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The purpose of this paper is to study a class of differential-difference equations
with two delays. First, we investigate the local stability of the zero solution of the
equation by analyzing the corresponding characteristic equation of the linearized
equation. General stability criteria involving the delays and the parameters are
obtained. Second, by choosing one of the delays as a bifurcation parameter, we
show that the equation exhibits the Hopf bifurcation. The stability of the bifurcat-
ing periodic solutions are determined by using the center manifold theorem and
the normal form theory. Finally, as an example, we analyze a simple motor control
equation with two delays. Our results improve some of the existing results on this
equation.  © 1999 Academic Press

1. INTRODUCTION

In the last two decades, great attention has been paid to equations with
multiple delays, which have significant biological and physical background.
Consider the following equation with two delays

(1) =f(x(0), x(t = 1), x(1 = 73)), (1.1)
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where 7,, 7, are positive constants, f(0,0,0) =0, and f: RXR X R - R
is continuously differentiable. Let —A4,, —A,, and —A, be the first
derivatives of f(u,,u,,u,) with respect to u,, u,, and u, evaluated at
u, =u, = u; = 0, respectively, i.e.,

A [?fOOO A &fOOO A afOOO
O_ﬂ_ul(")’ 1—(9—%(”)1 2_(9_%(")'

(1.2)

Then the linearized equation of (1.1) at the trivial solution is
x(t) = —Agx(t) —Ax(t — 1) — Ay x(t — 7). (1.3)

Hale and Hunag [15] investigated the stability of Eq. (1.3) in the (7, 7,)
plane for various intervals in 4,, 4,, and A, and determined the global
geometry of the stable regions. For related work, we refer to Bellman and
Cooke [3], Bélair, et al. [2], Hale [14], Hale and Tanaka [17], Mahaffy er al.
[22], Marriot et al. [23], Mizuno and Ikeda [24], and Ruiz Claeyssen [26],
among others.

Assume that

Ay=0, A, >0, A,>0. (1.4)
Then Eg. (1.3) becomes
x(t) = —Ax(t — 7)) —A,x(t — 7). (1.5)

Equation (1.5) is the linearized equation of some other equations with two
delays in the form of (1.1). The first example is the logistic model with two
delays (Braddock and van den Driessche [6]; Gopalsamy [13]):

N(t) = RN(1)[1 = BN(t — 7,) — CN(t — 7,)], (1.6)

where R, B, and C are positive constants. Equation (1.6) has a positive
equilibrium N* =1/(B + C). Let N(t) = N*(1 + n(¢)). Then Eq. (1.6)
can be written as

n(t) = —(1+ n(t))[An(t — 1) + A,n(t — 7,)], (1.7)

where A, = RBN*, A, = RCN*. Clearly, Eq. (1.5) is the linearized equa-
tion of (1.7) at n = 0. Braddock and van den Driessche [6] describe some
linear stability regions for Eq. (1.7). They find that the two delay terms are
equally important and observe stable limit cycles when 7,/7, is large. In
modeling sexually transmitted disease, Cooke and Yorke [11] discuss Eq.
(1.7) with A; = —A,. They describe various stability properties of (1.7)
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and obtain some limit cycle solutions. Nussbaum [25] studies Eq. (1.7) with
7, =1 If 1 <7, <2, he proves the existence of a periodic solution of
(1.7). When 7, > 2, he shows that there may exist two positive solutions of
period greater than 7,. Stech [27] also considers Eq. (1.7) with 7, = 1,
7, =3, and A4; + A, = 1 and discusses the stable and unstable bifurca-
tions.

The second example is a simple motor control equation (Bélair and
Campbell [1]; Beuter et al. [4, 5]),

x(1) = fi(x(t = 1)) + fo(x(t = 7)), (1.8)

where f(u) = —A;tan h(u), i = 1,2, and A4, and A, are positive con-
stants. The linearized equation of (1.8) at the equilibrium x = 0 also takes
the form of Eq. (1.5). BEélair and Campbell [1] analyze the linearized
stability of (1.8) and study both single and double Hopf bifurcations.

The third example is the one considered in Ruiz Claeyssen [26]:

x(t) = —Ax(t — 1)) — Ayx(t — 1,) +x3(1), (1.9)

where A, = A, = 1/2. Ruiz Claeyssen studies the Hopf bifurcation in
(1.9) and the stability of the bifurcating periodic solutions. Other examples
can be found in Hale [14], Nussbaum [25], Stech [27], and the references
cited therein.

The purpose of this paper is to study the two delay equation (1.1) under
the assumption (1.4). First, we investigate the local stability of the zero
solution of Eq. (1.1) by analyzing the corresponding characteristic equation
of the linearized equation (1.5). General stability criteria involving the
delays and the parameters are obtained. Second, by choosing one of the
delays as a bifurcation parameter, we show that the two delay equation
exhibits Hopf bifurcation. Then we discuss the properties of the bifurcat-
ing periodic solutions by using the center manifold theorem and the
normal form theory. It is shown that the Hopf bifurcation is supercritical
and the bifurcating periodic solutions are orbitally stable under certain
conditions. Finally, as an example, we analyze Eg. (1.8), the simple motor
control equation. Our results improve some of the results obtained by
Bélair and Campbell [1].

