿ 0 and L − i − a¿ 0 we
get L + M − i¿M + a¿ 0, L − i¿ a¿ 0, L − i + a + (i − b − n)=2¿ 2a¿ 0 and
L− i− a+ (i+ b− n)=2¿ b. On the right-hand side, since L− a− b− 2k¿ 0, we get
L+M−a−b−2k¿M for the top-entry of the &rst q-binomial. It is the above-discussed
extra condition a6M that ensures that also the second q-binomial on the right has
a nonnegative top-entry. Since clearly also M + a is nonnegative we are indeed in a
position to assume (3.4) in the remainder of the proof.

We begin with the simultaneous changes i → i + k + b and n → k − i to &nd

LHS(3:9) =
∑
i; k

q(1=2)b2+k(k+b)+i(i+b)

[
L + M − b− k − i

L

][
L− b− k − i

k − i

]

×
[
L + a− b− k

i

][
L− a− k

L− a− b− k − i

]
:

Next we apply the following transformation formula similar to (3.7), which can again
be viewed as a corollary of the Sears transform (3.6):

d∑
i=0

qi(i+f−g)

[
a− i

b

][
c − i

d− i

][
e

i

][
f

g− i

]

=
d∑

i=0

qi(i+c−d−g)

[
a− i

b− i

][
c − g

d− i

][
a− e

i

][
d + f − i

g− i

]
; (3.10)

for a; b; c; d; e; f; g∈Z such that b + c = d + e + f. The proof of this requires the
substitutions n → d, a → q−g, b → q−b, c → qe−a, d → q−a, e → q−d−f and
f → qc−g−d+1 in (3.6) and some simpli&cations. As a consequence of (3.10)

LHS(3:9) =
∑
i; k

q(1=2)b2+k(k+b)+i(i+a−k)

[
L + M − b− k − i

L− i

]

×
[

a

k − i

][
M − a

i

][
L− a− i

L− a− b− k − i

]
:

Shifting k → k + i and then renaming i as k and k as i yields

LHS(3:9) = q(1=2)b2
∑
k

qk(k+a+b)

[
M − a

k

]∑
i

qi(i+b+k)

[
L + M − b− 2k − i

L− k

]

×
[
a

i

][
L− a− k

L− a− b− 2k − i

]
:

Finally, summing over i using (3.8) leads to the right side of (3.9).
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3.3. Proof of Theorem 2.5

As with Theorems 2.1 and 2.2, we &rst discuss the conditions imposed on the
parameters.

On the left the summand vanishes unless 06 i6min{L − M; L}, i + 2k6M ,
|b|6L− i− k and |a|6 k. Hence the left-hand side is nonzero if and only if L¿M ,
|a|6M=2 and |a| + |b|6L. By (2.14a) the right-hand side is nonzero if and only if
|a+b|6L, |a|6M=2 and |a−b|6M . Because |a|+|b|6L is equivalent to |a+b|6L
and |a−b|6L, both sides trivially vanish if any of the following three conditions is vi-
olated: |a|6M=2, |a+b|6L and |a−b|6max{L;M}. If these conditions are however
satis&ed, the mismatch between right and left side needs to be repaired by imposing
that M6L and |a−b|6M . (Note that |a−b|6M implies |a−b|6L when M6L.)

Proof of Theorem 2.5. After inserting de&nitions (2.10) and (2.21) of S and B, we
use symmetry (3.2) of the q-binomial coe(cients to get∑

i; k

qMi+k2

[
L−M

L−M − i

][
L + M − 2i − 2k

M − i − 2k

][
L− i − a + b

k − a

][
L− i + a− b

L− i − k − b

]

= qa2
∑
k

qk(k+a+b)

[
L + M − a− b− 2k

L− a− b− 2k

][
M + a− b

k

][
M − a + b

M − 2a− k

]
:

(3.11)

In view of the above discussion we may without loss of generality assume that M6L
and |a− b|6M . This, together with the condition that the lower entries of all seven
q-binomial coe(cients are nonnegative, implies that all the top-entries are nonnegative.
Speci&cally, on the left we have L−M¿ 0, L+M −2i−2k=(M − i−2k)+(L−M −
i)+M¿ 0, L−i−a+b=(L−M−i)+(M−a+b)¿ 0, L−i+a−b=(L−M−i)+(M+
a−b)¿ 0. Similarly, on the right we have L+M−a−b−2k=(L−a−b−2k)+M¿ 0,
M − a+ b¿ 0, M − a+ b¿ 0. Consequently we can again assume de&nition (3.4) in
the proof of (3.11).

By the simultaneous changes i → i + 2k −M and k → M − i − k

LHS(3:11) =
∑
i; k

qk2+i(i+2k−M)

[
L−M

L− i − 2k

][
L + M − 2k

i

]

×
[
L + M − i − 2k − a + b

M − i − k − a

][
L + M − i − 2k + a− b

L− k − b

]
:

Transforming the sum over i by (3.10) leads to

LHS(3:11) =
∑
i; k

qk2+i(i+k+b)

[
L + M − i − 2k + a− b

L− i − k − b

][
M − a + b

M − i − k − a

]

×
[
a− b

i

][
L− i − k − a

L− i − 2k

]
;
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which, by the simultaneous change k → i + a and i → k − i, becomes

LHS(3:11) = qa2
∑
k

qk(k+a+b)

[
M − a + b

M − k − 2a

]

×
∑
i

qi(i−k+a−b)

[
L + M − i − k − a− b

L− k − a− b

][
a− b

k − i

]

×
[

L− k − 2a

L− i − k − 2a

]
:

An important diHerence between the de&nitions (1.1) and (3.4) of the q-binomial
coe(cients is that only the former satis&es symmetry (3.2). However, the modi&ed
q-binomials do satisfy this symmetry provided m + n¿ 0. Now the above summand
vanishes if M−k−2a¡ 0. Hence in the sum over i we may assume that M−k−2a¿ 0.
This implies that L− k − 2a = (L−M) + (M − k − 2a)¿ 0, so that we may replace[ L−k−2a
L−i−k−2a

]
by
[ L−k−2a

i

]
. Then the sum over i can be performed by (3.8) resulting in

the right-hand side of (3.11).

4. Two simple examples

4.1. First example

In our &rst application of the transformations (2.19) and (2.20) we start with the
simplest possible identity for re&ned q-trinomials.

Lemma 4.1. For L;M ∈Z+

∞∑
j=−∞

qj( j+1){T(L;M; 2j; j)−T(L;M; 2j + 2; j)}= �L;0�M;0: (4.1)

Proof. We begin with [15, Lemma 3.1]

∞∑
j=−∞

1∑
(=0

(−1)(qj( j+1)B(L;M; j + (; j) = �L;0�M;0:

By (2.22) this implies

∞∑
j=−∞

1∑
(=0

(−1)(qj( j+1)T(L;M; 2j + 2(; j)

=
M∑
n=0

n+L even

q(1=2)n2
[
M

n

]
�L;n�M;0 = �L;0�M;0:
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A single application of the transformation of Theorem 2.1 yields
∞∑

j=−∞
q(1=2) j(3j+2){T(L;M; 3j; j)−T(L;M; 3j + 2; j)}= �L;0:

Further iterating this, using (2.19) and a simple induction argument, shows that
∞∑

j=−∞
q(1=2) j((k+3) j+2){T(L;M; (k + 3)j; j)−T(L;M; (k + 3)j + 2; j)}

=
∑

r1 ;:::;rk−1¿0

q(1=2)(r21+···+r2k )
k−1∏
i=0


 L− ri+1 −

∑i−1

j=1
rj

ri − ri+1


 ;

where r0 := M , rk := L− r1 − · · · − rk−1 and k¿ 1. Here and in the rest of the paper
we adopt the convention that −∑n−1

j=m rj =
∑m−1

j=n rj for n¡m, so that
 L− r1 −

∑−1

j=1
rj

r0 − r1


=

[
L + r0 − r1

r0 − r1

]
=

[
L + M − r1

M − r1

]
:

We cannot turn the above polynomial identity into a nontrivial q-series result because
the large L limit gives zero on either side. What we can do is apply the transformation
of Theorem 2.2. Note in particular that the condition |a|6M if |b|6M and |a+b|6L
does not pose a problem since |(k + 3)j|¿ |j| and |(k + 3)j + 2|¿ |j| for k¿ 0. By
(2.20) we thus &nd

∞∑
j=−∞

{q(1=2) j((k+3)(k+4) j+2)S(L;M; (k + 4)j; (k + 3)j)

−q(1=2)((k+3) j+2)((k+4) j+2)S(L;M; (k + 4)j + 2; (k + 3)j + 2)}

=
∑

r1 ;:::;rk¿0

q(1=2)(r21+···+r2k+1)

[
L + M − r1

L

][
L− r2

r1

]

×
k∏

i=2


 r1 − ri+1 −

∑i−1

j=2
rj

ri − ri+1


 ; (4.2)

where rk+1 = r1 − r2 − · · · − rk . For k = 0 the correct expression on the right side is[ L+M
L

]
. It is also worth separately stating the k = 1 case, namely

∞∑
j=−∞

(−1)jq(1=2) j(5j+1)S(L;M; �(5j + 1)=2�; 2j) =
M∑
n=0

qn2
[
L + M − n

L

][
L− n

n

]
:

This result is the &rst of four doubly bounded analogues of the &rst Rogers–Ramanujan
identity that will be obtained in this paper. Using (2.17) to take the limit when L tends
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to in&nity we &nd

G(M;M ; 1; 3=2; 2) =
∞∑

j=−∞
(−1)jq(1=2) j(5j+1)

[
2M

M − 2j

]
=

M∑
n=0

qn2
[
M

n

]
; (4.3)

a result originally due to Bressoud [10, Eq. (9)].
If instead of L we let M become large and use (2.12) we obtain a result of Andrews

[3, Eq. (1.11)]
∞∑

j=−∞

{
qj(10j+1)

[
L

5j

]
2

− q(2j+1)(5j+2)

[
L

5j + 2

]
2

}
=

∞∑
n=0

qn2
[
L− n

n

]
:

For arbitrary k, Eq. (4.2) is a generalization of q-trinomial identities of [9, Eq. (9.4)]
and [29, Proposition 4.5]. Making the simultaneous replacements ri → ri−1 − ri (i =
2; : : : ; k) in (4.2) and letting L and M tend to in&nity gives identities for Virasoro
characters of [29, Corollary IV.1].

