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The purpose of this paper is to study a class of differential]difference equations
with two delays. First, we investigate the local stability of the zero solution of the
equation by analyzing the corresponding characteristic equation of the linearized
equation. General stability criteria involving the delays and the parameters are
obtained. Second, by choosing one of the delays as a bifurcation parameter, we
show that the equation exhibits the Hopf bifurcation. The stability of the bifurcat-
ing periodic solutions are determined by using the center manifold theorem and
the normal form theory. Finally, as an example, we analyze a simple motor control
equation with two delays. Our results improve some of the existing results on this
equation. Q 1999 Academic Press

1. INTRODUCTION

In the last two decades, great attention has been paid to equations with
multiple delays, which have significant biological and physical background.
Consider the following equation with two delays

x t s f x t , x t y t , x t y t , 1.1Ž . Ž . Ž . Ž . Ž .Ž .˙ 1 2
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Ž .where t , t are positive constants, f 0, 0, 0 s 0, and f : R = R = R ª R1 2
is continuously differentiable. Let yA , yA , and yA be the first0 1 2

Ž .derivatives of f u , u , u with respect to u , u , and u evaluated at1 2 3 1 2 3
u s u s u s 0, respectively, i.e.,1 2 3

 f  f  f
yA s 0, 0, 0 , yA s 0, 0, 0 , yA s 0, 0, 0 .Ž . Ž . Ž .0 1 2 u  u  u1 2 3

1.2Ž .

Ž .Then the linearized equation of 1.1 at the trivial solution is

x t s yA x t y A x t y t y A x t y t . 1.3Ž . Ž . Ž . Ž . Ž .˙ 0 1 1 2 2

w x Ž . Ž .Hale and Hunag 15 investigated the stability of Eq. 1.3 in the t , t1 2
plane for various intervals in A , A , and A and determined the global0 1 2
geometry of the stable regions. For related work, we refer to Bellman and

w x w x w x w xCooke 3 , Belair, et al. 2 , Hale 14 , Hale and Tanaka 17 , Mahaffy et al.´
w x w x w x w x22 , Marriot et al. 23 , Mizuno and Ikeda 24 , and Ruiz Claeyssen 26 ,
among others.

Assume that

A s 0, A ) 0, A ) 0. 1.4Ž .0 1 2

Ž .Then Eq. 1.3 becomes

x t s yA x t y t y A x t y t . 1.5Ž . Ž . Ž . Ž .˙ 1 1 2 2

Ž .Equation 1.5 is the linearized equation of some other equations with two
Ž .delays in the form of 1.1 . The first example is the logistic model with two

Ž w x w x.delays Braddock and van den Driessche 6 ; Gopalsamy 13 :

Ṅ t s RN t 1 y BN t y t y CN t y t , 1.6Ž . Ž . Ž . Ž . Ž .1 2

Ž .where R, B, and C are positive constants. Equation 1.6 has a positive
U Ž . Ž . U Ž Ž .. Ž .equilibrium N s 1r B q C . Let N t s N 1 q n t . Then Eq. 1.6

can be written as

n t s y 1 q n t A n t y t q A n t y t , 1.7Ž . Ž . Ž . Ž . Ž .Ž .˙ 1 1 2 2

U U Ž .where A s RBN , A s RCN . Clearly, Eq. 1.5 is the linearized equa-1 2
Ž . w xtion of 1.7 at n s 0. Braddock and van den Driessche 6 describe some

Ž .linear stability regions for Eq. 1.7 . They find that the two delay terms are
equally important and observe stable limit cycles when t rt is large. In2 1

w xmodeling sexually transmitted disease, Cooke and Yorke 11 discuss Eq.
Ž . Ž .1.7 with A s yA . They describe various stability properties of 1.71 2
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w x Ž .and obtain some limit cycle solutions. Nussbaum 25 studies Eq. 1.7 with
t s 1. If 1 - t - 2, he proves the existence of a periodic solution of1 2
Ž .1.7 . When t ) 2, he shows that there may exist two positive solutions of2

w x Ž .period greater than t . Stech 27 also considers Eq. 1.7 with t s 1,2 1
t s 3, and A q A s 1 and discusses the stable and unstable bifurca-2 1 2
tions.

ŽThe second example is a simple motor control equation Belair and´
w x w x.Campbell 1 ; Beuter et al. 4, 5 ,

x t s f x t y t q f x t y t , 1.8Ž . Ž . Ž . Ž .Ž . Ž .˙ 1 1 2 2

Ž . Ž .where f u s yA tan h u , i s 1, 2, and A and A are positive con-i i 1 2
Ž .stants. The linearized equation of 1.8 at the equilibrium x s 0 also takes

Ž . w xthe form of Eq. 1.5 . Belair and Campbell 1 analyze the linearized´
Ž .stability of 1.8 and study both single and double Hopf bifurcations.

w xThe third example is the one considered in Ruiz Claeyssen 26 :

x t s yA x t y t y A x t y t q x 3 t , 1.9Ž . Ž . Ž . Ž . Ž .˙ 1 1 2 2

where A s A s 1r2. Ruiz Claeyssen studies the Hopf bifurcation in1 2
Ž .1.9 and the stability of the bifurcating periodic solutions. Other examples

w x w x w xcan be found in Hale 14 , Nussbaum 25 , Stech 27 , and the references
cited therein.

Ž .The purpose of this paper is to study the two delay equation 1.1 under
Ž .the assumption 1.4 . First, we investigate the local stability of the zero

Ž .solution of Eq. 1.1 by analyzing the corresponding characteristic equation
Ž .of the linearized equation 1.5 . General stability criteria involving the

delays and the parameters are obtained. Second, by choosing one of the
delays as a bifurcation parameter, we show that the two delay equation
exhibits Hopf bifurcation. Then we discuss the properties of the bifurcat-
ing periodic solutions by using the center manifold theorem and the
normal form theory. It is shown that the Hopf bifurcation is supercritical
and the bifurcating periodic solutions are orbitally stable under certain

Ž .conditions. Finally, as an example, we analyze Eq. 1.8 , the simple motor
control equation. Our results improve some of the results obtained by

w xBelair and Campbell 1 .´
The following Rouche theorem on the continuity of the roots of an´

equation as a function of parameters will be needed throughout the paper
Ž .in analyzing the characteristic equation of the linearized equation 1.5 .

w xFor a proof, we refer to Dieudonne 12, p. 248 .´
ROUCHE’S THEOREM. Let A be an open set in CC, the set of complex´

numbers, F a metric space, f a continuous complex ¨alued function in A = F,
Ž .such that, for each a g F, z ª f z, a is analytic in A. Let B be an open set
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of A, whose closure B in CC is compact and contained in A, and let a g F be0
Ž .such that no zero of f z, a is on the frontier of B. Then there exists a0

neighborhood W of a in F such that:0

Ž . Ž .i for any a g W, f z, a has no zeros on the frontier of B;
Ž . Ž .ii for any a g W, the sum of the orders of the zeros of f z, a

belonging to B is independent of a .