The following Rouché theorem on the continuity of the roots of an
equation as a function of parameters will be needed throughout the paper
in analyzing the characteristic equation of the linearized equation (1.5).
For a proof, we refer to Dieudonné [12, p. 248].

ROUCHE’s THEOREM. Let A be an open set in &, the set of complex
numbers, F a metric space, f a continuous complex valued function in A X F,
such that, for each o € F, z — f(z, @) is analytic in A. Let B be an open set
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of A, whose closure Bin & is compact and contained in A, and let ay € F be
such that no zero of f(z, ay) is on the frontier of B. Then there exists a
neighborhood W of «y in F such that:

() forany a € W, f(z, a) has no zeros on the frontier of B;

(i) for any a € W, the sum of the orders of the zeros of f(z, a)
belonging to B is independent of «.

2. LOCAL STABILITY ANALYSIS

The characteristic equation of (1.5) is
z=—Ae " — A,e "2, (2.1)

Since, as observed by Braddock and van den Driessche [6], both delay
terms are equally important, we do not scale the time to let one of the
delays be equal to 1. Rather, as did Bélair and Campbell [1], we scale the
variable so that one of the coefficients A4; will be equal to 1. Let

A= —, A=— ry = Ay, r, = A7,

We obtain the normalized characteristic equation
A= —e M1 — Qe "2, (2.2)

When A = 0, we can easily prove the following result.

LEMMA 2.1. The transcendental equation
A= —e M (2.3)

has purely imaginary roots if and only if r; =2jm+ 5 (j =0,1,2,...).
Moreover, if r, = 2jm + 5, Eq. (2.3) has a pair of purely imaginary roots +i
which are simple.

Denote r{ = 2jm + 7 (j =0,1,2,...) and let A,(r,) be the root of Eq.
(2.3) satisfying Re A,(r{) = 0, Im A,(r{) = 1. Then we have

dRe A;(ry) 1
dry | _y 1+ (2jm+3)°

(2.4)

The proof of the following lemma can be found in Cooke and van den
Driessche [10]; see also Cooke and Grossman [9].
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Lemma 2.2. Ifr, €0, ) then all roots of Eq. (2.3) have strictly negative
real parts. If r, € jm + 5,2(j + D + 51, then Eq. (2.3) has exactly 2j
roots with strictly positive real roots.

By using Lemmas 2.1 and 2.2, we can prove the following lemma.

LEMMA 2.3.  Foranyr, > 5 withr, # 2jm + 5 and fixed r, > 0, there is
a 8 > 0, such that when A = A,/A, < & Eq.(2.2) has at least one root with
positive real part.

Proof. Define
h(A, A) = X+ e 1 + Ae M2,

Then h(A, A) is an analytic function in A and A4. By Lemma 2.1, when
r, # 2jm + Z the function A(A,0) has no zeros on the boundary of Q,
where O = {A | Re A >0, |Al < 2}. Thus, Rouchg’s theorem implies that
there exists a 6 > 0 such that, when A4 < §, h(A, A) and A(A, 0) have the
same sum of the orders of zeros.

It follows from Lemma 2.2 that when r; > 7 the sum of the orders of
the zeros of A(A,0) is at least 2. Thus, when r; > 7, r, # 2jm + %, and
A < 8, the sum of the orders of the zeros of 4(A, A) is also at least 2. This
proves the lemma. |

LEMMA 2.4. Suppose A € (0,1) and r, < 1+. Then all roots of Eq.
(2.2) have strictly negative real parts.

Proof. Since all roots of Eq. (2.2) have negative real parts when r; = 0,
if the conclusion fails, then there must be some r; € (0, =] such that
Eq. (2.2) has purely imaginary roots +iw (w > 0) satisfying

CoS wr; = —A oS wr,

(2.5)

w — sin wr; = Asin wr,.
Adding up the squares of both equations, we have
2 _ 2@sin wr; +1 = A?,
that is,

R w?+1-— 47 )
g(w) = —Sy = sin wr. (2.6)
w
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Since [sin wr,| < 1, it follows that w € [1 — 4,1 + A]. On the other hand,

1 1— A4
g(w) = Ew 1+ T
1 1— A2
> -o|ll+t ———
2 (1+A4)
1
> w
1+ 4
= wry
> sin wry,
a contradiction. Thus, all roots of Eq. (2.2) must have negative real parts.

Applying Lemmas 2.3 and 2.4 to Eq. (1.5), we have the following results
about the local stability of the zero solution of Eq. (1.1).

THEOREM 2.5. For Eq. (1.1) under the assumption (1.4), we have

) for any 7 > w/2A;, with 7, # Qjm+ w/2)/A; (j=1,2,...)
and fixed T, > 0, there exists a 6 > 0 such that when A,/A, < 6 the zero
solution of Eq. (1.1) is unstable;

(i) when A, <A, and 7, < 1/(A, + A,), the zero solution of Eq.
(1.1) is asymprotically stable.

3. THE HOPF BIFURCATION

In this section, we shall study the Hopf bifurcation of Eqg. (1.1) by
choosing one of the delays as a bifurcation parameter. First, we would like
to know when Eq. (2.2) has purely imaginary roots +iw (w > 0). Clearly, if
+iw are roots of Eq. (2.2), then (2.5) and hence (2.6) holds. We shall
consider three cases: () 4 = A4,/4, > 1;(b) A < 1;and (c) 4 = 1.