Before we come to our next example let us point out that the above discussion can
be repeated for the second Rogers–Ramanujan identity. In particular one can show by
a generalization of (2.20) that

∞∑
j=−∞

(−1)jq(1=2) j(5j+3)S(L;M; �5j=2�+ 1; 2j + 1)

=
M−1∑
n=0

qn(n+1)

[
L + M − n− 1

L

][
L− n− 1

n

]
:

4.2. Second example

Our next example uses a slightly more complicated-to-prove identity as starting point.

Lemma 4.2. For L;M ∈Z+

∞∑
j=−∞

(−1)jq(1=2) j( j+1)U(L;M; j; j) = �M;0: (4.4)

Proof. Let �∈{0; 1}. Then for L− �=2∈Z+ there holds

∞∑
j=−∞

1∑
(=0

(−1)(qj(2j+1)B(L;M; j + �=2; 2j + () = �M;0: (4.5)

For � = 0 this is [15, Corollary 3.2]. For � = 1 we replace L by L + 1=2 so that we
are to show that

∞∑
j=−∞

1∑
(=0

(−1)(qj(2j+1)

[
L + M + j + (

M + 2j + (

][
L + M − j − ( + 1

M − 2j − (

]
= �M;0:
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By the q-binomial recurrence[
m + n

m

]
=

[
m + n− 1

m

]
+ qn

[
m + n− 1

m− 1

]
(4.6)

the left side can be expanded as
∞∑

j=−∞

1∑
(=0

(−1)(qj(2j+1)

[
L + M + j + (

M + 2j + (

]

×
{[

L + M − j − (

M − 2j − (

]
+ qL+j+1

[
L + M − j − (

M − 2j − (− 1

]}
:

The &rst term of the summand gives �M;0 according to (4.5) with � = 0. The second
term should thus vanish, which readily follows by the variable changes j → −j − 1
and ( → 1− (.

If we now apply the transformation (2.22) to (4.5) we obtain
∞∑

j=−∞

1∑
(=0

(−1)(qj(2j+1)T(L;M; 2j + �; 2j + ()

=
M∑
n=0

n+�+L even

q(1=2)n2
[
M

n

]
�M;0 = �M;0)(L + � even);

where )(true)=1 and )(false)=0. Summing over �, replacing j → (j−()=2 and using
the de&nition (2.24) of U yields (4.4).

By application of (2.19) the identity (4.4) transforms into
∞∑

j=−∞
(−1)jq(1=2) j(2j+1)U(L;M; 2j; j) =

[
L + M

L

]
:

Letting L tend to in&nity using (2.26) yields a q-binomial identity equivalent to item
H(2) in Slater’s list of Bailey pairs [27]. Next, by (2.19) and induction

∞∑
j=−∞

(−1)jq(1=2) j((k+1) j+1)U(L;M; (k + 1)j; j)

=
∑

r1 ;:::;rk−1¿0

q(1=2)(r21+···+r2k−1)
k−1∏
i=0


 L− ri+1 −

∑i−1

j=1
rj

ri − ri+1


 ; (4.7)

for k¿ 2 and r0 := M , rk := 0. For k =2 and L → ∞ this gives a q-binomial identity
of Rogers [23] given as item B(1) in Slater’s list. For k = 2; 3 and M → ∞ this
gives two q-trinomial identities of Andrews [4, Theorem 5.1], [3, Eq. (4.4)]. Before
considering the identities arising when both L and M become large, we will show that
one can easily derive a variation of (4.7) using the following lemma.
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Lemma 4.3. For L;M ∈Z+

∞∑
j=−∞

(−1)jq3j( j+1)=2U(L;M; 3j + 1; j)

= qM
M∑
r=0

q(1=2)r2
[
L + M − r − 1

M − r

][
L− 1

r

]
: (4.8)

For L → ∞ this yields the Bailey pair B(2).

Proof. Fix M and denote the left side of (4.7) for k = 2 by fL and the left side of
(4.8) by gL. Using[

m + n

m

]
=

[
m + n− 1

m− 1

]
+ qm

[
m + n− 1

m

]
; (4.9)

it then follows that

fL−1 =
∞∑

j=−∞
(−1)jq(1=2) j(3j+1)

1∑
(=0

M∑
n=0

n+L+j+( odd

q(1=2)n2
[
M

n

]

×
[
M + (L− j − n− (− 1)=2

M + j

][
M + (L + j − n + (− 1)=2

M − j

]

= q−M
∞∑

j=−∞
(−1)j q(1=2) j(3j+3)

1∑
(=0

M∑
n=0

n+L+j+( odd

q(1=2)n2
[
M

n

]

×
[
M + (L− j − n− (− 1)=2

M + j

]{[
M + (L + j − n + ( + 1)=2

M − j

]

−
[
M + (L + j − n + (− 1)=2

M − j − 1

]}
:

The &rst term in the summand on the right yields gL and the second term vanishes by
the substitutions j → −j− 1 and ( → 1− (. Hence gL = qMfL−1. Since also the right
sides of (4.7) for k = 2 and (4.8) satisfy this equation we are done.

We leave it to the reader to apply the transformation (2.19) to (4.8) to obtain the
variation of (4.7) alluded to, but remark that a single application of (2.19) results in
a generalization of the q-trinomial identity [3, Eq. (4.10)].
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Next we take the large L and M limit in (4.7). By (2.27) and the triple product
identity [16, Eq. (II.28)]

∞∑
k=−∞

(−z)kq

( k
2

)
= (z; q=z; q)∞ (4.10)

this yields

∑
m1 ;:::;mk−1¿0

q(1=2)(M 2
1 +···+M 2

k−1)

(q)m1 · · · (q)mk−1

=
(−q1=2)∞

(q)∞
(qk=2; qk=2+1; qk+1; qk+1)∞;

with Mi=mi+ · · ·+mk−1. To connect this with more familiar q-series results we make
use of Lemma A.1 to reduce the number of summation variables on the left. First, for
odd values of k we use the expression for f2k−1(0) with a = 1 given by the lemma
to &nd the following theorem.

Theorem 4.4. For k¿ 2

∑
m1 ;:::;m2k−2¿0

q(1=2)(M 2
1 +···+M 2

2k−2)

(q)m1 · · · (q)m2k−2

=
∑

n1 ;:::; nk−1¿0

qN 2
1 +···+N 2

k−1 (−q1=2−N1 )N1

(q)n1 · · · (q)nk−1

=
∞∏
j=1

j �≡2 (mod 4)
j �≡0;±(2k−1) (mod 4k)

1
(1− qj=2)

:

The last two expressions of this theorem constitute Andrews’ generalization
of the GOollnitz-Gordon identities [2, Eq. (7.4.4)]. The equality of these with the
&rst expression was conjectured by Melzer [20] and recently proven by Bressoud,
Ismail and Stanton [12, Theorem 5.1; i = k; a = 1] using diHerent
techniques.

Next, when k is even we use the expression for f2k(0) with a = 1.

Theorem 4.5. For k¿ 1

∑
m1 ;:::;m2k−1¿0

q(1=2)(M 2
1 +···+M 2

2k−1)

(q)m1 · · · (q)m2k−1

= (−q1=2)∞
∑

n1 ;:::; nk−1¿0

qN 2
1 +···+N 2

k−1

(q)n1 · · · (q)nk−1

= (−q1=2)∞
∞∏
j=1

j �≡0;±k (mod 2k+1)

1
(1− qj)

:

The equality between the second and third expression is the well-known (&rst)
Andrews–Gordon identity [1].
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Returning to (4.7) we apply the transformation (2.20), use de&nition (2.25) and
replace k by k − 1 to &nd

∞∑
j=−∞

(−1)jq(1=2) j(k(k+1) j+1)V(L;M; (k + 1)j; kj)

=
∑

r1 ;:::;rk−1¿0

q(1=2)(r21+···+r2k−1)

[
L + M − r1

L

][
L− r2

r1

]

×
k−1∏
i=2


 r1 − ri+1 −

∑i−1

j=2
rj

ri − ri+1


 ; (4.11)

with k¿ 2 and rk := 0. Although the right sides of (4.7) and (4.11) coincide for
k=2, the large L limit of (4.11) for k=2 does not reproduce the Bailey pair B(1), but
yields the pair I(3) due to Slater [27]. The large M limit of this same identity yields
[4, Corollary 5.2] of Andrews. If for general k we apply (2.28) and collect even and
odd powers of q1=2 we obtain the Virasoro-character identity

∑
r1 ;:::;rk−1¿0
�+
∑

i ri even

q(1=2)(r21+···+r2k−1−�)

(q)r1

k−1∏
i=2


 r1 − ri+1 −

∑i−1

j=2
rj

ri − ri+1




=




)(k;2k+2)
(k−1)=2; k+2�(q) k odd

)(k+1;2k)
k=2; k+2�−1(q) k even;

where �∈{0; 1} and

)(p;p′)
r; s (q) =

1
(q)∞

∞∑
j=−∞

{qj(pp′j+p′r−ps) − q(pj+s)(p′j+r)}:

This generalizes the identities (83) and (86) in Slater’s list [28] of identities of the
Rogers–Ramanujan type.