2. LOCAL STABILITY ANALYSIS

Ž .The characteristic equation of 1.5 is

z s yA eyzt 1 y A eyzt 2 . 2.1Ž .1 2

w xSince, as observed by Braddock and van den Driessche 6 , both delay
terms are equally important, we do not scale the time to let one of the

w xdelays be equal to 1. Rather, as did Belair and Campbell 1 , we scale the´
variable so that one of the coefficients A will be equal to 1. Leti

z A2
l s , A s , r s A t , r s A t .1 1 1 2 1 2A A1 1

We obtain the normalized characteristic equation

l s yeyl r1 y Aeylt 2 . 2.2Ž .

When A s 0, we can easily prove the following result.

LEMMA 2.1. The transcendental equation

l s yeyl r1 2.3Ž .
p Ž .has purely imaginary roots if and only if r s 2 jp q j s 0, 1, 2, . . . .1 2

p Ž .Moreo¨er, if r s 2 jp q , Eq. 2.3 has a pair of purely imaginary roots "i1 2

which are simple.
pj Ž . Ž .Denote r s 2 jp q j s 0, 1, 2, . . . and let l r be the root of Eq.1 j 12

Ž . Ž j. Ž j.2.3 satisfying Re l r s 0, Im l r s 1. Then we havej 1 j 1

d Re l r 1Ž .j 1 s . 2.4Ž .2pdr j 1 q 2 jp qŽ .1 r sr 21 1

The proof of the following lemma can be found in Cooke and van den
w x w xDriessche 10 ; see also Cooke and Grossman 9 .
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pw . Ž .LEMMA 2.2. If r g 0, , then all roots of Eq. 2.3 ha¨e strictly negatï e1 2
p pŽ Ž . x Ž .real parts. If r g 2 jp q , 2 j q 1 p q , then Eq. 2.3 has exactly 2 j1 2 2

roots with strictly positï e real roots.

By using Lemmas 2.1 and 2.2, we can prove the following lemma.
p pLEMMA 2.3. For any r ) with r / 2 jp q and fixed r ) 0, there is1 1 22 2

Ž .a d ) 0, such that when A s A rA - d Eq. 2.2 has at least one root with2 1
positï e real part.

Proof. Define

h l, A s l q eyl r1 q Aeyl r2 .Ž .

Ž .Then h l, A is an analytic function in l and A. By Lemma 2.1, when
p Ž .r / 2 jp q the function h l, 0 has no zeros on the boundary of V,1 2
� < < 4where V s l N Re l G 0, l F 2 . Thus, Rouche’s theorem implies that´

Ž . Ž .there exists a d ) 0 such that, when A - d , h l, A and h l, 0 have the
same sum of the orders of zeros.

pIt follows from Lemma 2.2 that when r ) the sum of the orders of1 2
p pŽ .the zeros of h l, 0 is at least 2. Thus, when r ) , r / 2 jp q , and1 12 2

Ž .A - d , the sum of the orders of the zeros of h l, A is also at least 2. This
proves the lemma.

1Ž .LEMMA 2.4. Suppose A g 0, 1 and r F . Then all roots of Eq.1 1 q A
Ž .2.2 ha¨e strictly negatï e real parts.

Ž .Proof. Since all roots of Eq. 2.2 have negative real parts when r s 0,1
1Ž xif the conclusion fails, then there must be some r g 0, such that1 1 q A

Ž . Ž .Eq. 2.2 has purely imaginary roots "iv v ) 0 satisfying

cos v r s yA cos v r1 2
2.5Ž .

v y sin v r s A sin v r .1 2

Adding up the squares of both equations, we have

v 2 y 2v sin v r q 1 s A2 ,1

that is,

v 2 q 1 y A2

g v J s sin v r . 2.6Ž . Ž .12v
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< < w xSince sin v r F 1, it follows that v g 1 y A, 1 q A . On the other hand,1

21 1 y A
g v s v 1 qŽ . 22 v

21 1 y A
G v 1 q 22 1 q AŽ .

1
G v

1 q A
G v r1

) sin v r ,1

Ž .a contradiction. Thus, all roots of Eq. 2.2 must have negative real parts.

Ž .Applying Lemmas 2.3 and 2.4 to Eq. 1.5 , we have the following results
Ž .about the local stability of the zero solution of Eq. 1.1 .

Ž . Ž .THEOREM 2.5. For Eq. 1.1 under the assumption 1.4 , we ha¨e

Ž . Ž . Ž .i for any t ) pr2 A with t / 2 jp q pr2 rA j s 1, 2, . . .1 1 1 1
and fixed t ) 0, there exists a d ) 0 such that when A rA - d the zero2 2 1

Ž .solution of Eq. 1.1 is unstable;
Ž . Ž .ii when A - A and t F 1r A q A , the zero solution of Eq.2 1 1 1 2

Ž .1.1 is asymptotically stable.

3. THE HOPF BIFURCATION

Ž .In this section, we shall study the Hopf bifurcation of Eq. 1.1 by
choosing one of the delays as a bifurcation parameter. First, we would like

Ž . Ž .to know when Eq. 2.2 has purely imaginary roots "iv v ) 0 . Clearly, if
Ž . Ž . Ž ."iv are roots of Eq. 2.2 , then 2.5 and hence 2.6 holds. We shall

Ž . Ž . Ž .consider three cases: a A s A rA ) 1; b A - 1; and c A s 1.2 1

3.1. A ) 1

Ž . Ž .In this case, the function g v defined by 2.6 has the following
Ž .properties see Fig. 3.1 :

Ž . Ž . w .1 g v is strictly monotonically increasing and convex on 0, q`
Ž . Ž .and lim g v s y`, lim g v s q`;v ª 0 v ªq`

2'Ž . Ž . Ž . Ž .2 g A q 1 s 1, g A y 1 s y1, and g A y 1 s 0;
vŽ . Ž . w x3 v y A F g v F if v g A y 1, A q 1 .1 q A
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Ž .FIG. 3.1. The graph of g v when A ) 1.

Ž .Clearly, g v intersects sin v r only in the rectangle bounded by1
Ž .y s "1 and v s A " 1; that means, if Eq. 2.2 has purely imaginary

w xroots "v , then v g A y 1, A q 1 .0 0
Ž .The above properties of g v can be summarized into the following

lemma.