31. A>1

In this case, the function g(w) defined by (2.6) has the following
properties (see Fig. 3.1):
(1) g(w) is strictly monotonically increasing and convex on [0, + %)
and lim__ , g(w) = —oo, lim_ _, . g(w) = +oo;
2 g4+1)=1g(4-1=-1and g(v4®> — 1) = 0;
B w-A<glo)stifocs[d-14+1]
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FIG.3.1. The graph of g(w)when 4 > 1.

Clearly, g(w) intersects sin wr; only in the rectangle bounded by
y=+1and o =A + 1; that means, if Eq. (2.2) has purely imaginary
roots + w,, then wy, €[4 — 1, 4 + 1].

The above properties of g(w) can be summarized into the following
lemma.

LeEmmA 3.1. For A > 1, we have

() if ry < 3557, then Eq. (2.6) has a unique solution w, € [A —
1,4+ 1],

() if ry > 557, then Eq. (2.6) has at least two solutions in [A —
1,4+ 1]

LeEmmA 3.2. If A > 1, then for any r; > 0 all roots of the equation
A= —e M —4 (3.1)

have strictly negative parts.

Clearly, when 4 > 1 and r; > 0, Eq. (3.1) has neither purely imaginary
roots nor roots with positive real part; the lemma thus follows.
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For r; < 555, since A > 1, it follows that
COS wyry = —ACOS wyr, (3.2)

has a solution rJ, where w, is defined in Lemma 3.1()).

For r; > 5%, Lemma 3.1(ii) implies that Eq. (2.6) has at least two
solutions, denoted by w,, w,,..., w, (m > 2). It follows from 4 > 1 that
the equation

oS w;ry = —ACOS w;ry, i=12,....,m (3.3)

has a solution r§. Set 7, = min{r{", ..., r{™}.
LEMMA 3.3. Let ry and 7, be defined in (3.2) and (3.3), respectively.

() Suppose ry < 5354 If r, €10,r9), then all roots of Eq. (2.2)
have strictly negative real parts; if r, = r3, then Eq. (2.2) has a pair of purely
imaginary roots and all other roots have strictly negative real parts.

(i)  Suppose ry > 3% If r, €[0,F,), then all roots of Eq. (2.2)
have strictly negative real parts; if r, = r,, then Eq. (2.2) has a pair of purely
imaginary roots and all other roots have strictly negative real parts.

Proof. We only prove the statement (i); statement (ii) can be proved
similarly. By the definition of J, it follows that when r, = rJ Eq. (2.2) has
a unique pair of purely imaginary roots and when r, < rJ Eq. (2.2) has no
purely imaginary roots. On the other hand, if (2.2) has a root A with
positive real part, then we must have [A] < 2 + A. Denote

O, ={reZReA=0,[A<2+A4}.

Then all roots of Eq. (2.2) which have positive real parts lie in the interior
of Q,.

By Lemma 3.2, when r, = 0 the sum of the orders of the roots of Eq.
(2.2) is zero in Q,. Thus, Rouch&’s theorem implies that for r, € [0, 7))
Eqg. (2.2) has no root in Q,. This completes the proof of Lemma 3.3. |

From Lemma 3.3, it seems that when r, = rJ Eq. (1.1) may exhibit the
Hopf bifurcation. To verify this, we need to consider the transversality
condition.

LEMMA 3.4. Foranyr, > 0, if A > 1 satisfies the condition

T 3
— <VA2-1 < —, (34)
2r, 2r,
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then there exists an rY > 0 such that

(i) forr, €10,rd) all roots of Eq. (2.2) have strictly negative real parts
and

(i) for r, =r) Eq. (22) has a unique pair of purely imaginary roots
+iw, and all other roots have strictly negative real parts, where wyry < 7.

Proof. If +iw are roots of Eq. (2.2), then by the property of g(w) that
g(VA? — 1) = 0 there exists an o, € (V4> — 1, 7/r;) such that

wf+1—A° )
g(wy) = — 5 = sinor.
@
It follows from (3.4) that w,r, € (%, %) and hence cos w,r, < 0. Let

0 1 COS w74
r, = — arccos| — ———|.
oN A

(3.5)

If A > 1 satisfies (3.4), then for r, = r) Eq. (2.5) has a solution w,; i.e.,
+iw, is the unique pair of purely imaginary roots of (2.2) when r, = rJ.
By (3.5), we can see that w,r? < 7.

If r, = 0, then Lemma 3.2 implies that all roots of Eq. (2.2) have strictly
negative real parts and when r, < r) Eq. (2.2) has no purely imaginary
roots. By using an argument similar to that in the proof of Lemma 3.3, we
can show that if r, € [0,r), then all roots of Eqg. (2.2) have strictly
negative real parts and if r, = rJ, then Eqg. (2.2) has a unique pair of
purely imaginary roots and all other roots have strictly negative real parts.