5. Two not-so-simple examples

In the two examples of the previous section the initial identities (4.1) and (4.4)
were both straightforward consequences of known q-binomial identities. In this section
we will give two further applications of Theorems 2.1 and 2.2 that show that not all
irreducible identities for re&ned q-trinomials (irreducible in the sense that they do not
follow by application of (2.19)) are trivial. Apart from leading to more examples of
identities of the Rogers–Ramanujan type, this will result in the following remarkable
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pair of Virasoro-character identities:

1
(q; q2)∞

{)(2k−1;2k+1)
k;k+1 (q2) + q1=2)(2k−1;2k+1)

k;k (q2)}

=
∑

r1 ;:::;rk−1¿0

q(1=2)(r21+···+r2k−1)

(q)r1


k−2∏

i=2


 r1 − ri+1 −

∑i−1

j=2
rj

ri − ri+1






×

 r1 + rk−1 −

∑k−2

j=2
rj

2rk−1




q1=2

and

1
(−q1=2; q1=2)∞

{)(2k−1;2k+1)
k;k+1 (q1=2) + q1=2)(2k−1;2k+1)

k;k−1 (q1=2)}

=
∑

r1 ;:::;rk−1¿0

q(1=2)(r21+···+r2k−1)

(q)r1


k−2∏

i=2


 r1 − ri+1 −

∑i−1

j=2
rj

ri − ri+1






×

 �(r1 + rk−1 −

∑k−2

j=2
rj)=2�

rk−1




q2

;

for k¿ 3 and �x� the integer part of x. The strange similarity between these two
formulas and how the roles of q1=2 and q2 are interchanged in going from one to the
other is in our opinion quite amazing.

5.1. A generalization of Bailey pair C(5)

In our next example we take the following identity as starting point.

Lemma 5.1. For L;M ∈Z+

∞∑
j=−∞

(−1)jqj( j+1)U(L;M; j; 2j) = q

( M
2

) [
L + M + 1

2M

]
q1=2

: (5.1)

Taking the large L limit using (2.26) gives
∞∑

j=−∞
(−1)jqj( j+1)

[
2M

M − 2j

]
= q

( M
2

)
(−q)M :

This identity, which is equivalent to the Bailey pair C(5) of Rogers [23,27], can be
obtained as a specialization of the nonterminating q-Dougall sum [16, Eq. (II.20)]. This
foreshadows that (5.1) will not be as easy to prove as our previous examples.
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Proof. By (1.1) and (2.14b) the lemma is trivially true for M=0, and in the following
we may assume M¿ 1. We now multiply both sides by zL and sum L over the
nonnegative integers. On the right this sum can be carried out thanks to [2, Eq. (3.3.7)]

∞∑
k=0

zk
[
n + k

k

]
=

1
(z)n+1

: (5.2)

On the left we insert the de&nition (2.24) of U to obtain two terms. In the second of
these (corresponding to a sum over T(L;M; j+1; 2j)) we change j → −j− 1 and use
the symmetry (2.15). Substituting the de&nition (2.11) of T and shifting L → 2L+n+j
then gives

∞∑
j=−∞

∞∑
L=0

1∑
(=0

M∑
n=0

(−1)j+(z2L+j+nqj( j+1)+(1=2)n2
[
M

n

]

×
[
L + M + 2j + 2(

L

][
L + M − j − 2(

L + j

]
=

zM−1q

( M
2

)

(z; q1=2)2M+1
:

By (2.3) the sum over n yields (−zq1=2)M . Dividing by this term and using that
(−zq1=2)M (z; q1=2)2M+1 = (z2)2M+1=(−z)M+1, we are left to prove that

∞∑
j=−∞

∞∑
L=0

1∑
(=0

(−1)j+(z2L+jqj( j+1)

[
L + M + 2j + 2(

L

][
L + M − j − 2(

L + j

]

=
zM−1q

( M
2

)
(−z)M+1

(z2)2M+1
:

We expand the right using (2.3) and (5.2) and equate coe(cients of za. Renaming L
as j and M as L this yields

a∑
j=0

1∑
(=0

(−1)a+(q(2j−a)(2j−a−1)

[
L− 3j + 2a + 2(

j

][
L + 3j − a− 2(

a− j

]

= q

( L
2

) ∞∑
i=0

q

( 2i+L−a
2

) [
2L + i

i

][
L + 1

2i + 2L− a

]
;

for a¿ 0 and L¿ 1. Next we write a=2M + � for �∈{0; 1}, and make the changes
j → j + M + � on the left and i → M − i on the right. Recalling (2.30) this gives

∞∑
j=−∞

1∑
(=0

(−1)(q2j(2j+1)B0;�(L;M; 4j + 2(; j)
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= q

( L
2

)
M∑
i=0

q

( L−2i−�
2

) [
2L + M − i

2L

][
L + 1

2L− 2i − �

]
; (5.3)

for M¿ 0 and L¿ 1. To prove this identity we recall the following result due to
Gessel and Krattenthaler [17, Theorem 12; r=2, a=M , c=L, m= n=1= ,=1] [17,
Theorem 13; r = 2, a = M + 1, c = L + 1, m = , = 1, n = 0]

∞∑
j=−∞

1∑
(=0

(−1)(qj(3j+2−�)B�;�(L;M; 3j + 2(; j) = qL(L+�−1)

[
L + M + � + 1

2L + �

]
;

for L;M¿ 0. Applying Theorem 2.10 with r = 0 and s = � yields (5.3).

If we now apply Theorem 2.1 to Lemma 5.1 and simplify the resulting right-side
by (A.2) we obtain

∞∑
j=−∞

(−1)jqj(3j+1)U(L;M; 3j; 2j) =

[
L + 2M

L

]
q1=2

; (5.4)

which in the large L limit corresponds to the Bailey pair C(1) [23,27]. We note that
(5.4) can be used to also obtain a generalization of the Bailey pair C(2), or, more
precisely, of a linear combination of C(1) and C(2).

Lemma 5.2. For L;M ∈Z+

∞∑
j=−∞

(−1)jqj(3j+1)U(L;M; 3j; 2j + 1) =

[
L + 2M − 1

L

]
q1=2

: (5.5)

Proof. We will be rather brief, omitting some details. Fixing M , let fL and gL denote
the left side of (5.4) and (5.5), respectively. Then

gL =
∞∑

j=−∞
(−1)jqj(3j+1)

1∑
(=0

M∑
n=0

n+L+j+( even

q(1=2)n2
[
M

n

]

×
[
M + (L + j − n− ( + 2)=2

M + 2j + 1

][
M + (L− j − n + (− 2)=2

M − 2j − 1

]
:

Applying (4.9) to the second q-binomial yields two triple-sums. One of these van-
ishes as it changes sign under the substitutions j → −j − 1 and ( → 1− (. Hence

gL =
∞∑

j=−∞
(−1)jqj(3j+1)

1∑
(=0

M∑
n=0

n+L+j+( even

q(1=2)n2
[
M

n

]
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×
[
M + (L + j − n− ()=2

M + 2j

][
M + (L− j − n + (− 2)=2

M − 2j − 1

]
:

Again by (4.9) we can subtract this in a straightforward manner from fL. If in what
then results we make the changes j → −j and ( → 1 − ( we &nd qMfL−1. Hence
gL = fL − qMfL−1. If we now replace fL in this equation by the right side of (5.4)
and use the recurrence (4.6) we &nd that gL equals the right side of (5.5).

Returning to (5.4) it follows by (2.19) and induction that for k¿ 1
∞∑

j=−∞
(−1)jqj((2k+1) j+1)U(L;M; (2k + 1)j; 2j)

=
∑

r1 ;:::;rk−1¿0

q
(1=2)

k−1∑
i=1

r2i


 L + rk−1 −

∑k−2

j=1
rj

2rk−1




q1=2

k−2∏
i=0


 L− ri+1 −

∑i−1

j=1
rj

ri − ri+1


 ;

(5.6)

with r0 := M . Letting M tend to in&nity we obtain a chain of q-trinomial identities, the
simplest of which is equivalent to [4, Theorem 6.1; (6.10)] by Andrews. (The other
identity in Andrews’ theorem follows by a single iteration of (5.5) and again taking
the large M limit.) When also L tends to in&nity we arrive at∑

n1 ;:::; nk−1¿0

qN 2
1 +···+N 2

k−1

(q2; q2)n1 · · · (q2; q2)nk−1 (q; q2)nk−1

=
∞∏
j=1

j �≡2 (mod 4)
j �≡0;±4k (mod 8k+4)

1
(1− qj)

;

with Ni = ni + · · ·+ nk−1. Carrying out the same calculations starting with Lemma 5.2
leads to the analogous result∑

n1 ;:::; nk−1¿0

qN 2
1 +···+N 2

k−1+2N1+···+2Nk−1

(q2; q2)n1 · · · (q2; q2)nk−1 (q; q2)nk−1+1
=

∞∏
j=1

j �≡2 (mod 4)
j �≡0;±4 (mod 8k+4)

1
(1− qj)

:

For k = 2 the above two identities are Rogers’ [23, p. 330, Eq. (3)] listed as items
(79) and (96) in Slater’s list [28] of Rogers–Ramanujan identities.