LEMMA 3.1. For A ) 1, we ha¨e
5pŽ . Ž . wi if r - , then Eq. 2.6 has a unique solution v g A yŽ .1 02 A q 1

x1, A q 1 ;
5pŽ . Ž . wii if r G , then Eq. 2.6 has at least two solutions in A yŽ .1 2 A q 1

x1, A q 1 .

LEMMA 3.2. If A ) 1, then for any r G 0 all roots of the equation1

l s yeyl r1 y A 3.1Ž .

ha¨e strictly negatï e parts.

Ž .Clearly, when A ) 1 and r G 0, Eq. 3.1 has neither purely imaginary1
roots nor roots with positive real part; the lemma thus follows.
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5pFor r - , since A ) 1, it follows thatŽ .1 2 A q 1

cos v r s yA cos v r 3.2Ž .0 1 0 2

0 Ž .has a solution r , where v is defined in Lemma 3.1 i .2 0
5p Ž . Ž .For r G , Lemma 3.1 ii implies that Eq. 2.6 has at least twoŽ .1 2 A q 1

Ž .solutions, denoted by v , v , . . . , v m G 2 . It follows from A ) 1 that1 2 m
the equation

cos v r s yA cos v r , j s 1, 2, . . . , m 3.3Ž .j 1 j 2

Ž j. Ž1. Žm.� 4has a solution r . Set r s min r , . . . , r .2 2 2 2

0 Ž . Ž .LEMMA 3.3. Let r and r be defined in 3.2 and 3.3 , respectï ely.2 2

5p 0Ž . w . Ž .i Suppose r - . If r g 0, r , then all roots of Eq. 2.2Ž .1 2 22 A q 1
0 Ž .ha¨e strictly negatï e real parts; if r s r , then Eq. 2.2 has a pair of purely2 2

imaginary roots and all other roots ha¨e strictly negatï e real parts.
5pŽ . w . Ž .ii Suppose r G . If r g 0, r , then all roots of Eq. 2.2Ž .1 2 22 A q 1

Ž .ha¨e strictly negatï e real parts; if r s r , then Eq. 2.2 has a pair of purely2 2
imaginary roots and all other roots ha¨e strictly negatï e real parts.

Ž . Ž .Proof. We only prove the statement i ; statement ii can be proved
0 0 Ž .similarly. By the definition of r , it follows that when r s r Eq. 2.2 has2 2 2

0 Ž .a unique pair of purely imaginary roots and when r - r Eq. 2.2 has no2 2
Ž .purely imaginary roots. On the other hand, if 2.2 has a root l with

< <positive real part, then we must have l - 2 q A. Denote

< < <� 4V s l g CC Re l G 0, l F 2 q A .1

Ž .Then all roots of Eq. 2.2 which have positive real parts lie in the interior
of V .1

By Lemma 3.2, when r s 0 the sum of the orders of the roots of Eq.2
Ž . w 0.2.2 is zero in V . Thus, Rouche’s theorem implies that for r g 0, r´1 2 2

Ž .Eq. 2.2 has no root in V . This completes the proof of Lemma 3.3.1

0 Ž .From Lemma 3.3, it seems that when r s r Eq. 1.1 may exhibit the2 2
Hopf bifurcation. To verify this, we need to consider the transversality
condition.

LEMMA 3.4. For any r ) 0, if A ) 1 satisfies the condition1

p 3p
2'- A y 1 - , 3.4Ž .

2 r 2 r1 1
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then there exists an r 0 ) 0 such that2

Ž . w 0. Ž .i for r g 0, r all roots of Eq. 2.2 ha¨e strictly negatï e real parts2 2
and

Ž . 0 Ž .ii for r s r Eq. 2.2 has a unique pair of purely imaginary roots2 2
p0"iv and all other roots ha¨e strictly negatï e real parts, where v r - .0 0 2 2

Ž . Ž .Proof. If "iv are roots of Eq. 2.2 , then by the property of g v that
2 2' 'Ž . Ž .g A y 1 s 0 there exists an v g A y 1 , prr such that0 1

v 2 q 1 y A2
0

g v s s sin v r .Ž .0 0 12v0

p 3pŽ . Ž .It follows from 3.4 that v r g , and hence cos v r - 0. Let0 1 0 12 2

1 cos v r0 10r s arccos y . 3.5Ž .2 ž /v A0

Ž . 0 Ž .If A ) 1 satisfies 3.4 , then for r s r Eq. 2.5 has a solution v ; i.e.,1 2 0
Ž . 0"iv is the unique pair of purely imaginary roots of 2.2 when r s r .0 2 2

p0Ž .By 3.5 , we can see that v r - .0 2 2
Ž .If r s 0, then Lemma 3.2 implies that all roots of Eq. 2.2 have strictly2

0 Ž .negative real parts and when r - r Eq. 2.2 has no purely imaginary2 2
roots. By using an argument similar to that in the proof of Lemma 3.3, we

w 0. Ž .can show that if r g 0, r , then all roots of Eq. 2.2 have strictly2 2
0 Ž .negative real parts and if r s r , then Eq. 2.2 has a unique pair of2 2

purely imaginary roots and all other roots have strictly negative real parts.
Ž .Next, we show that "iv are simple roots of Eq. 2.2 . From the above0

p 3p p0 0Ž . Ž .analysis we know that v r g , and v r g 0, . Thus, r ) r . Set0 1 0 2 1 22 2 2

h l s l q eyl r1 q Aeyl r 0
2 .Ž .

We have

dh lŽ . 0yl r 0 yl r1 2s 1 y r e y Ar e1 2dl

and

dh ivŽ .0 0 0 0s 1 y r cos v r y i sin v r y Ar cos v r y i sin v r .Ž . Ž .1 0 1 0 1 2 0 2 0 2dl

p 3p0 0Ž .Notice that cos v r s yA cos v r , v r g , , and r ) r ; we have0 1 0 2 0 1 1 22 2

d
0Re h iv s 1 y r y r cos v r ) 0,Ž . Ž .0 1 2 0 1dl
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Ž . Ž .that is, dh iv rdl / 0. Hence, "iv are simple roots of Eq. 2.2 when0 0
0r s r .2 2

Ž . Ž . Ž . Ž .Let l r s a r q iv r be the root of Eq. 2.2 satisfying2 2 2

a r 0 s 0, v r 0 s v .Ž . Ž .2 2 0

LEMMA 3.5. Under the hypothesis of Lemma 3.4, we ha¨e

0 0v A sin v r q v r cos v r0 0 2 0 1 0 2X
0<a r sŽ . r sr2 2 2 2 20 0 01 q r y r cos v r q v r y r y r sin v rŽ . Ž .2 1 0 1 0 2 2 1 0 1

) 0.