Next, we show that +iw, are simple roots of Eq. (2.2). From the above
analysis we know that w,r; € (3, %) and wyry € (0, 3). Thus, r, > r. Set

R(A) = A+ e+ Ae M3,

We have

dh( ) :

=1—re M — Arle=
dA 1 2

and
dh(iow
% =1 —ry(cos wyr; — isin wyry) — Arg(cos wory — isin w,ry).
Notice that cos w,r, = —A €os w,rd, wyr, € (Z,%), and r, > r?; we have

d
ﬁRe h(iwy) =1 — (r, —r3)cos wer, > 0,
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that is, dh(iw,)/dX # 0. Hence, +iw, are simple roots of Eq. (2.2) when
0
ro=ry. 1

Let Mr,) = a(r,) + iw(r,) be the root of Eq. (2.2) satisfying
a(rg) =0, w(rg) = w,.
LEMMA 3.5. Under the hypothesis of Lemma 3.4, we have

wo A[sin wor? + w,r; €os wr? |

’ r | _ =
o (r2)lro=rt [L+ (12 = ry)cos wory|” + [@erl — (rf = ry)sin wory]”

> 0.
Proof. Differentiating with respect to r, on both sides of Eq. (2.2) gives

dA(ry) Ade M2

- —Ar —Ary "
dr, 1—re M —Ar,e”

It follows from (2.5) that

d
a,(r2)|r2=rg = dTRe /\(72)|r2=rg
2

wo( wy — wyry COS wyr; — SiN wgr;)

[1 + (rg - rl)COS a)orl]2 + [worg - (rg - rl)sin w0r1]2

wo A[sin worf + w,r; €os wor? |

[1 + (r, — ry)cos worl]2 + [woréJ - (rg - rl)sin worl]2
>0,

follows from the fact that wyr) < 7. |
Applying Lemmas 3.4 and 3.5 to Eq. (1.1), we have

THEOREM 3.6. Forany v, > 0, if A, > A,, and

T - 3
— <AL - A < —, 3.6
27, ‘/ 2 ! 2T, (3.6)
then there exists a Tg > 0 such that, for T, € [0, frf), the zero solution of Eq.
(1.1) is asymptotically stable. When 7, = 79 Eq. (1.1) exhibits the Hopf

bifurcation, where 79 = rd /A, and r{ is defined in (3.5).
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32. A<1

In this case, the function g(w) defined by (2.6) has the following
properties (see Fig. 3.2):

(1) g(w) attains its minimum value V1 — 4% when o = V1 — 42
and g(1 —A) =gl + A) = 1;

(2) g(w) is a concave upward function and is strictly monotonically
decreasing if € (0,V1 — A4%) and strictly monotonically increasing if
w € (V1 — A% ,=). Moreover, lim,,_, , g(w) = lim_ _,, g(w) = %;

3 glw)> %, 0 (0,).

If +iw (0> 0) are roots of Eq. (2.2), then » must satisfy (2.6). From
Fig. 3.2 we can see that solutions lie in [1 — 4,1 + A]. Also, from Fig. 3.2

we can see that, when r, > 0 is sufficiently small, sin r, @ and g(w) do not
intersect; when r; > 55745, sinr 0 and g(w) intersect at least twice. Set

r{ = min{r, | sin r,» intersects g()}. (3.7)

It follows that r) > 0, and, when r, =r?, sinr,0 and g(w) intersect
exactly once; when r, > r?, sinr,w and g(u) intersect at least twice.
Clearly, for any r, > r?, the equation g(w) = sin r,w has finitely many

solutions, denoted by w;, w,,..., w,,. The first property of g(w) implies
y
y=o
y=g(®)
........................... y=7-

]
1
:
]
1
]
1
1
1
1
L Jia’
A

-
LS
e

FIG.3.2. The graph of g(w)when 4 < 1.
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that

g(w) =sinrw=Vl-42, i=12,...m

It then follows that

lcos rlwil V1 = sin®ryo; \/1 - (1 — A?)
<

a A

Thus,

;1 COS 1w
ry = —arccos(— = ) (3.8)

w;

is well defined and r} w, € [0, 7). Denote
rg =min{ry, 3, ..., r5"}. (3.9)
We have the following lemma.

LEMMA 3.7. Let

arcsinyl — A2

r= 3.10
e (310

() Ifr, €10,7), then all roots of the equation
A= —e M- 4 (3.11)

have strictly negative real parts.

(i)  If ry > Fy, then at least one root of the equation (3.11) has positive
real part.

LEMMA 3.8. Suppose r, iy, and rj are defined in (3.7), (3.10), and (3.9),
respectively.

() Ifr, €10,r0), then all roots of Eq. (2.2) have strictly negative real
parts.

Gi) Ifr, €[rd 7)), r, €10,72), then all roots of Eq. (2.2) have strictly

negative real parts; if r, = r3, then Eq. (2.2) has a unique pair of simply purely
imaginary roots and all other roots have strictly negative real parts.

Proof. (i) +iw are roots of the equation (2.2) if and only if w is a
root of Eq. (2.6). By the definition of r?, it follows that if r, € [0, r?), then
Eq. (2.6) has no solutions and thus Eg. (2.2) has no purely imaginary roots.
If r, = 0, then Eq. (2.2) has no roots with positive real part for any r, > 0.
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Therefore, Rouché’s theorem implies that, for any r, > 0, if r, € [0, r?),
then all roots of Eq. (2.2) have negative real parts.

(i) It follows from (3.8) and (3.9) that there exists a j € {1,2,...,m}
such that

rg = —arccos

w;

o 1 (_ c05r1w]-)

Denote w, = w;. By Lemma 3.7, if r; € [r{, 7)) and r, = 0, then all roots
of Eg. (2.2) have strictly negative real parts. By the definition of rJ, if
r, €10, r9), then Eq. (2.2) has no purely imaginary roots. Rouché’s theo-
rem again implies that for any r, € [0,r?) all roots of Eq. (2.2) have
negative real parts.