When k is odd we can apply Lemma A.1 to obtain the following equivalent pair of
Rogers–Ramanujan identities∑

n1 ;:::; nk−1¿0

qN 2
1 +···+N 2

k−1

(q)n1 · · · (q)nk−1 (q; q2)nk−1

=
∞∏
j=1

j �≡0;±4k (mod 8k−2)

1
(1− qj)

and ∑
n1 ;:::; nk−1¿0

qN 2
1 +···+N 2

k−1+2N1+···+2Nk−1

(q)n1 · · · (q)nk−1 (q; q2)nk−1+1
=

∞∏
j=1

j �≡0;±2 (mod 8k−2)

1
(1− qj)

:
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For k=2 these are [23, p. 329, Eqs. (1.1) and (1.3)] of Rogers, corresponding to items
(61) and (59) in Slater’s list. We leave it to the reader to carry out the corresponding
rewritings when k is even.

So far, the results of this section are nothing unusual; typical examples of identities
of the Rogers–Ramanujan type have been derived. More exciting q-series results arise
if we apply (2.20) to (5.6). Replacing k by k − 1 this yields

∞∑
j=−∞

(−1)jq(1=2) j((4k2−1) j+2)V(L;M; (2k + 1)j; (2k − 1)j)

=
∑

q
(1=2)

k−1∑
i=1

r2i

[
L + M − r1

L

][
L− r2

r1

] r1 + rk−1 −
∑k−2

j=2
rj

2rk−1




q1=2

×
k−2∏
i=2


 r1 − ri+1 −

∑i−1

j=2
rj

ri − ri+1


 ; (5.7)

where k¿ 2 and where the sum on the right is over r1; : : : ; rk−1¿ 0. Being of special
interest, we separately state the k = 2 case

∞∑
j=−∞

(−1)jqj(15j+2)V(L;M; 5j; 3j; q2) =
M∑
n=0

qn2
[
L + M − n

L

]
q2

[
2L− n

n

]
:

(5.8)

Applying (2.20) to (5.5) we also have
∞∑

j=−∞
(−1)jqj(15j+2)V(L;M; 5j + 1; 3j; q2)

=
M∑
n=0

qn2
[
L + M − n

L

]
q2

[
2L− n− 1

n

]
; (5.9)

for M¿ 1. These two formulas provide our second and third doubly-bounded analogue
of the &rst Rogers–Ramanujan identity. If we follow Schur [25] and de&ne the polyno-
mials en recursively as en = en−1 + qn−2en−2 with e0 = 0 and e1 = 1, then the M → ∞
limits of (5.8) and (5.9) can be written as

e2L+( =
∞∑

j=−∞
(−1)jqj(15j+2)



[

L

5j + 1− (

]
2;q2

+ q6j+1

[
L

5j + 2− (

]
2;q2


 :

(5.10)

where (∈{0; 1}. For (=1 this is equivalent to [4, Eqs. (6.16) and (6.17)] of Andrews,
who remarked that on the right one can easily discern even and odd powers of q. Even



242 S.O. Warnaar / Discrete Mathematics 272 (2003) 215–258

powers follow from j even (odd) in the &rst (second) term and odd powers follow
from j odd (even) in the &rst (second) term. From the well-known combinatorial
interpretation of the Schur polynomial en as the generating function of partitions with
diHerence between parts at least two and largest part not exceeding n − 2, it follows
that the right-hand side of (5.10) can be dissected to give the generating function
of partitions of m with the parity of m &xed, diHerence between parts at least two
and largest part at most 2L + ( − 2. It seems an interesting combinatorial problem to
also interpret the identities (5.8) and (5.9) in terms of restricted Rogers–Ramanujan
partitions.

Letting not M but L tend to in&nity in (5.8) and (5.9) leads to the somewhat unusual
Rogers–Ramanujan polynomial identity

∞∑
j=−∞

(−1)jqj(15j+2)



[

2M

M − 3j

]
q2

+ q6j+1

[
2M

M − 3j − 1

]
q2




=
M∑
n=0

qn2
[
M

n

]
(−qM−n+1)n:

A slight modi&cation of the previous derivations leads to analogous results for the
second Rogers–Ramanujan identity. To avoid repeating ourselves we have chosen to
only state the counterparts of (5.8) and (5.9), given by

∞∑
j=−∞

(−1)jqj(15j+4){S(L;M; 5j+(; 3j; q2)+q10j+3S(L;M; 5j + 3−(; 3j + 1; q2)}

=
M∑
n=0

qn(n+1)

[
L + M − n

L

]
q2

[
2L + (− n− 2

n

]
; (5.11)

for (∈{0; 1}, L¿ 1− ( and M¿ 2− (. This can be proven using

∞∑
j=−∞

(−1)jqj(3j+2){T(L;M; 3j; 2j + ()−T(L;M; 3j + 2; 2j + ()}

= qL=2

[
L + 2M + (− 2

L

]
q1=2

;

for L + M¿ (, which follows from (5.4) and (5.5) using the recurrences (4.6) and
(4.9). When M tends to in&nity in (5.11) one obtains q-trinomial identities for d2L+(

where dn is again a Schur polynomial, this time de&ned by dn=dn−1 +qn−2dn−2 with
d0 = 1 and d1 = 0. For ( = 0 these q-trinomial identities are equivalent to [4, Eqs.
(6.18) and (6.19)].
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After this intermezzo on polynomial analogues of the Rogers–Ramanujan identities
we return to the general result (5.7), send L and M to in&nity and repeat the exercise
of separating even and odd powers of q1=2. This yields the &rst identity stated in the
introduction of this section.

5.2. A generalization of Bailey pair G(4)

Our &nal example before we come to the generalized Borwein conjecture takes the
following identity as starting point.

Lemma 5.3. For L;M ∈Z+

∞∑
j=−∞

(−1)j q(1=4) j( j+1)U(L;M; � 1
2 j�; j) = (−1)Mq(1=2)M 2

[ �(L + M + 1)=2�
M

]
q2

:

When L becomes large this leads to
∞∑

j=−∞
(−1)jq(1=4) j( j+1)

[
2M

M − j

]
= (−1)Mq(1=2)M 2

(q1=2)M ;

which follows from the terminating q-Dougall sum [16, Eq. (II.21)] and is equivalent
to the Bailey pair G(4) of Rogers [23,27].

Proof. We proceed as in the proof of Lemma 5.1 and, assuming M¿ 1, compute the
generating function of the identity in the lemma. Using the relation (−zq1=2)M (z2; q2)M+1

=(z2)2M+1=(zq1=2)M this yields
∞∑

j=−∞

∞∑
L=0

1∑
(=0

(−1)(z2L+jq(1=2) j(2j+1)

{
z

[
L + M + 2j + (

L

]

+

[
L + M + 2j + (− 1

L− 1

]}[
L + M − j − (

L + j

]

=
(−1)MzM (1 + z)q(1=2)M 2

(zq1=2)M
(z2)2M+1

:

To the second term on the left we add the trivial identity
∞∑

j=−∞

∞∑
L=0

1∑
(=0

(−1)(z2L+jqL+(1=2)j(2j+1)

×
[
L + M + 2j + (− 1

L

][
L + M − j − (

L + j

]
= 0:

(To prove this make the replacements ( → 1− ( and L → L− j followed by j → −j.)
By the recurrence (4.9) the second term then becomes equal to the &rst but without
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the z, so that both sides of the identity can be divided by 1 + z. Equating coe(cients
of za and renaming L as j and M as L then gives

a∑
j=0

1∑
(=0

(−1)a+(q(1=2)(2j−a)(4j−2a−1)

[
L− 3j + 2a + (

j

][
L + 3j − a− (

a− j

]

= q(1=2)L2
∞∑
i=0

q(1=2)(2i+L−a)2
[
2L + i

i

][
L

2i + 2L− a

]
;

for a¿ 0 and L¿ 1. Setting a = 2M + � for �∈{0; 1} and changing j → j + M + �
on the left and i → M − i on the right results in

∞∑
j=−∞

1∑
(=0

(−1)(qj(4j+2�+1)B0;�(L;M; 4j + � + (; j)

= q(1=2)L2
M∑
i=0

q(1=2)(2i−L+�)2
[
2L + M − i

2L

][
L

2L− 2i − �

]
:

This identity is simple consequence of Theorem 2.10 applied to
∞∑

j=−∞

1∑
(=0

(−1)(qj(3j+�+1)B�;�(L;M; 3j + � + (; j) = qL(L−�)

[
L + M + �

2L + �

]
;

which for �=0 is due to Burge [13, p. 217] and for �=1 to Gessel and Krattenthaler
[17, Theorem 9; r = 2, a = M , c = L, m = , = 1, n = 0].