Ž .Proof. Differentiating with respect to r on both sides of Eq. 2.2 gives2

dl r Aleyl r2Ž .2 s .yl r yl r1 2dr 1 y r e y Ar e2 1 2

Ž .It follows from 2.5 that

d
X

0 0< <a r s Re l rŽ . Ž .r sr r sr2 22 2 2 2dr2

v v y v r cos v r y sin v rŽ .0 0 0 1 0 1 0 1s 2 20 0 01 q r y r cos v r q v r y r y r sin v rŽ . Ž .2 1 0 1 0 2 2 1 0 1

0 0v A sin v r q v r cos v r0 0 2 0 1 0 2s 22 0 01 q r y r cos v r q v r y r y r sin v rŽ . Ž .2 1 0 1 0 2 2 1 0 1

) 0,

p0follows from the fact that v r - .0 2 2

Ž .Applying Lemmas 3.4 and 3.5 to Eq. 1.1 , we have

THEOREM 3.6. For any t ) 0, if A ) A , and1 2 2

p 3p
2 2'- A y A - , 3.6Ž .2 12t 2t1 1

0 w 0.then there exists a t ) 0 such that, for t g 0, t , the zero solution of Eq.2 2 2
Ž . 0 Ž .1.1 is asymptotically stable. When t s t Eq. 1.1 exhibits the Hopf2 2

0 0 0 Ž .bifurcation, where t s r rA and r is defined in 3.5 .2 2 1 2
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3.2. A - 1

Ž . Ž .In this case, the function g v defined by 2.6 has the following
Ž .properties see Fig. 3.2 :

2 2' 'Ž . Ž .1 g v attains its minimum value 1 y A when v s 1 y A
Ž . Ž .and g 1 y A s g 1 q A s 1;

Ž . Ž .2 g v is a concave upward function and is strictly monotonically
2'Ž .decreasing if v g 0, 1 y A and strictly monotonically increasing if

2'Ž . Ž . Ž .v g 1 y A , ` . Moreover, lim g v s lim g v s `;v ª 0 v ª`
vŽ . Ž . Ž .3 g v ) , v g 0, ` .2

Ž . Ž . Ž .If "iv v ) 0 are roots of Eq. 2.2 , then v must satisfy 2.6 . From
w xFig. 3.2 we can see that solutions lie in 1 y A, 1 q A . Also, from Fig. 3.2

Ž .we can see that, when r G 0 is sufficiently small, sin r v and g v do not1 1
p Ž .intersect; when r G , sin r v and g v intersect at least twice. SetŽ .1 12 1 q A

r 0 s min r N sin r v intersects g v . 3.7� 4Ž . Ž .1 1 1

0 0 Ž .It follows that r ) 0, and, when r s r , sin r v and g v intersect1 1 1 1
0 Ž .exactly once; when r ) r , sin r v and g u intersect at least twice.1 1 1

0 Ž .Clearly, for any r G r , the equation g v s sin r v has finitely many1 1 1
Ž .solutions, denoted by v , v , . . . , v . The first property of g v implies1 2 m

Ž .FIG. 3.2. The graph of g v when A - 1.
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that

2'g v s sin r v G 1 y A , i s 1, 2, . . . , m.Ž .i 1 i

It then follows that

2 2< < ''1 y sin r vcos r v 1 y 1 y AŽ .1 i1 i
0 F s F s 1.

A A A

Thus,

1 cos r v1ir s arccos y 3.8Ž .2 ž /v Ai

i w .is well defined and r v g 0, p . Denote2 i

r 0 s min r1 , r 2 , . . . , r m . 3.9Ž .� 42 2 2 2

We have the following lemma.

LEMMA 3.7. Let

2'arcsin 1 y A
r s . 3.10Ž .1 2'1 y A

Ž . w .i If r g 0, r , then all roots of the equation1 1

l s yeyl r1 y A 3.11Ž .

ha¨e strictly negatï e real parts.
Ž . Ž .ii If r ) r , then at least one root of the equation 3.11 has positï e1 1

real part.
0 0 Ž . Ž . Ž .LEMMA 3.8. Suppose r , r , and r are defined in 3.7 , 3.10 , and 3.9 ,1 1 2

respectï ely.

Ž . w 0. Ž .i If r g 0, r , then all roots of Eq. 2.2 ha¨e strictly negatï e real1 1
parts.

0 0Ž . w . w . Ž .ii If r g r , r , r g 0, r , then all roots of Eq. 2.2 ha¨e strictly1 1 1 2 2
0 Ž .negatï e real parts; if r s r , then Eq. 2.2 has a unique pair of simply purely2 2

imaginary roots and all other roots ha¨e strictly negatï e real parts.

Ž . Ž .Proof. i "iv are roots of the equation 2.2 if and only if v is a
Ž . 0 w 0.root of Eq. 2.6 . By the definition of r , it follows that if r g 0, r , then1 1 1

Ž . Ž .Eq. 2.6 has no solutions and thus Eq. 2.2 has no purely imaginary roots.
Ž .If r s 0, then Eq. 2.2 has no roots with positive real part for any r G 0.1 2



LI ET AL.266

w 0.Therefore, Rouche’s theorem implies that, for any r G 0, if r g 0, r ,´ 2 1 1
Ž .then all roots of Eq. 2.2 have negative real parts.

Ž . Ž . Ž . � 4ii It follows from 3.8 and 3.9 that there exists a j g 1, 2, . . . , m
such that

1 cos r v1 j0r s arccos y .2 ž /v Aj

0w .Denote v s v . By Lemma 3.7, if r g r , r and r s 0, then all roots0 j 1 1 1 2
Ž . 0of Eq. 2.2 have strictly negative real parts. By the definition of r , if2

w 0. Ž .r g 0, r , then Eq. 2.2 has no purely imaginary roots. Rouche’s theo-´2 2
w 0. Ž .rem again implies that for any r g 0, r all roots of Eq. 2.2 have2 2

negative real parts.
The definition of r 0 also implies that, when r s r 0, "iv is a unique2 2 2

Ž .pair of purely imaginary roots of Eq. 2.2 and all other roots have strictly
0 Ž .negative real parts. When r v g 0, p , we have sin r v ) 0. Denote2 0 1 0

Ž . yl r1 yl r 0
2h l s l q e q e . Using arguments similar to those in the proof of

Lemma 3.4, we have

d
0 0Im h iv s r sin r v q Ar sin r v ) 0,Ž .0 1 1 0 2 2 0dl

Ž . Ž .that is, dh iv rdl / 0. Thus, "iv are simple roots of Eq. 2.2 when0
0r s r .2 2

0w .For r g r , r , let1 1 1

l r s a r q iv rŽ . Ž . Ž .2 2 2

Ž .be the solution of Eq. 2.2 satisfying

a r 0 s 0, v r 0 s v .Ž . Ž .2 2 0

Similar to the proof of Lemma 3.5, we can prove the following lemma.