The definition of ) also implies that, when r, = r?, +iw is a unique
pair of purely imaginary roots of Eq. (2.2) and all other roots have strictly
negative real parts. When rfw, € (0, ), we have sin r,w, > 0. Denote
h(A) = A + e * + ¢~ 7% Using arguments similar to those in the proof of
Lemma 3.4, we have

d

d—)\lm h(iwg) =1, sinriwy + Ard sin rlw, > 0,

that is, dh(iwy)/dA # 0. Thus, +iw are simple roots of Eq. (2.2) when
0

r,=ry. |1
For r, € [r?, 7)), let
Mry) = a(ry) +io(rp)
be the solution of Eq. (2.2) satisfying
a(r)) =0, (1) = .
Similar to the proof of Lemma 3.5, we can prove the following lemma.

LEMMA 3.9. If u = riw, is not a root of the equation tanu = —u on
(%, 7), then

@' (1) lr,-r1 # 0.

Now, we shall derive some conditions to ensure that u = rJw, is not a
root of the equation tan u = —u on (3, 7).

LEMMA 3.10.  Suppose 7y > 5. If 1y € 557y, 71), then

& (r3)lrymrg > 0.
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Proof. Since r, > 5571y, it follows that Eqg. (2.6) has at least one
solution ; satisfying r, @, € [7, 7). Thus, (3.8) and (3.9) imply that
rdw, € (0, 7]. The conclusion follows from the same argument as in the
proof of Lemma 3.5. |

Notice that in the above proof rw, € (0, 71; this certainly indicates that
riw, is not a solution of the equation tan u = —u on the interval (§, 7).

Applying the above lemmas to Eq. (1.1), we have the following.

THEOREM 3.11.  Assume that r?, rl, and 7, are defined by (3.7), (3.9), and
(3.10), respectively. Denote 70 =r?/A,, 79 =rd/A,, and 7, = i, /A,.

() If 7, €10, 70), then the trivial solution of Eq. (1.1) is asymptoti-
cally stable.

(i) Suppose 7 < 7. If 7, € [72,7)) and 7, € [0, 79), then the trivial
solution of Eq. (1.1) is asymptotically stable; if u = A;73w, is not a root of
the equation tanu = —u on (3, ), then 7, = 73 is the Hopf bifurcation
point for Eq. (1.1).

(iii) Suppose 7, > w/2(A, + A,). If 7, €[n/2(A, + A,),7,] and
7, = 73, then 1, = 13 is the Hopf bifurcation point for Eq. (1.1).

33. 4A=1

In this case, Eqg. (2.2) becomes
A= —e Mt —e M2, (2.2a)

+iw (w > 0) are solutions of (2.2a) if and only if o satisfies the following
equations:

w—sinrew=sinro

(2.5a)
COSryw = COS T, .

Thus, the necessary condition for +iw (w > 0) to be solutions of (2.2a) is

w -
5 —sinno. (2.6a)

Obviously, all positive solutions of Equation (2.6a) lie on (0, 2] and, for
1<r, <2, Eq. (2.6a) has exactly one positive solution; when r, > 7, it
has at least two positive solutions (see Fig. 3.3).

For r, > % denote the positive solutions of Eq. (2.6a) as

0y < w; < - < w,.
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FIG.3.3. The graph of g(w) when 4 = 1.
For each w;, set
‘ 1
ry = —arccos( —cos r, ;). (3.12)
w;
We can show that ) w; € (0, 7],
r$ = min {ri}, (3.13)

O<i<m
and rfw, € (0, 7.
As argued in Sections 3.1 and 3.2, we have the following lemmas.

LEMMA 3.12.  All roots of the equation

A= —e -1
have strictly negative parts.

LemMA 3.13. () Ifr, €10, %], then for any r, = 0 all roots of Eq. (2.2a)
have strictly negative real parts.

(i) For r, > 3, there exists an r] defined by (3.12) such that if
r, € 10,79, all roots of Eq. (2.2a) have strictly negative real parts; if r, = r?,
then Eq. (2.2a) has a unique pair of purely imaginary roots and all other roots
have strictly negative real parts.
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LEMMA 3.14. Forr, > 3, let Nr,) = a(r,) + iw(r,) be the solutions of

Eq. (2.2a) satisfying a(rd) = 0 and o(rd) = w,. Then

da(r,)
dl’z 0

ro=rj

> 0.

Remark 3.15. The above analysis together with the implicit function
theorem gives us the distribution of the roots of Eq. (2.2a) in the (r;, r,)
plane (see Fig. 3.4). If (r, r,) lies in the region bounded by the curve [/ and
the r,, r, axes, then all roots of Eq. (2.2a) have strictly negative real parts.
If (r,,r,) lies on the curve [ passing through the point (7, 7), then Eq.
(2.2a) has a unique pair of simply purely imaginary roots, all other roots
have strictly negative real parts and the transversality condition is satisfied.

We should mention that the result of the case when A4, = 4, was also
obtained by Ruiz Claeyssen [26] and Hale [14].

Applying Lemmas 3.13 and 3.14 to Eq. (1.1), we obtain the following
theorem.

THEOREM 3.16.  Suppose A, = A,.

(i) If 7, €[0,1/(2A))], then, for any T, > 0, the trivial solution of
Eq. (1.1) is asymptotically stable.