Applying the transformation (2.19) and carrying out the resulting sum on the right
using (A.3) leads to

∞∑
j=−∞

(−1)jq(1=4) j(3j+1)U(L;M; � 3
2 j�; j) =

[ �L=2�+ M

M

]
q2

; (5.12)

which is a re&nement of the Bailey pair G(1) [23,27]. We remark that a calculation
very similar to the one that led to Lemma 5.2 shows that (5.12) implies a generalization
of the Bailey pair G(3);

∞∑
j=−∞

(−1)jq(3=4) j( j+1)U(L;M; 3� 1
2 (j + 1)�; j) = qM

[ �L=2�+ M

M

]
q2

:

We will not pursue the consequences of this identity but content ourselves with iterating
just (5.12). By (2.19) and induction this gives

∞∑
j=−∞

(−1)jq(1=4) j((2k+1) j+1)U(L;M; � 1
2 (2k + 1)j�; j)

=
∑

r1 ;:::;rk−1¿0

q(1=2)
∑k−1

i=1 r2i



⌊(

L + rk−1 −
∑k−2

j=1
rj

)/
2
⌋

rk−1




q2
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×
k−2∏
i=0


 L− ri+1 −

∑i−1

j=1
rj

ri − ri+1


 ; (5.13)

where r0 := M and k¿ 2. We immediately consider the case when both L and M
become large. To shorten some of the resulting equations we also replace k by k + 1.
Thanks to the triple product identity (4.10) this yields

∑
n1 ;:::; nk¿0

q(1=2)(N 2
1 +···+N 2

k )

(q)n1 · · · (q)nk−1 (q2; q2)nk
=

(qk=2+1=2; qk=2+1; qk+3=2; qk+3=2)∞
(−q)∞(q1=2; q1=2)∞

; (5.14)

with Ni = ni + · · ·+ nk . For k = 1 this is [22, p. 330], given as entry (20) in Slater’s
list.

Once more we utilize Lemma A.1. When k in (5.14) is even this implies

∑
n1 ;:::; nk¿0

qN 2
1 +···+N 2

k

(q)n1 · · · (q)nk (−q1=2; q1=2)2nk
=

(qk+1=2; qk+1; q2k+3=2; q2k+3=2)∞
(q)∞

:

For k = 1 this is the &rst Rogers–Selberg identity [23, p. 339, Eq. (6.1)], [26, Eq.
(29)] (or item (33) in Slater’s list), and for general k it is Paule’s generalized Rogers–
Selberg identity [21, Eq. (45); r → k + 1]. Similarly, when k is odd in (5.14) we
get

∑
n1 ;:::; nk¿0

qN 2
1 +···+N 2

k (−q1=2−N1 )N1

(q)n1 · · · (q)nk (−q1=2; q1=2)2nk
=

(qk ; qk+1=2; q2k+1=2; q2k+1=2)∞
(q1=2)∞(q2; q2)∞

:

Finally, applying (2.20) to (5.13) and replacing k by k − 1 yields

∞∑
j=−∞

{q(1=2) j((2k−1)(2k+1) j+1)V(L;M; (2k + 1)j; (2k − 1)j)

−q(1=2)((2k−1) j+k−1)((2k+1) j+k)V(L;M; (2k + 1)j + k; (2k − 1)j + k − 1)}

=
∑

q(1=2)
∑k−1

i=1 r2i

[
L + M − r1

L

][
L− r2

r1

]
⌊(

r1 + rk−1 −
∑k−2

j=2
rj

)/
2
⌋

rk−1




q2

×
k−2∏
i=2


 r1 − ri+1 −

∑i−1

j=2
rj

ri − ri+1


 ;

where k¿ 3 and where the sum on the right is over r1; : : : ; rk−1¿ 0. When k = 2 the
correct right side reads

∑
r¿0 q

(1=2)r2
[ L+M−r

L

][ �L−r=2	
L−r

]
q2 . The second identity claimed

in the introduction of this section follows in the large L and M limit.
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6. The generalized Borwein conjecture

Finally we have come to our main application of the transformations of Section 2,
leading to proofs of Theorems 1.5–1.7.

We begin by recalling some notation and results of [31]. Assume that a; b are coprime
integers such that 0¡b¡a, and de&ne a nonnegative integer n and positive integers
a0; : : : ; an as the order and partial quotients of the continued fraction representation of
(a=b− 1)sign(a−2b) (sign(0) = 0), i.e.,(a

b
− 1
)sign(a−2b)

= [a0; : : : ; an] = a0 +
1

a1 + 1

···+ 1
an

:

For simplicity, an will be &xed by requiring that an¿ 2 for (a; b) �= (2; 1). (This is by
no means necessary, see [31].) We denote the continued fraction corresponding to a; b
by cf (a; b), and note the obvious symmetry cf (a; b) = cf (a; a − b). We further de&ne
the partial sums tj=

∑j−1
k=0 ak for j=1; : : : ; n+1 and introduce t0=0 and d(a; b)= tn+1.

Finally we need a d(a; b)× d(a; b) matrix I(a; b) with entries

I(a; b)j; k =

{
�j;k+1 + �j;k−1 for j �= ti

�j;k+1 + �j;k − �j;k−1 for j = ti

and a corresponding Cartan-type matrix C(a; b)=2I −I(a; b) where I is the d(a; b)×
d(a; b) identity matrix. Note that the matrix I(a; b) has the following block-structure:

I(a; b) =




Ta0
−1

1
. . .

−1

1
Tan




where Ti is the incidence matrix of the tadpole graph with i vertices, i.e., (Ti)j; k =
�j;k+1 + �j;k−1 + �j;k�j; i.

With the above notation we de&ne a polynomial for each pair of coprime integers
a; b such that 0¡ 2b¡a as follows:

Fa;b(L;M) =
∑

m∈Zd(a;b)
+

qL(L−2m1)+mC(a;b)m

[
M + m1 − m2

L

]

×
[
m1 − m2

n1

] d(a;b)∏
j=2

[
(jmj + nj

(jmj

]
(6.1)
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for 2b¡a¡ 3b, and

Fa;b(L;M) =
∑

m∈Zd(a;b)
+

qL(L−2m1)+mC(a;b)m

[
M + m2

L

][
m2

n1

] d(a;b)∏
j=2

[
(jmj + nj

(jmj

]
(6.2)

for 0¡ 3b6 a. Here

mC(a; b)m =
d(a;b)∑
j; k=1

mjC(a; b)j; kmk =
n∑

j=0


m2

tj+1 +
tj+1−1∑
k=tj+1

(mk − mk+1)2




and (j = (j(a; b) = 2− �j;d(a;b). The auxiliary variables nj in the summand are integers
de&ned by the (m; n)-system

nj = L�j;1 −
d(a;b)∑
k=1

C(a; b)j; kmk for j = 1; : : : ; d(a; b): (6.3)

We are now prepared to state our &rst results of this section.

Theorem 6.1. For L;M ∈Z+ and a; b coprime integers such that 0¡ 2b¡a,
∞∑

j=−∞
(−1)jq(1=2) j((2ab+1) j+1)S(L;M; aj; 2bj) = Fa;b(L;M): (6.4)

A proof of this will be given in the next section.
In order to turn (6.4) into identities for q-binomial coe(cients we take the large L

limit. On the left this limit is easily computed with the aid of (2.17). On the right some
rewritings need to be carried out &rst to cancel the term L(L − 2m1) in the exponent
of q in (6.1) and (6.2). To this end we eliminate m1; : : : ; ma0 in favour of n1; : : : ; na0 .
By (6.3) this yields

mj = L− jma0+1 −
a0∑
k=1

min(j; k)nk ; j = 1; : : : ; a0

na0+1 = L− a0ma0+1 −
a0∑
k=1

knk −
d(a;b)∑

k=a0+1

C(a; b)a0+1;kmk

nj =−
d(a;b)∑
k=1

C(a; b)j; kmk ; j = a0 + 2; : : : ; d(a; b); (6.5)

from which it follows that

L(L− 2m1) + mC(a; b)m =
a0∑
j=1

(Nj + ma0+1)2 +
d(a;b)∑

j; k=a0+1

mjC(a; b)j; kmk ;

where Nj = nj + · · · + na0 . Taking the large L limit is now straightforward and if we
de&ne Fa;b(M) = (q)M limL→∞Fa;b(L;M) then

Fa;b(M) =
∑

n1 ;:::; na0¿0
ma0+1 ;:::;md(a;b)¿0
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× q
∑a0

j=1(Nj+ma0+1)2+
∑d(a; b)

j; k=a0+1 mjC(a;b)j; kmk (q)M
(q)M−2ma0+1−N1−N2 (q)n1 · · · (q)na0 (q)2ma0+1

d(a;b)∏
j=a0+2

[
(jmj + nj

(jmj

]
(6.6)

for a¿ 2b. Here the auxiliary variables nj for j¿ a0 + 2 are given by (6.5). When
2b¡a¡ 3b there holds a0 = 1 in which case N1 = n1 and N2 = 0. When b = 1 there
holds d(a; 1) = a0 = a− 1 in which case ma0+1 = 0.

Having de&ned the polynomial Fa;b(M) we can now state the identities obtained
when L tends to in&nity in Theorem 6.1.