LEMMA 3.9. If u s r 0v is not a root of the equation tan u s yu on2 0
pŽ ., p , then2

X < 0a r / 0.Ž . r sr2 2 2

Now, we shall derive some conditions to ensure that u s r 0v is not a2 0
pŽ .root of the equation tan u s yu on , p .2

p pw .LEMMA 3.10. Suppose r ) . If r g , r , thenŽ . Ž .1 1 12 1 q A 2 1 q A

X < 0a r ) 0.Ž . r sr2 2 2



DELAY]DIFFERENTIAL EQUATIONS}TWO DELAYS 267

p Ž .Proof. Since r G , it follows that Eq. 2.6 has at least oneŽ .1 2 1 q A
pw . Ž . Ž .solution v satisfying r v g , p . Thus, 3.8 and 3.9 imply thatj 1 j 2

p0 Ž xr v g 0, . The conclusion follows from the same argument as in the2 0 2

proof of Lemma 3.5.
p0 Ž xNotice that in the above proof r v g 0, ; this certainly indicates that2 0 2

p0 Ž .r v is not a solution of the equation tan u s yu on the interval , p .2 0 2
Ž .Applying the above lemmas to Eq. 1.1 , we have the following.

0 0 Ž . Ž .THEOREM 3.11. Assume that r , r , and r are defined by 3.7 , 3.9 , and1 2 1
0 0 0 0Ž .3.10 , respectï ely. Denote t s r rA , t s r rA , and t s r rA .1 1 1 2 2 1 1 1 1

Ž . w 0. Ž .i If t g 0, t , then the trï ial solution of Eq. 1.1 is asymptoti-1 1
cally stable.

0 0 0Ž . w . w .ii Suppose t - t . If t g t , t and t g 0, t , then the trï ial1 1 1 1 1 2 2
Ž . 0solution of Eq. 1.1 is asymptotically stable; if u s A t v is not a root of1 2 0

p 0Ž .the equation tan u s yu on , p , then t s t is the Hopf bifurcation2 22
Ž .point for Eq. 1.1 .

Ž . Ž . w Ž . xiii Suppose t ) pr2 A q A . If t g pr2 A q A , t and1 1 2 1 1 2 1
0 0 Ž .t s t , then t s t is the Hopf bifurcation point for Eq. 1.1 .2 2 2 2

3.3. A s 1

Ž .In this case, Eq. 2.2 becomes

l s yeyl r1 y eyl r2 . 2.2aŽ .

Ž . Ž ."iv v ) 0 are solutions of 2.2a if and only if v satisfies the following
equations:

v y sin r v s sin r v1 2 2.5aŽ .
cos r v s cos r v .1 2

Ž . Ž .Thus, the necessary condition for "iv v ) 0 to be solutions of 2.2a is

v
s sin r v . 2.6aŽ .12

Ž . Ž xObviously, all positive solutions of Equation 2.6a lie on 0, 2 and, for
1 5p 5pŽ .- r F , Eq. 2.6a has exactly one positive solution; when r ) , it1 12 4 4

Ž .has at least two positive solutions see Fig. 3.3 .
1 Ž .For r ) denote the positive solutions of Eq. 2.6a as1 2

v - v - ??? - v .0 1 m
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Ž .FIG. 3.3. The graph of g v when A s 1.

For each v , seti

1
ir s arccos ycos r v . 3.12Ž . Ž .2 1 iv i

i Ž xWe can show that r v g 0, p ,2 i

r 0 s min r i , 3.13Ž .� 42 2
0FiFm

p0 Ž xand r v g 0, .2 0 2

As argued in Sections 3.1 and 3.2, we have the following lemmas.

LEMMA 3.12. All roots of the equation

l s yeyl r1 y 1
ha¨e strictly negatï e parts.

1Ž . w x Ž .LEMMA 3.13. i If r g 0, , then for any r G 0 all roots of Eq. 2.2a1 22

ha¨e strictly negatï e real parts.
1 0Ž . Ž .ii For r ) , there exists an r defined by 3.12 such that if1 22

w 0. Ž . 0r g 0, r , all roots of Eq. 2.2a ha¨e strictly negatï e real parts; if r s r ,2 2 2 2
Ž .then Eq. 2.2a has a unique pair of purely imaginary roots and all other roots

ha¨e strictly negatï e real parts.
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1 Ž . Ž . Ž .LEMMA 3.14. For r G , let l r s a r q iv r be the solutions of1 2 2 22
Ž . Ž 0. Ž 0.Eq. 2.2a satisfying a r s 0 and v r s v . Then2 2 0

da rŽ .2
) 0.

dr 02 r sr2 2

Remark 3.15. The above analysis together with the implicit function
Ž . Ž .theorem gives us the distribution of the roots of Eq. 2.2a in the r , r1 2

Ž . Ž .plane see Fig. 3.4 . If r , r lies in the region bounded by the curve l and1 2
Ž .the r , r axes, then all roots of Eq. 2.2a have strictly negative real parts.1 2

p pŽ . Ž .If r , r lies on the curve l passing through the point , , then Eq.1 2 4 4
Ž .2.2a has a unique pair of simply purely imaginary roots, all other roots
have strictly negative real parts and the transversality condition is satisfied.

We should mention that the result of the case when A s A was also1 2
w x w xobtained by Ruiz Claeyssen 26 and Hale 14 .

Ž .Applying Lemmas 3.13 and 3.14 to Eq. 1.1 , we obtain the following
theorem.

THEOREM 3.16. Suppose A s A .1 2

Ž . w Ž .xi If t g 0, 1r 2 A , then, for any t G 0, the trï ial solution of1 1 2
Ž .Eq. 1.1 is asymptotically stable.