1)

(1/2,1/2)

FIG. 3.4. The distribution of roots of (2.2) in the (r,, r,) plane.
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(i) For 7, > 1/Q2A,), there exists a 79 =rd/A, such that if 7, €
[0,79), then the trivial solution of Eq. (1.1) is asymptotically stable; if
7, = 73, then Eq. (1.1) exhibits the Hopf bifurcation.

4. STABILITY OF THE HOPF BIFURCATION

In this section, we shall use the normal form theory introduced in
Hassard et al. [18] to study the stability of the bifurcating periodic
solutions.

Without loss of generality, assume 7, > 7 and define the phase space
as

C= C([—Tl,O],R)

associated with the norm [¢| = sup_, _,_ol¢(8)| for ¢ € C.
The expansion of Eq. (1.1) at the trivial solution is

x(t) = —Ayx(t — 1) — Ay x(t — 7)) + F(x(1), x(t — 7)), x(t — 7,)),
(4.1)

where

F(x(t), x(t — 1), x(t — 7))
1
= E[anxz(t) + a22x2(t - 7))+ a33x2(t —7,)

+2apx(t)x(t — 7)) + 2a,x(t)x(t — 7,)

+2a,x(t — ) x(t — 7,)]

1
+§[b111x3(t) + b222x3(t —7) + b333x3(t - 7,)

+3by,x2(1)x(t — 1) + 3byx?() x(t — 7,)
+3b1yp x(1)x?3(t — 1) + 3byggx(t)x2(t — 7,)
+6b g x(t)x(t — 1) x(t — 75)

+3byyx?(t — 1) x(t — 7,)

+3bygsx(t — ) x2(t — )] + O(x*)
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and
ﬁzf 0,0,0 ,j=1,2,3;
a;; = (9ui<9uj(’ ,0), ,j=1,2,3
f
by = ————(0,0,0), i,j,k=1,2,3.
du; du; duy,

Suppose that, for (A,, 4,, 7,), there exists a 77 > 0 at which Eq. (4.1)
exhibits the Hopf bifurcation. Denote 7, = 77 + w. In the following we
shall regard w as the bifurcation parameter. For ¢ € C, define

F(u, ¢) =F(<;b(0), d(—71), ¢(_72))'

By the Reisz representation theorem, for any ¢ € C'[— 1, 0] we have

—Ayx(t = 7y) = Apx(1 =) = [° dn(6,1)$(6),

where
_ | =4,58(0), 6 & (—,0],
W08 = a0 7). Be[-ry 7]
Set
de(0
;é), 6[-1,0),
Lwd=1 |
| dn(s.m)d(s), 0=0,
R(p)d = 0, 0 €[-1,0),

F(up,¢), 6=0.
Then Eg. (4.1) can be written as

X, =L(p)x, + R(p)x,. (4.2)
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For ¢ € CY[0, ,], define
di(s)
ds '

[ an(t.0 (-1, s=o.

s E (0,71],
L'y (s) =

For ¢ € C[—7,,0] and & € CI0, 7,], define the bilinear form
W) =10 — [ [" F(£=0)dn(0) d(¢) de.
0=—1,"¢6=0

Then L* and L = L(0) are adjoint operators.

By the results in Section 3, we assume that +iw, are eigenvalues of L;
thus they are also eigenvalues of L*. g(6) = e'“°? is the eigenvector of L
corresponding to i wy; g*(s) = De'“°’ is the eigenvector of L* correspond-
ing to —iw,. Moreover,

g*q) =1, {q*.q) =0,
where D = (1 — 7, A,e'®™ — 704, e/07)~1,

Using the same notation as in Hassard et al. [18], we first compute the
coordinates to describe the center manifold &, at w = 0. Let x, be the
solution of Eq. (4.2) when w = 0. Define

z(1) = <q*, x,),
w(t,0) =x,(0) —2Re{z(t)q(0)}.
On the center manifold &, we have
w(t,0) =w(z(t),z(1),0),
where

72 72 3
w(z,z,0) = Wzo((’)? +wiu(0)2z + Woz(0)7 + Wao g + -

z and Zz are local coordinates for the center manifold &, in the direction
of g* and g*. Note that w is real if x, is real. We consider only real
solutions.

For solution x, € &, of (4.1), since u =0,

z(t) =iwoz(t) + {q*(0),F(0,w + 2Re{z(t)q(0)})>
=iwyz(t) +g*(0)F(0,w(z,2,0) + 2Re{z(1)q(0)})
Liwyz(t) + ¢F(0)Fy(z, 2). (4.3)
We rewrite this as
z=lwyz(t) +8(z,2),
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where
8(z,2) = q*(0)F(0,w(z,2,0) + 2Re{z(1)q(0)})

z? 7?2 7%z

=gzo? + 81122 +g02? +821T + o (4.4)
By (4.2) and (4.3), we have
W=x,—2zq — zg
Lw — 2Re{g¥(0)Foyq(0)} (6€[-1.,0))
Lw — 2Re{g"(0)F,q(0)} + F, (6=0)

2w+ H(z, z,0),
where
H(z,z,0) =2Re{g(z,2)q(0)} + F(O,w + 2Re{z(t)q(0)})
z? z2
=H20(9)? +H11(9)zz+H02(0)7 + - (4.5)
Expanding the above series and comparing the coefficients, we obtain
(L = 2iwg) wyo(0) = —Hyp(6)
Lwy(0) = —Hyu(0) (4.6)
(L + 2iwg) wgp(0) = —Hey(0)