Corollary 6.2. For L;M ∈Z+ and a; b coprime integers such that 0¡ 2b¡a,

G(M;M ; a=2; (a + 1=b)=2; 2b) =
∞∑

j=−∞
(−1)jq(1=2) j((2ab+1) j+1)

[
2M

M − 2bj

]

= Fa;b(M):

From (6.6) it follows that for 2b¡a¡ 3b the above right-hand side can be written as

∑
n1 ;m2 ;:::;md(a;b)¿0

q(n1+m2)2+
∑d(a; b)

j; k=2 mjC(a;b)j; kmk

[
M

n1

][
M − n1

2m2

] d(a;b)∏
j=3

[
(jmj + nj

(jmj

]
¿ 0;

leading to our next corollary.

Corollary 6.3. G(M;M ; b=2; (b + 1=a)=2; 2a)¿ 0 for a; b coprime integers such that
2a¡b¡ 3a.

The reason for interchanging a and b in comparison with Corollary 6.2 will become
clear shortly.

To derive further positivity results from Theorem 6.1 we replace q by 1=q in (6.4)
using (2.16). De&ning the polynomial fa;b(L;M) by (6.1) and (6.2) but with mC(a; b)m
replaced by LmC(a; b)m with Lm=(m1; : : : ; md(a;b)−1; 0) (so that LmC(a; b)m=mC(a; b)m+
md(a;b)(md(a;b)−1 − md(a;b))), the following result arises.

Corollary 6.4. For L;M ∈Z+ and a; b coprime integers such that 0¡ 2b¡a,

∞∑
j=−∞

(−1)jq(1=2) j((2ab−1) j+1)S(L;M; aj; 2bj) = fa;b(L;M): (6.7)

The large L limit can be taken following the same steps as before, and if we de-
&ne fa;b(M) = (q)M limL→∞fa;b(L;M) then fa;b(M) for b �= 1 is given by (6.6)
with

∑d(a;b)
j; k=a0+1 mjC(a; b)j; kmk replaced by

∑d(a;b)
j; k=a0+1 LmjC(a; b)j; kmk where Lmj=

mj(1− �j;d(a;b)). This leads to the following analogue of Corollary 6.2.
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Corollary 6.5. For L;M ∈Z+ and a; b coprime integers such that 2¡ 2b¡a,

G(M;M ; (a− 1=b)=2; a=2; 2b) =
∞∑

j=−∞
(−1)jq(1=2) j((2ab−1) j+1)

[
2M

M − 2bj

]

=fa;b(M):

For 2b¡a¡ 3b the above right-hand side can be written as

∑
n1 ;m2 ;:::;md(a;b)¿0

q(n1+m2)2+
∑d(a; b)

j; k=2 LmjC(a;b)j; kmk

[
M

n1

][
M − n1

2m2

] d(a;b)∏
j=3

[
(jmj + nj

(jmj

]
¿ 0:

Hence G(M;M ; (a − 1=b)=2; a=2; 2b)¿ 0 for 2b¡a¡ 3b. If we apply the symmetry
(1.2) followed by the duality

G(M;M ; 
; �; K ; 1=q) = q−M 2
G(M;M ;K − 
; K − �; K ; q)

and make the simultaneous replacements a → 4a − b and b → a, we obtain the
following result.

Corollary 6.6. G(M;M ; b=2; (b + 1=a)=2; 2a)¿ 0 for a; b coprime integers such that
a¡b¡ 2a.

In Corollary 6.5 b = 1 is excluded, requiring a diHerent treatment. Namely, if we
express the summand of fk+1;1(L;M) in terms of n1; : : : ; nk we &nd that (6.7) becomes

∞∑
j=−∞

(−1)jq(1=2) j((2k+1) j+1)S(L;M; (k + 1)j; 2j)

=
∑

n1 ;:::; nk¿0

qN 2
1 +···+N 2

k +nk Ñ k

[
M + Ñ 2

L

][
Ñ 2

n1

][
nk + Ñ k

nk

]
k−1∏
j=2

[
nj + 2Ñ j

nj

]
;

with Nj = nj + · · · + nk , Ñ j = L − N1 − · · · − Nj and k¿ 2. Noting that in the large
L limit only the terms with nk = 0 contribute to the sum on the right, this can be
recognized as a doubly-bounded analogue of the (&rst) Andrews–Gordon identity, with
k=2 corresponding to our fourth doubly-bounded version of the &rst Rogers–Ramanujan
identity. Taking L → ∞ yields

∞∑
j=−∞

(−1)jq(1=2) j((2k+1) j+1)

[
2M

M − 2j

]
=

∑
n1 ;:::; nk−1¿0

qN 2
1 +···+N 2

k−1 (q)M
(q)M−N1−N2 (q)n1 · · · (q)nk−1

;

which for k = 2 is Bressoud’s identity (4.3). We remark that it follows from (6.6)
that also Theorem 6.1 for b=1 is a doubly-bounded analogue of the (&rst) Andrews–
Gordon identity, with the same large L limit as above, but with k = 2 excluded.

Corollaries 6.3 and 6.6 are the La = (2) and La = (0; 2) instances of Theorem 1.7.
We can use the full set of transformations of Section 2 to derive polynomial identities
that imply all of Theorem 1.7. However, the notation required to describe these more
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general identities is a lot more complicated than the already involved notation needed
in the de&nitions of FL;M , FM , fL;M and fM . Since we trust that the previous examples
(and the proof of Theorem 1.7 given in the next section) illustrate how one can, in
principle, obtain explicit representations for all of the polynomials occurring in Theorem
1.7 we will in the following take a shortcut and prove the remainder of the theorem
without &rst deriving explicit polynomial identities.

We begin by noting that the Corollaries 2.6 and 2.7 imply the following simple
lemma.

Lemma 6.7. If G(M;M ; 
; �; K)¿ 0 then G(M;M ; 
′; �′; K ′)¿ 0 with


′ = 
=2 + K; �′ = �=2 + K; K ′ = 2K (6.8)

or


′ = (
 + K)=2; �′ = (� + K)=2; K ′ = 2K: (6.9)

Proof. By Corollary 2.6 and the assumption that G(M;M ; 
; �; K)¿ 0,

06
∞∑
k=0

CM;k(q)G(k; k; 
; �; K)

=
∞∑

j=−∞
(−1)jqKj((
+�) j+
−�)=2

∞∑
k=0

CM;k(q)

[
2k

k − Kj

]

=
∞∑

j=−∞
(−1)jqKj((4K+
+�) j+
−�)=2

[
2M

M − 2Kj

]
= G(M;M ; 
′; �′; K ′);

with 
′; �′ and K ′ given by (6.8). Using Corollary 2.7 instead of Corollary 2.6 and
copying the above steps leads to a proof of the second statement.

Next we iterate Lemma 6.7 to arrive at a binary tree of positivity results.

Proposition 6.8. For n¿ 0, let La=(a0; : : : ; an)∈Zn+1 such that a0¿ 0, a1; : : : ; an−1¿ 1
and an¿ 2−�n;0. Then G(M;M ; 
; �; K)¿ 0 implies that G(M;M ; 
′; �′; K ′)¿ 0 with


′ = (
 + �K)=2d−1; �′ = (� + �K)=2d−1; K ′ = 2d−1K

where d; �∈Z+ are given by (1.3).

The reason for referring to this as a binary tree is that in the proof given below
G(M;M ; 
; �; K) corresponds to the “initial condition” La = (1) (for which d = 1 and
�=0), (6.8) corresponds to the transformation (a0; a1; : : : ; an) → (a0+1; a1; : : : ; an) and
(6.9) corresponds to (a0; a1; : : : ; an) → (0; a0 + 1; a1; : : : ; an).

Having said this, it is clear that we could equally well have chosen a diHerent
labelling of the triples (
′; �′; K ′) in the tree. For example, we could have chosen to
let (6.9) correspond to the transformation (a0; a1; : : : ; an) → (a0+1; a1; : : : ; an) and (6.8)
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to (a0; a1; : : : ; an) → (0; a0 + 1; a1; : : : ; an). On the sequences La this corresponds to the
involution (1) → (1) and

(a0; a1; : : : ; an) → (0; 1a0−1; 2; 1a1−2; 2; : : : ; 2; 1an−1−2; 2; 1an−3; 2);

which leaves d invariant. Here 1� stands for � repeated ones, and

(0; 1−1)�(2; 1−1)0; 2

(which can occur for �∈{0; 1} and 0¿ 0; and stands for 0; 1−1 repeated � times
followed by 2; 1−1 repeated 0 times followed by a 2) has to be identi&ed with the
single integer 0−�+2. For example, (1; 1; 2) → (0; 10; (2; 1−1)2; 2)=(0; 4) and (0; 4) →
(0; 1−1; 2; 1; 2) = (1; 1; 2). With this diHerent choice of labelling the statement of the
Proposition remains the same except that the expression for � would then be

� =
1
3
(4d−1 − 1) +

n∑
i=1

4ai+···+an−2:

We do however believe that no relabelling is possible that would simplify the claim
of the proposition.

Proof of Proposition 6.8. Given a sequence La = (a0; : : : ; an) we write d = a0 + · · · +
an = | La|. We will also make the dependence of 
′; �′ and K ′ on La explicit by writing

′La; �

′
La and K ′

La. Similarly we will write 
 La, � La and K La whenever necessary, but 
(1), �(1)

and K(1) will always be just 
, � and K .
As already remarked above, for La = (1), which is the only admissible sequence for

which | La| = 1, the proposition is trivially true. We will now proceed by induction on
d and assume that the proposition is true for sequences La with | La|= d. Now there are
two types of (admissible) sequences La′ that have | La′|= d+ 1. Either it is of the form
La′=(a0 +1; a1; : : : ; an) or it is of the form La′=(0; a0 +1; a1; : : : ; an) where in both cases
a0¿ 0. (If n = 0 in the latter case, then a0¿ 1.)