Ž . Ž .FIG. 3.4. The distribution of roots of 2.2 in the r , r plane.1 2



LI ET AL.270

Ž . Ž . 0 0ii For t ) 1r 2 A , there exists a t s r rA such that if t g1 1 2 2 1 2
w 0. Ž .0, t , then the trï ial solution of Eq. 1.1 is asymptotically stable; if2

0 Ž .t s t , then Eq. 1.1 exhibits the Hopf bifurcation.2 2

4. STABILITY OF THE HOPF BIFURCATION

In this section, we shall use the normal form theory introduced in
w xHassard et al. 18 to study the stability of the bifurcating periodic

solutions.
Without loss of generality, assume t ) t 0 and define the phase space1 2

as

w xC s C yt , 0 , RŽ .1

< < < Ž . <associated with the norm f s sup f u for f g C.yt F u F 01

Ž .The expansion of Eq. 1.1 at the trivial solution is

x t s yA x t y t y A x t y t q F x t , x t y t , x t y t ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .˙ 1 1 2 2 1 2

4.1Ž .

where

F x t , x t y t , x t y tŽ . Ž . Ž .Ž .1 2

1
2 2 2s a x t q a x t y t q a x t y tŽ . Ž . Ž .11 22 1 33 22

q2 a x t x t y t q 2 a x t x t y tŽ . Ž . Ž . Ž .12 1 13 2

q2 a x t y t x t y tŽ . Ž .23 1 2

1
3 3 3q b x t q b x t y t q b x t y tŽ . Ž . Ž .111 222 1 333 23!

q3b x 2 t x t y t q 3b x 2 t x t y tŽ . Ž . Ž . Ž .112 1 113 2

q3b x t x 2 t y t q 3b x t x 2 t y tŽ . Ž . Ž . Ž .122 1 133 2

q6b x t x t y t x t y tŽ . Ž . Ž .123 1 2

q3b x 2 t y t x t y tŽ . Ž .223 1 2

2 4q3b x t y t x t y t q O xŽ . Ž . Ž .233 1 2
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and

 2 f
a s 0, 0, 0 , i , j s 1, 2, 3;Ž .i j  u  ui j

 3 f
b s 0, 0, 0 , i , j, k s 1, 2, 3.Ž .i jk  u  u  ui j k

Ž . 0 Ž .Suppose that, for A , A , t , there exists a t ) 0 at which Eq. 4.11 2 1 2
exhibits the Hopf bifurcation. Denote t s t 0 q m. In the following we2 2
shall regard m as the bifurcation parameter. For f g C, define

F m , f s F f 0 , f yt , f yt .Ž . Ž . Ž . Ž .Ž .1 2

1w xBy the Reisz representation theorem, for any f g C yt , 0 we have1

0
yA x t y t y A x t y t s dh u , m f u ,Ž . Ž . Ž . Ž .H1 1 2 2

yt 1

where

xyA d u , u g yt , 0 ,Ž . Ž2 2
h u , m sŽ . ½ w xA d u q t , u g yt , yt .Ž .1 1 1 2

Set

¡df uŽ . w, u g yt , 0 ,.1du~L m f sŽ .
0

dh s, m f s , u s 0,Ž . Ž .H¢ yt 1

w0, u g yt , 0 ,.1R m f sŽ . ½ F m , f , u s 0.Ž .

Ž .Then Eq. 4.1 can be written as

x s L m x q R m x . 4.2Ž . Ž . Ž .ṫ t t
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1w xFor c g C 0, t , define1

¡ dc sŽ . xy , s g 0, t ,Ž 1dsU ~L c s sŽ .
0

dh t , 0 c yt , s s 0.Ž . Ž .H¢ yt 1

w x w xFor f g C yt , 0 and c g C 0, t , define the bilinear form1 1

0 u² :c , f s c 0 f 0 y c j y u dh u f j dj .Ž . Ž . Ž . Ž . Ž .H H
usyt js01

U Ž .Then L and L s L 0 are adjoint operators.
By the results in Section 3, we assume that "iv are eigenvalues of L;0

U Ž . iv 0uthus they are also eigenvalues of L . q u s e is the eigenvector of L
U Ž . iv 0 s Ucorresponding to iv ; q s s De is the eigenvector of L correspond-0

ing to yiv . Moreover,0

U U² : ² :q , q s 1, q , q s 0,
Ž iv 0t1 0 iv 0t 0

2 .y1where D s 1 y t A e y t A e .1 1 2 2
w xUsing the same notation as in Hassard et al. 18 , we first compute the

coordinates to describe the center manifold CC at m s 0. Let x be the0 t
Ž .solution of Eq. 4.2 when m s 0. Define

² U :z t s q , x ,Ž . t

w t , u s x u y 2 Re z t q u .� 4Ž . Ž . Ž . Ž .t

On the center manifold CC we have0

w t , u s w z t , z t , u ,Ž . Ž . Ž .Ž .
where

2 2 3z z z
w z , z , u s w u q w u zz q w u q w q ??? .Ž . Ž . Ž . Ž .20 11 02 302 2 6

z and z are local coordinates for the center manifold CC in the direction0
U Uof q and q . Note that w is real if x is real. We consider only realt

solutions.
Ž .For solution x g CC of 4.1 , since m s 0,t 0

² U :z t s iv z t q q u , F 0, w q 2 Re z t q u� 4Ž . Ž . Ž . Ž . Ž .Ž .˙ 0

Us iv z t q q 0 F 0, w z , z , 0 q 2 Re z t q 0� 4Ž . Ž . Ž . Ž . Ž .Ž .0

UJ iv z t q q 0 F z , z . 4.3Ž . Ž . Ž . Ž .0 0

We rewrite this as
z s iv z t q g z , z ,Ž . Ž .˙ 0
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where
Ug z , z s q 0 F 0, w z , z , 0 q 2 Re z t q 0� 4Ž . Ž . Ž . Ž . Ž .Ž .

2 2 2z z z z
s g q g zz q g q g q ??? . 4.4Ž .20 11 02 212 2 2

Ž . Ž .By 4.2 and 4.3 , we have

˙w s x y zq y zq˙ ˙ ˙t

U wLw y 2 Re q 0 F q u u g yt , 0� 4Ž . Ž . .Ž .0 1s U½ Lw y 2 Re q 0 F q u q F u s 0� 4Ž . Ž . Ž .0 0

J Lw q H z , z , u ,Ž .
where

H z , z , u s 2 Re g z , z q u q F 0, w q 2 Re z t q u� 4 � 4Ž . Ž . Ž . Ž . Ž .Ž .
2 2z z

s H u q H u zz q H u q ??? . 4.5Ž . Ž . Ž . Ž .20 11 022 2
Expanding the above series and comparing the coefficients, we obtain

L y 2 iv v u s yH uŽ . Ž . Ž .0 20 20

Lw u s yH u 4.6Ž . Ž . Ž .11 11

L q 2 iv v u s yH uŽ . Ž . Ž .0 02 02

??? .
U Ž .Since q 0 s D, we have

D
2 2 2 0g z , z s a x t q a x t y t q a x t y tŽ . Ž . Ž . Ž .11 22 1 33 22

q2 a x t x t y t q 2 a x t x t y t 0Ž . Ž . Ž . Ž .12 1 13 2

0q2 a x t y t x t y tŽ . Ž .23 1 2

D
3 3 3 0q b x t q b x t y t q b x t y tŽ . Ž . Ž .111 222 1 333 23!