Since ¢*(0) = D, we have

D
g(z,2) = ?[allxz(t) + ayx?(t — 1) + agpx’(t — 13)
+2ay,x(1)x(t = 7,) + 2a,x(1)x(t — 77)

+2a,x(t — Tl)x(t - Tf)]

+ ; [b111%3(1) + bypyx3(t — 71) + bagyx®(t — 77)
+3by,x% (1) x(t — 7y) + 3byyax?(t) x(t — 73)
+3b1p x (1) x*(t — 7y) + Bbygex(1) x?(t — 77)
+6byax (1) x(t — 7)) x(t — 73)
+3b g x?(t — 1) x(1 — 77)

+3bygex(t — 1) X% (t — 79)] + O(x*). (4.7)
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Notice that
x(t—1)=w(t,—1) +z(t)g(—7) +z(t)g(—7)

z
= Wy( _7)7 + wi(—7)2Z + wey( _T)?

+ e oz (1) + ez (1),

where =0, 7,, or 7J. Substituting it into (4.7) and comparing the
coefficients with (4.4), we have

820 =DM,
811 =BB:
802 = DM,

8n = 5[‘111(2W11(0) + wy(0))
tay, (2W11( —71)e O 4 wyp( — Tl)einTl)
+a33(2w11( - 1'20)67’4“ng + wao(— Tg)ei“OTg)
+a12(w20(0)ei“’071 + 2wy(0) e 0 + 2wy, (= 71) + wy( _71))
+a13(w20(0)ei“’079 + 2w11(0)e*"“’°73 + 2wy (—77) + wzo(—Tg))
+azy,(""zo( _Tl)eiwg
+2wyy(— 1) e 0 4 2wy (=) e IO 4wy (— Tg)ei‘“OTl)
Hbygy + byype O 4 bagae 00T 4 by, (2e7T00T 4 gfeom)
+by15(2e 70 4 1) 4 by,(e7 O + 2)
+hyga(e 2100 + 2)
+2b123(e—iw0(71—72) + eiwo(m—Td) 4 e—iwo(rlﬂg))
+b223(e—iw0(271—73) i ze—morg) + bzas(eiwo(fl—zfg) 4 Ze—iwofl)] .
where

_9i o 0 .
M = a;; + a,e 219" + ggae 21907 4 g, e @0m
. 0 . 0
+ 2“136 iwgT; + 2‘1236 lw0(1'1+7'2),
: P
— LlwoT lwaT
B =ay, + a, + az; + a;, Re{e' ™} + 2a,, Re{e' 072}

+ 2a, Refe!om 7D}
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We still need to compute w,,(0) and w,(6). For 6 € [—7,,0), we have
—2Re{q¥(0) Foq(0)}
—84(0) — gq(9)

H(z,z,0)

z?2 z2 2%z _
= _(gzo? +8uz T8y T8a eleo?
z2 z? z%z A
_(g20? t8uz +goz? +g217 + e et
Comparing the coefficients with (4.5) gives that
Hy(0) = —gype' 0 — gppe "0’
= —DMe'“*" — DMe™'*0"
= —2M Re{De'*"},
Hy(0) = —gp e’ — g e '’
= —DBei“? — DBei@0?
= —2Re{DBe'*"}.
It follows from (4.6) that
Wao(0) = 2iwgwy(0) + gpe' " + Fope ™" (4.8)
Solving for w,,, we obtain
Wwy(0) = — %ei‘“o" - :;—(;i()ei‘“o" + E e?1@0f, (4.9)
and similarly
wu(0) = %ei‘”og — %glle“"ﬂ" + E,, (4.10)

where E; and E, can be determined by setting 6 = 0 in H. In fact, since
H(z,2,0) = —2Re{g"(0)Foq(0)} + Fy,
we have
Hy,(0) = (1 — 2Re D)B,
Hyy(0) = —gy — 8y + M= —DM —DM + M = (1 —2Re D)M.
(4.11)
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It follows from the definition of L and (4.6) that
—Awao(—Ty) — Aywao(—79) = 2iwgwy(0) + (2Re D — 1) M,
— Awy(—7) — Awy(—7) = (2Re D — 1) B.

Substituting (4.9) and (4.10) into the above equations and noticing that
+iw, are solutions of the equation

A= —Aje ' — A e M) (4.12)

when u = 0, we obtain

g - E b 4.13
LN 2 A, + 4, (4.13)

where
N = 2iwy + Aje 2190 4 4,210 (4.14)

Based on the above analysis, we can see that each g;; is determined by the
parameters and delays in Eqg. (1.1). Thus, we can compute the following
guantities:

i 1 8x
c1(0) = EP 820811 — 2|811|2 - §|g02|2 + PR
0
= — Re{cl(O)}
i a'(0) (4.15)
Im ¢,(0) + wy Im Xi( )
T,= - o )
0
B, =2 Re{cl(O)}.