First assume La′ = (a0 + 1; a1; : : : ; an). Since | La′|= d+1 the sequence La= (a0; : : : ; an)
has | La|=d and by our induction hypothesis the proposition holds for this La. If we now
apply the (6.8) case of Lemma 6.7 to La, and then use the induction hypothesis, we
&nd the proposition to be true for

K ′ = 2K La = 2(2d−1K) = 2dK = K La′

and


′ = 
 La=2 + K La = (
 + � LaK)=2d + 2d−1K = (
 + � La′K)=2d = 
 La′ ;

where we have used that � La′ −� La=4d−1. Repeating the last calculation with 
 replaced
by � also shows that �′ = � La′ .

Next assume La′=(0; a0+1; a1; : : : ; an). Since | La′|=d+1 the sequence La=(a0; : : : ; an)
has | La|=d and by our induction hypothesis the proposition holds for this La. If we now
apply the (6.9) case of Lemma 6.7 to La, and then use the induction hypothesis, we
&nd the proposition to be true for K ′ = K La′ and


′ = (
 La + K La)=2 = (
 + � LaK)=2d + 2d−2K = (
 + � La′K)=2d = 
 La′ ;
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where we have used that � La′ − � La = 4d−1. Repeating this with 
 replaced by � shows
that �′ = � La′ .

Using the Theorems 1.2–1.4 as input to Proposition 6.8 the Theorems 1.5–1.7 easily
follow, and we only present the proof of Theorem 1.7.

Proof of Theorem 1.7. By Theorem 1.4 there holds G(M;M; b̃; b̃+ 1=ã; ã)¿ 0 for ã; b̃
coprime integers such that 0¡b̃¡ ã. By Proposition 6.8 it is therefore true that
G(M;M; 
; �; K)¿ 0 with 
= (b̃+ �ã)=2d−1, �= (b̃+ 1=ã+ �ã)=2d−1 and K = 2d−1ã.
De&ning a= ã and b= b̃+ �ã gives the statement of the theorem. (Since ã and b̃ are
coprime, so are a and b.)

A close scrutiny of the set of admissible sequences La allows for a slight reformu-
lation of Theorem 1.7. First note there are 2d−1 sequences with &xed d. For exam-
ple, if d = 4 we have the following eight sequences in reverse lexicographic order:
S4 := {(4); (2; 2); (1; 3); (1; 1; 2); (0; 4); (0; 2; 2); (0; 1; 3); (0; 1; 1; 2)}. Now observe that
these eight sequences form four pairs, with a typical pair given by (a0; : : : ; an−1; an)
and (a0; : : : ; an−1; an − 2; 2) with an¿ 3. (The only exception is the pair (2) and (0; 2)
for d= 2, which corresponds to an = a0 = 2.) Moreover, if b and b′ form such a pair,
with b¿b′ in reverse lexicographical order, then �b=�b′ +1 with �b ≡ 2 (mod 4). For
example, the eight values of � corresponding to the elements of the set S4 are given
by 42; 41; 38; 37; 26; 25; 22; 21. We can thus reformulate the above theorem as follows.

Theorem 6.9. For n¿ 0, let La= (a0; : : : ; an)∈Zn+1 such that (ii) a0¿ 0, a1; : : : ; an−1

¿ 1 and an¿ 3− �n;0. Then

G(M;M ; b=2d−1; (b + 1=a)=2d−1; 2d−1a)¿ 0;

for a; b coprime integers such that (� − 1)a¡b¡ (� + 1)a, with d and � given by
(1.3).

Note that in comparison with Theorem 1.7 the case La = (1) is now excluded. We
also note that the discussion leading to the Theorem 6.9 does not quite justify the
claim of the theorem. After all, what we really have argued is that a; b must satisfy
(� − 1)a¡b¡ (� + 1)a and b �= �a. The following proof is to show that this latter
condition can be dropped.

Proof. Since a; b are positive, coprime integers, the only solution to b=�a is given by
(a; b)=(1; �). So the problem is to show that G(M;M ; �=2d−1; (�+1)=2d−1; 2d−1)¿ 0
for each admissible sequence La. Now &x La. From � La ≡ 2 (mod 4) it follows that
� La=2 is an odd integer. Hence we can apply Theorem 1.7 with (a; b) = (2; � La=2) and
sequence La′ = (a0; : : : ; an − 1). Since d La′ = d La − 1 and � La′ = (� La − 2)=4 the inequality
� La′a¡b¡ (� La′ +1)a translates into � La − 2¡� La ¡� La +2 and is therefore satis&ed, as
required by Theorem 1.7. But with the above choice for a; b and La′ Theorem 1.7 tells
us that G(M;M ; � La=2d La−1; (� La + 1)=2d La−1; 2d La−1)¿ 0.
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7. Proof of Theorem 6.1

In addition to our earlier de&nitions we set d(1; 1)=1=cf (1; 1)=0. To also facilitate
computations involving continued fractions, we sometimes, by abuse of notation, write
cf (a; b) = (a=b− 1)sign(a−2b).

For coprime integers a; b such that 16 b6 a de&ne

Ga;b(L;M) =
∑

m∈Zd(a;b)
+

qmC(a;b)m

[
(0L + M − m1

(0L

] d(a;b)∏
j=1

[
(jmj + nj

(jmj

]
(7.1)

for 16 b6 a6 2b (so that G1;1(L;M) =
[ L+M

L

]
) and

Ga;b(L;M) =
∑

m∈Zd(a;b)
+

qL(L−2m1)+mC(a;b)m

[
L + M + m1

2L

] d(a;b)∏
j=1

[
(jmj + nj

(jmj

]
(7.2)

for a¿ 2b.
Our proof of Theorems 6.1 relies on the following identity for the polynomial Ga;b

[31, Lemma 3.1 and Theorem 3.1].

Theorem 7.1. For L;M ∈Z+ and a; b coprime integers such that 16 b6 a,
∞∑

j=−∞
(−1)jq(1=2) j((2ab+1) j+1)B(L;M; aj; bj) = Ga;b(L;M):

7.1. Proof of Theorem 6.1 for 2b¡a¡ 3b

Take Theorem 7.1, replace a; b by La; Lb and apply (2.22) followed by (2.20). With
the notation a = 2 La + Lb and b = La this leads to

∞∑
j=−∞

(−1)jq(1=2) j((2ab+1) j+1)S(L;M; aj; 2bj)

=
∑

r1 ;r2¿0
r1+r2 even

q(1=2)(r21+r22 )

[
L + M − r1

L

][
L− r1

r2

]
G La; Lb(

1
2 (r1 − r2); L− r1):

(7.3)

Next insert the expression for G La; Lb given in (7.1) and (7.2). First, when 16 Lb¡ La¡ 2 Lb
((0 = 2 since ( La; Lb) �= (1; 1)),

RHS(7:3) =
∑

r1 ;r2¿0
r1+r2 even

∑
m∈Zd( La; Lb)

+

q(1=2)(r21+r22 )+mC( La; Lb)m

×
[
L + M − r1

L

] [
L− r1

r2

] [
L− r2 − m1

r1 − r2

] d( La; Lb)∏
j=1

[
L(jmj + nj

L(jmj

]
; (7.4)
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with L(j = (j( La; Lb) and nj given by (6.3) with L → (r1 − r2)=2 and a; b → La; Lb. Now
relabel mj → mj+2 and nj → nj+2, then replace r1 → L−m1+m2 and r2 → L−m1−m2,
and introduce the auxiliary variables n1=L−m1−m2 and n2=m1−m2−m3. Since La¡ 2 Lb
and a¿ 2b one &nds cf (a; b)=1+1=(1+1=cf ( La; Lb)) and thus cf (a; b)=[1; 1; 
0; : : : ; 
n]
with cf ( La; Lb) = [
0; : : : ; 
n] (with 
n¿ 2 since ( La; Lb) �= (2; 1)). This implies d(a; b) =
d( La; Lb) + 2, (j = (j(a; b) = L(j+2 and

C(a; b) =




1 1
−1 1 1

−1
C( La; Lb)




and therefore RHS(7:3) =RHS(6:1). Eliminating La and Lb in 16 Lb¡ La¡ 2 Lb in favour
of a and b yields the condition 5b=2¡a¡ 3b.

Next, when 26 2 Lb6 La, one again &nds (7.4), but with an additional (r1 − r2)(r1 −
r2−4m1)=4 in the exponent of q. By the same variable changes as before this yields an
extra m2(m2−2m3) in the exponent of q. Since La¿ 2 Lb and a¿ 2b one &nds cf (a; b)=
1+ 1=(1+ cf ( La; Lb)) and thus cf (a; b)= [1; 1+ 
0; 
1; : : : ; 
n] with cf ( La; Lb)= [
0; : : : ; 
n].
(For ( La; Lb)= (2; 1) one &nds cf (a; b)= cf (5; 2)= [1; 2] which has 
n¿ 2 as it should.)
Hence d(a; b) = d( La; Lb) + 2, (j = (j(a; b) = L(j+2 and

C(a; b) =




1 1
−1 2 −1

−1
C( La; Lb)




and thus again RHS(7:3) = RHS(6:1). This time, however, 26 2 Lb6 La leads to the
condition 2b¡a6 5b=2.