q3b x 2 t x t y t q 3b x 2 t x t y t 0Ž . Ž . Ž . Ž .112 1 113 2

q3b x t x 2 t y t q 3b x t x 2 t y t 0Ž . Ž . Ž . Ž .122 1 133 2

q6b x t x t y t x t y t 0Ž . Ž . Ž .123 1 2

q3b x 2 t y t x t y t 0Ž . Ž .223 1 2

2 0 4q3b x t y t x t y t q O x . 4.7Ž . Ž . Ž .Ž .233 1 2
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Notice that

x t y t s w t , yt q z t q yt q z t q ytŽ . Ž . Ž . Ž . Ž . Ž .
2 2z z

s w yt q w yt zz q w ytŽ . Ž . Ž .20 11 022 2
yi v t iv t0 0q ??? qe z t q e z t ,Ž . Ž .

0 Ž .where t s 0, t , or t . Substituting it into 4.7 and comparing the1 2
Ž .coefficients with 4.4 , we have

g s DM ,20

g s DB ,11

g s DM,02

g s D a 2w 0 q w 0Ž . Ž .Ž .21 11 11 20

qa 2w yt eyi v 0t1 q w yt eiv 0t1Ž . Ž .Ž .22 11 1 20 1

qa 2w yt 0 eyi v 0t 0
2 q w yt 0 eiv 0t 0

2Ž . Ž .ž /33 11 2 20 2

qa w 0 eiv 0t1 q 2w 0 eyi v 0t1 q 2w yt q w ytŽ . Ž . Ž . Ž .Ž .12 20 11 11 1 20 1

qa w 0 eiv 0t 0
2 q 2w 0 eyi v 0t 0

2 q 2w yt 0 q w yt 0Ž . Ž . Ž . Ž .ž /13 20 11 11 2 20 2

qa w yt eiv 0t 0
2Ž .ž23 20 1

q2w yt eyi v 0t 0
2 q 2w yt 0 eyi v 0t1 q w yt 0 eiv 0t1Ž . Ž . Ž . /11 1 11 2 20 2

qb q b eyi v 0t1 q b eyi v 0t 0
2 q b 2 eyi v 0t1 q eiv 0t1Ž .111 222 333 112

qb 2 eyi v 0t 0
2 q eiv 0t 0

2 q b ey2 iv 0t1 q 2Ž .Ž .113 122

qb ey2 iv 0t 0
2 q 2Ž .133

q2b eyi v 0Žt 1yt 0
2 . q eiv 0Žt 1yt 0

2 . q eyi v 0Žt 1qt 0
2 .Ž .123

0 0 0yi v Ž2t yt . yiv t iv Žt y2t . yiv t0 1 2 0 2 0 1 2 0 1qb e q 2 e q b e q 2 e ,Ž . Ž .223 233

where

M s a q a ey2 iv 0t1 q a ey2 iv 0t 0
2 q 2 a eyi v 0t1

11 22 33 12

q 2 a eyi v 0t 0
2 q 2 a eyi v 0Žt 1qt 0

2 . ,13 23

� iv 0t14 iv 0t 0
2B s a q a q a q a Re e q 2 a Re e� 411 22 33 12 13

q 2 a Re eiv 0Žt 1yt 0
2 . .� 423
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Ž . Ž . w .We still need to compute w u and w u . For u g yt , 0 , we have20 11 1

UH z , z , u s y2 Re q 0 F q u� 4Ž . Ž . Ž .0

s ygq u y gq uŽ . Ž .
2 2 2z z z z

iv u0s y g q g zz q g q g q ??? e20 11 02 21ž /2 2 2

2 2 2z z z z
yi v u0y g q g zz q g q g q ??? e .20 11 02 21ž /2 2 2

Ž .Comparing the coefficients with 4.5 gives that

iv u yiv u0 0H u s yg e y g eŽ .20 20 20

iv u yiv u0 0s yDMe y DMe
iv u0� 4s y2 M Re De ,

iv u yiv u0 0H u s yg e y g eŽ .11 11 11

iv u yiv u0 0s yDBe y DBe
iv u0� 4s y2 Re DBe .

Ž .It follows from 4.6 that

iv u yiv u0 0w u s 2 iv v u q g e q g e . 4.8Ž . Ž . Ž .˙20 0 20 20 02

Solving for w , we obtain20

g g20 02iv u yiv u 2 iv u0 0 0w u s y e y e q E e , 4.9Ž . Ž .20 1iv 3iv0 0

and similarly

g 111 iv u yiv u0 0w u s e y g e q E , 4.10Ž . Ž .11 11 2iv iv0 0

where E and E can be determined by setting u s 0 in H. In fact, since1 2

UH z , z , 0 s y2 Re q 0 F q 0 q F ,� 4Ž . Ž . Ž .0 0

we have

H 0 s 1 y 2 Re D B ,Ž . Ž .11

H 0 s yg y g q M s yDM y DM q M s 1 y 2 Re D M .Ž . Ž .20 20 02

4.11Ž .
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Ž .It follows from the definition of L and 4.6 that

yA w yt y A w yt 0 s 2 iv w 0 q 2 Re D y 1 M ,Ž . Ž . Ž .Ž .1 20 1 2 20 2 0 20

y A w yt y A w yt 0 s 2 Re D y 1 B.Ž . Ž .Ž .1 11 1 2 11 2

Ž . Ž .Substituting 4.9 and 4.10 into the above equations and noticing that
"iv are solutions of the equation0

l s yA eylt 1 y A eylŽt 0
2qm . 4.12Ž .1 2

when m s 0, we obtain

M B
E s , E s , 4.13Ž .1 2N A q A1 2

where

N s 2 iv q A ey2 iv 0t1 q A ey2 iv 0t 0
2 . 4.14Ž .0 1 2

Based on the above analysis, we can see that each g is determined by thei j
Ž .parameters and delays in Eq. 1.1 . Thus, we can compute the following

quantities:

i 1 g212 2< < < <c 0 s g g y 2 g y g q ,Ž .1 20 11 11 02ž /2v 3 20

Re c 0� 4Ž .1
m s y ,X2 a 0Ž . 4.15Ž .