We know that (Hassard et al. [18]) u, determines the direction of the Hopf
bifurcation [if w, > 0 (< 0), then the Hopf bifurcation is supercritical
(subcritical) and the bifurcating periodic solutions exist for 7, > 79 (< 79)];
B, determines the stability of the bifurcating periodic solutions [the
bifurcating periodic solutions are orbitally stable (unstable) if B, <0
(> 0)]; and T, determines the period of the bifurcating periodic solutions
[the period increases (decreases) if T, > 0 (< 0)]. In (4.15),

A ) =a(p) +iB(p) (4.16)

is a solution of Eq. (4.12) satisfying «(0) = 0, »(0) = w,. a’'(0) and «'(0)
are the real and imaginary parts of X(0), respectively.
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Notice that the relation between A( w) in (4.16) and A(r,) in Section 3 is
that A(u) = A, A(r,). Similarly, w, in this section is the multiplication of
A, and w, in Section 3.

5. AN EXAMPLE

By using the results in Sections 2, 3, and 4, we can study the stability and
bifurcation of the logistic equation (1.6), the simple motor control equa-
tion (1.8), and Eq. (1.9). As an example, we consider the following
equation:

X(t) = —x(t — 7)) — Ax(t — 7)) + 5[x3(t — 7)) + A3(t — 1,)]
+O(x4(t - Tl),xs(t — 72))
2 Lx, + F(x,) + O(x}). (5.2)

Notice that Eq. (5.1) is a special case of Eq. (4.1) with 4; =1, 4, = A4,
a; =0 (1, =1,2,3); by =0, by, =2, bygy = 24, bij=10 G, k=
1,2,3, i #j #+ k). Bélair and Campbell [1] study the single Hopf bifurca-
tion of Eg. (5.1) and show that, for 7, < 1, each branch of the Hopf
bifurcation is everywhere supercritical. They also observe that, for 1 < 7, <
5, the entire stability boundary is still supercritical; however, their theo-
rem does not apply to this case. In the following, we shall apply the results
in Section 4 to Eq. (5.1). Detailed and all possible parameter estimates will
be given for the occurrence and stability of the Hopf bifurcation.
We can compute that

. . -1
M=0, B=0, D=(1-re“mn—rdelo?) ",

and
. = 82 L =
820 =81 =8 =0, 8n = —2iwD, ¢,(0) = 7 = —iwyD.
Denote

2 . . 2
A= (1~ 7,005 wyr; — T9AC0S wyr7)" + (7, 8IN @y, + T)ASIN wT] ).
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We have

—ﬂ[(T sin w7, + 72Asin @ TO)
A 1 071 2 072

c1(0)

+i(1 — 7, COS w,T; — T2 A COS wOTO)],

W . -
My = A (0) (7‘1 sin wyr; + 7Asin wofg),
2w, . .
Bo= -1 (74 Sin wyTy + T9AsIN wyT7),
1
T, = K(l — 7, COS wyT, — 79 A COS wofg)
®'(0
By 5(3) (71 sin wyT, + T9Asin ong).
a

By applying Theorem 3.6, (iii) of Theorem 3.11, (ii) of Theorem 3.16,
and Lemma 3.5, we obtain the following bifurcation theorem for Eg. (5.1).

THEOREM 5.1.  If one of the following conditions is satisfied.

(i) A>1andr, >0 satisfies w/21, < VA*> — 1 < 3m/21,;
(i) A <1 and i) > 5575 such that 7, € (5575, 1), where 7y is
defined as in (3.10);
(i) A=1and 1 > 3,
then, at 7, = 72, Eq. (5.1) undergoes the Hopf bifurcation; the Hopf bifurca-
tion is supercritical (i.e., the bifurcating periodic solutions exist for 7, > 7J);

the bifurcating periodic solutions are orbitally asymptotically stable; the period
of bifurcating periodic solutions is determined by

T—27T1+T 2+ 0(&*
_wo( )& (8)),

where & = (1, — 1)/, + O((1, — 70)%).

6. DISCUSSION

Due to its complexity, the local and Hopf bifurcation analysis for scalar
delay—differential equations with two delays is far from complete and
many researchers have tried to fill in some “piece of the puzzle” of the two
delay problem (Bélair and Campbell [1]).
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In this paper, we have considered a class of two delay equations whose
linearization at the zero solution takes the form

x(t) =Ax(t — 7)) — Ayx(t — 7,),

where A4, and A, are positive. The logistic equation with two delays
discussed by Braddock and van der Driessche [6] and Gopalsamy [13], the
simple motor control equation studied by Bélair and Campbell [1] and
Beuter et al. [4, 5], and some of the equations considered in Hale [14], Ruiz
Claeyssen [26], Nussbaum [25], and Stech [27] are examples of such a class
of equations.

By analyzing the corresponding characteristic equation, we have ob-
tained some sufficient conditions on the stability and instability of the zero
solution. Then we fixed the first delay , and increased the second delay
7, from zero to show that there exists a first critical value of 7, at which
the zero solution loses its stability and the Hopf bifurcation occurs. The
detailed local and Hopf bifurcation analysis was completed by classifying
the parameters A; and A, into three possible cases: (@) A4; > A,, (b)
A, < A,, and (¢c) A; = A,. The direction of the Hopf bifurcation and its
stability for the perturbed equation were studied by using the normal form
introduced by Hassard et al. [18]. As an application, we considered a
simple moto control equation and extended the result of Bélair and
Campbell [1].

Our results can be used to analyze some other two delay equations such
as the logistic equation considered by Braddock and van den Driessche [6]
and Gopalsamy [13].
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