7.2. Proof of Theorem 6.1 for a¿ 3b

Take Theorem 7.1 with a; b replaced by La; Lb, use the symmetry (2.29) and then apply
(2.22) followed by (2.20). With the notation a = La + 2 Lb and b = Lb this gives

∞∑
j=−∞

(−1)jq(1=2) j((2ab+1) j+1)S(L;M; aj; 2bj)

=
∑

r1 ;r2¿0
r1+r2 even

q(1=2)(r21+r22 )

[
L + M − r1

L

][
L− r1

r2

]
G La; Lb(L− r1; 1

2 (r1 − r2)):

(7.5)
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Now insert the explicit expression for G La; Lb. First, when 16 Lb6 La¡ 2 Lb,

RHS(7:5) =
∑

r1 ;r2¿0
r1+r2 even

∑
m∈Zd( La; Lb)

+

q(1=2)(r21+r22 )+mC( La; Lb)m

[
L + M − r1

L

][
L− r1

r2

]

×
[
(0(L− r1) + 1

2 (r1 − r2)− m1

(0(L− r1)

] d( La; Lb)∏
j=1

[
L(jmj + nj

L(jmj

]
; (7.6)

with nj given by (6.3) with L → L− r1 and (a; b) → ( La; Lb).
The next step is to relabel mj → mj+2 and nj → nj+2, then to replace r1 → L− m2

and r2 → L−2m1 +m2, and to introduce the auxiliary variables n1 =L−2m1 +m2 and
n2=m1−m2−m3. Since La¡ 2 Lb and a¿ 2b one &nds cf (a; b)=2+1=cf ( La; Lb)) and thus
cf (a; b) = [2; 
0; : : : ; 
n] with cf ( La; Lb) = [
0; : : : ; 
n]. This implies d(a; b) = d( La; Lb) + 2,
(j = (j(a; b) = L(j+2 and

C(a; b) =




2 −1
−1 1 1

−1
C( La; Lb)




(C(3; 1) = ((2;−1); (−1; 1))) and thus RHS(7:5) = RHS(6:2). Writing 16 Lb6 La¡ 2 Lb
in terms of a and b yields the condition 3b6 a¡ 4b.

Next, when La¿ 2 Lb, one again &nds (7.6), but with an additional (L − r1)(L −
r1 − 2m1) in the exponent of q. By the same variable changes as above this yields
an extra m2(m2 − 2m3) in the exponent of q. Since La¿ 2 Lb and a¿ 2b this yields
cf (a; b)=2+cf ( La; Lb)) and thus cf (a; b)= [2+
0; 
1; : : : ; 
n] with cf ( La; Lb)= [
0; : : : ; 
n].
This implies d(a; b) = d( La; Lb) + 2, (j = (j(a; b) = L(j+2 and

C(a; b) =




2 −1
−1 2 −1

−1
C( La; Lb)


 ;

and once again RHS(7:5) = RHS(6:2). The condition La¿ 2 Lb implies a¿ 4b.

Appendix A. Some simple summation formulas

In this appendix some simple identities used in the main text are proven.
Our &rst result is nothing but a corollary of the q-PfaH–SaalschOutz sum [16, Eq.

(II.12)]
n∑

k=0

(a; b; q−n)kqk

(q; c; abq1−n=c)k
=

(c=a; c=b)n
(c; c=ab)n

: (A.1)
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Specializing n → M , a → q−L=2, b → q−(L+1)=2 and c → q1=2, and making some
simpli&cations, yields

M∑
i=0

q(1=2)i(2i−1)

[
L + M − i

L

][
L + 1

2i

]
q1=2

=

[
L + 2M

L

]
q1=2

: (A.2)

Also the next identity follows from (A.1), albeit with a bit more eHort,
M∑
i=0

(−1)iqi2
[
L + M − i

L

][ �(L + 1)=2�
i

]
q2

=

[ �L=2�+ M

M

]
q2

: (A.3)

When L is even this follows from the substitutions n → M , a = −b → q−L=2 and
c → −q in (A.1). To obtain (A.3) for L odd we denote the left side of (A.3) by fL;M

and note that by (4.9) f2L−1;M = f2L;M − q2Lf2L;M−1. Since we already proved (A.3)
for even L we may on the right replace f2L;M and f2L;M−1 using (A.3). By (4.6) this
yields f2L−1;M =

[ L+M−1
M

]
q2 completing the proof. We note that (A.3) for odd L can

also be viewed as a corollary of a basic hypergeometric summation, given by the (=2
instance of

3$2

[
a1=2;−a1=2; q−n

; q; q(

−q; aq1−n

]
:=

n∑
k=0

(a; q2)k(q−n)kq(k

(q2; q2)k(aq1−n)k
=

q(2−()n(1=a; q2)n
(−q; 1=a)n

true for (∈{1; 2}. The proof of this almost balanced summation proceeds along the
same lines as the proof of (A.3).

Simple as it is, our &nal summation formula—used in the main text to simplify
multiple sums—appears to be new. We remark that it can also be used very eHec-
tively to reduce the number of (independent) entries in Slater’s list of 130 Rogers–
Ramanujan-type identities [28]. For Mi = mi + · · ·+ mk de&ne

fk(mk) =
∑

m1 ;:::;mk−1¿0

aM1+···+Mk q(1=2)(M 2
1 +···+M 2

k )

(q)m1 · · · (q)mk−1

:

Lemma A.1. Let Ni = ni + · · ·+ nk . Then

f2k−1(nk) =
∑

n1 ;:::; nk−1¿0

a2N1+···+2Nk qN 2
1 +···+N 2

k (−q1=2−N1=a)N1

(q)n1 · · · (q)nk−1 (−aq1=2)nk

f2k(nk) = (−aq1=2)∞
∑

n1 ;:::; nk−1¿0

a2N1+···+2Nk qN 2
1 +···+N 2

k

(q)n1 · · · (q)nk−1 (−aq1=2)nk
:

Proof. When k is odd we replace k by 2k−1 and introduce new summation variables
n1; : : : ; nk−1 and t1; : : : ; tk−1 as ni =m2i−1 +m2i and ti =m2i. Using the notation of the
lemma this gives

f2k−1(nk) =
∑

n1 ;:::; nk−1¿0

aN1q(1=2)N 2
1

k−1∏
i=1

a2Ni+1qN 2
i+1

ni∑
ti=0

ati q(1=2)ti(ti+2Ni+1)

(q)ti(q)ni−ti
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=
∑

n1 ;:::; nk−1¿0

aN1+2N2+···+2Nk q(1=2)N 2
1 +N 2

2 +···+N 2
k

(q)n1 · · · (q)nk−1

k−1∏
i=1

(−aqNi+1+1=2)ni

=
∑

n1 ;:::; nk−1¿0

a2N1+···+2Nk qN 2
1 +···+N 2

k (−q(1=2)−N1=a)N1

(q)n1 · · · (q)nk−1 (−aq1=2)nk
;

where the second equality follows from the q-binomial theorem (2.3) with x=−aqNi+1+1=2

and the last equality follows from
k−1∏
i=1

(−aqNi+1+1=2)ni =
k−1∏
i=1

(−aq1=2)Ni

(−aq1=2)Ni+1

=
(−aq1=2)N1

(−aq1=2)Nk

= aN1q(1=2)N 2
1
(−q(1=2)−N1=a)N1

(−aq1=2)nk
:

Next, when k is even, we replace k by 2k and introduce new summation variables
n1; : : : ; nk−1, t1; : : : ; tk−1 and s as ni =m2i +m2i+1, ti =m2i−1 and s=

∑k
j=1 m2j−1. With

the notation Ti = s− t1 − · · · − ti and tk = Tk−1 = s− t1 − · · · − tk−1 this yields

f2k(nk) =
∑

n1 ;:::; nk−1¿0
s; t1 ;:::; tk−1¿0

as+2N1+···+2Nk q(1=2)s2+snk+N 2
1 +···+N 2

k +
∑k−1

i=1 ti(Ni−nk−Ti)

(q)Tk−1

∏k−1
i=1 (q)ti(q)ni−ti+1

:

Now de&ne

g(n1; : : : ; nl; s) =
∑

t1 ;:::; tl¿0

1
(q)Tl

l∏
i=1

qti(ni+···+nl−Ti)

(q)ti(q)ni−ti+1

;

where tl+1 = Tl. Obviously, g(s) = 1=(q)s. From the q-Chu–Vandermonde sum (2.18)
with a → ∞, n → Tl−1 and c → qnl−Tl−1+1 it follows that g(n1; : : : ; nl; s)=
g(n1; : : : ; nl−1)=(q)nl . Hence

g(n1; : : : ; nl; s) =
1

(q)s(q)n1 · · · (q)nl
:

When l = k − 1 we insert this in the expression for f2k(nk) to get

f2k(nk) =
∑

n1 ;:::; nk−1 ; s¿0

as+2N1+···+2Nk q(1=2)s2+snk+N 2
1 +···+N 2

k

(q)s(q)n1 · · · (q)nl
:

Performing the sum over s by the L → ∞ limit of (2.3) settles the second claim of
the lemma.
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