Im c 0 q m Im lX aŽ . Ž .1 1 1 0
T s y ,2 v0

b s 2 Re c 0 .� 4Ž .2 1

Ž w x.We know that Hassard et al. 18 m determines the direction of the Hopf2
w Ž .bifurcation if m ) 0 - 0 , then the Hopf bifurcation is supercritical2

Ž . 0 Ž 0.xsubcritical and the bifurcating periodic solutions exist for t ) t - t ;2 2 2
wb determines the stability of the bifurcating periodic solutions the2

Ž .bifurcating periodic solutions are orbitally stable unstable if b - 02
Ž .x) 0 ; and T determines the period of the bifurcating periodic solutions2
w Ž . Ž .x Ž .the period increases decreases if T ) 0 - 0 . In 4.15 ,2

l m s a m q ib m 4.16Ž . Ž . Ž . Ž .
Ž . Ž . Ž . XŽ . XŽ .is a solution of Eq. 4.12 satisfying a 0 s 0, v 0 s v . a 0 and v 00

XŽ .are the real and imaginary parts of l 0 , respectively.
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Ž . Ž . Ž .Notice that the relation between l m in 4.16 and l r in Section 3 is2
Ž . Ž .that l m s A l r . Similarly, v in this section is the multiplication of1 2 0

A and v in Section 3.1 0

5. AN EXAMPLE

By using the results in Sections 2, 3, and 4, we can study the stability and
Ž .bifurcation of the logistic equation 1.6 , the simple motor control equa-

Ž . Ž .tion 1.8 , and Eq. 1.9 . As an example, we consider the following
equation:

1 3 3x t s yx t y t y Ax t y t q x t y t q Ax t y tŽ . Ž . Ž . Ž . Ž .˙ 1 2 1 23

qO x 4 t y t , x 5 t y tŽ . Ž .Ž .1 2

J Lx q F x q O x 5 . 5.1Ž . Ž .Ž .t t t

Ž . Ž .Notice that Eq. 5.1 is a special case of Eq. 4.1 with A s 1, A s A,1 2
Ž . Ža s 0 i, j s 1, 2, 3 ; b s 0, b s 2, b s 2 A, b s 0 i, j, k si j 111 222 333 i jk

. w x1, 2, 3, i / j / k . Belair and Campbell 1 study the single Hopf bifurca-´
Ž .tion of Eq. 5.1 and show that, for t - 1, each branch of the Hopf1

bifurcation is everywhere supercritical. They also observe that, for 1 - t -1
p , the entire stability boundary is still supercritical; however, their theo-2

rem does not apply to this case. In the following, we shall apply the results
Ž .in Section 4 to Eq. 5.1 . Detailed and all possible parameter estimates will

be given for the occurrence and stability of the Hopf bifurcation.
We can compute that

y10iv t 0 iv t0 1 0 2M s 0, B s 0, D s 1 y t e y t Ae ,Ž .1 2

and

g21
g s g s g s 0, g s y2 iv D , c 0 s s yiv D.Ž .20 11 02 21 0 1 02

Denote

2 20 0 0 0D s 1 y t cos v t y t A cos v t q t sin v t q t A sin v t .Ž . Ž .1 0 1 2 0 2 1 0 1 2 0 2
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We have

v0 0 0c 0 s y t sin v t q t A sin v tŽ . Ž .1 1 0 1 2 0 2D

0 0qi 1 y t cos v t y t A cos v t ,Ž .1 0 1 2 0 2

v0 0 0m s t sin v t q t A sin v t ,Ž .X2 1 0 1 2 0 2Da 0Ž .
2v0 0 0b s y t sin v t q t A sin v t ,Ž .2 1 0 1 2 0 2D

1
0 0T s 1 y t cos v t y t A cos v tŽ .2 1 0 1 2 0 2D

vX 0Ž .
0 0y t sin v t q t A sin v t .Ž .X 1 0 1 2 0 2Da 0Ž .

Ž . Ž .By applying Theorem 3.6, iii of Theorem 3.11, ii of Theorem 3.16,
Ž .and Lemma 3.5, we obtain the following bifurcation theorem for Eq. 5.1 .

THEOREM 5.1. If one of the following conditions is satisfied:

2'Ž .i A ) 1 and t ) 0 satisfies pr2t - A y 1 - 3pr2t ;1 1 1
p pŽ . w .ii A - 1 and r ) such that t g , r , where r isŽ . Ž .1 1 1 12 1 q A 2 1 q A

Ž .defined as in 3.10 ;
1Ž .iii A s 1 and t ) ;1 2

0 Ž .then, at t s t , Eq. 5.1 undergoes the Hopf bifurcation; the Hopf bifurca-2 2
Ž 0.tion is supercritical i.e., the bifurcating periodic solutions exist for t ) t ;2 2

the bifurcating periodic solutions are orbitally asymptotically stable; the period
of bifurcating periodic solutions is determined by

2p
2 4T s 1 q T « q O « ,Ž .Ž .2v0

Ž 0. ŽŽ 0.2 .where « s t y t rm q O t y t .2 2 2 2 2

6. DISCUSSION

Due to its complexity, the local and Hopf bifurcation analysis for scalar
delay]differential equations with two delays is far from complete and
many researchers have tried to fill in some ‘‘piece of the puzzle’’ of the two

Ž w x.delay problem Belair and Campbell 1 .´
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In this paper, we have considered a class of two delay equations whose
linearization at the zero solution takes the form

x t s A x t y t y A x t y t ,Ž . Ž . Ž .˙ 1 1 2 2

where A and A are positive. The logistic equation with two delays1 2
w x w xdiscussed by Braddock and van der Driessche 6 and Gopalsamy 13 , the

w xsimple motor control equation studied by Belair and Campbell 1 and´
w x w xBeuter et al. 4, 5 , and some of the equations considered in Hale 14 , Ruiz

w x w x w xClaeyssen 26 , Nussbaum 25 , and Stech 27 are examples of such a class
of equations.

By analyzing the corresponding characteristic equation, we have ob-
tained some sufficient conditions on the stability and instability of the zero
solution. Then we fixed the first delay t and increased the second delay1
t from zero to show that there exists a first critical value of t at which2 2
the zero solution loses its stability and the Hopf bifurcation occurs. The
detailed local and Hopf bifurcation analysis was completed by classifying

Ž . Ž .the parameters A and A into three possible cases: a A ) A , b1 2 1 2
Ž .A - A , and c A s A . The direction of the Hopf bifurcation and its1 2 1 2

stability for the perturbed equation were studied by using the normal form
w xintroduced by Hassard et al. 18 . As an application, we considered a

simple moto control equation and extended the result of Belair and´
w xCampbell 1 .

Our results can be used to analyze some other two delay equations such
w xas the logistic equation considered by Braddock and van den Driessche 6

w xand Gopalsamy 13 .
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