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Abstract  

For the simulation of a five-link wheel suspension, an alternative formulation with built-in projection and correspond- 
ing numerical algorithms are presented. The wheel suspension, a benchmark problem in vehicle dynamics, can only be 
modeled as a system of differential-algebraic equations (DAEs). Besides the numerical integration, the computation of 
consistent initial values and the treatment of discontinuities play an important role. Simulation results illustrate the 
performance of the introduced algorithms. 
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lem 
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I. Introduction 

Advanced simulation software gains more and more importance in the design and analysis of 
vehicle prototypes. To model such mechanical systems, the multibody system approach provides the 
basic methodology [15, 22, 23]. The vehicle is described as a collection of interconnected rigid 
bodies which can move relative to one another. Joints constrain the relative motion of pairs of 
bodies while springs and dampers act as compliant elements representing the elasticity. In general, 
the governing equations of motion form a system of differential-algebraic equations (DAEs) in 
redundant coordinates. 

This article presents both an alternative formulation with built-in projection and numerical 
algorithms for the computational tasks associated with these DAEs. The algorithms are applied to 
the model of afire-link wheel suspension, a road vehicle benchmark problem due to Hiller and Frik 
[16]. The wheel suspension features the so-called closed kinematic loops in the multibody topology 
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Fig. 1. Five-link wheel suspension. 

and thus serves as an example of a constrained mechanical system which cannot be modeled as 
a system of ordinary differential equations in minimum coordinates. 

The problem description and the governing equations of motion are introduced in Section 2, 
which also specifies the computational tasks. Section 3 presents the alternative formulation, the 
projecting descriptor form, while Section 4 outlines the numerical methods and investigates their 
properties. Finally, Section 5 gives various simulation results. Throughout the text, the reader is 
not assumed to be familiar with the numerical analysis of DAEs, and emphasis is placed on an 
algorithmic way of presentation. 

2. Problem description 

Consider the model of a passenger car wheel suspension in Fig. 1. Hiller and Frik [16] proposed 
this spatial multibody system as a benchmark problem in vehicle system dynamics since it enables 
a thorough ride quality analysis and features several properties which make it a challenging 
example for the computational treatment. Seven rigid bodies (rods (~)-~), wheel carrier (~), wheel 
(~)) and various interconnection elements like spherical and universal joints are used to model the 
real mechanical system. Because of the five rods connecting car body and wheel carrier, the 
suspension is called a five-link wheel suspension. It is assumed that the car body is fixed to the 
inertial reference frame and that the driveway is represented by an excitation acting on the wheel. 
Moreover, a spring damper element between body (~) and car body stands for the shock absorber 
and a coil spring, and another spring damper models the tire. 
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2. I. Equations of  motion 

Depending on time t, np = 14 position coordinates 

p = [~o,,01,~,/~,7, q~2,02, q03, O3,~o4,04,~os,¢s,63 T 

describing the relative angles in the joints and the rotation of the wheel uniquely specify the 
position and orientation of all bodies. The dynamic behavior of such a multibody model is given by 
the Euler-Lagrange equations or Lagrange equations of type one [15]: 

i6 = v, (la) 

M (p)(~ = f (p, v, t) - G(p)T2, (lb) 

0 = g ( p ) ,  ( lc )  

where/i denotes the time derivative of p, v(t) ~ ~", the velocity coordinates, 2(0 ~ N"~ the Lagrange 
multipliers, and M ( p ) ~  N",'"p the symmetric, positive-definite mass matrix. The mappings 
f :  N",x N",x R ~ R", and 9: ~"' ~ R"" define the forces and the kinematic constraints with 
G(p) = ~?9(p)/Op as Jacobian. M, f, and 9 are assumed to be sufficiently smooth. 

The complexity of the governing equations of motion (1) requires a computer formulation. Here, 
the equations were generated using the symbolic multibody program NEWEUL [23], forming 
a FORTRAN77 subroutine of about 7000 lines of source code. This subroutine, equipped with 
standard interface [6] and detailed description, is available to interested readers, see the e-mail 
address. 

The holonomic constraint equations (lc) result from the joints which constrain the relative 
motion of pairs of bodies. For this reason, the wheel suspension has only np - na = 14 - 12 = 2 
degrees of freedom. However, the multibody topology of this model is characterized by 4 closed 
kinematic loops, which make it impossible to apply the implicit function theorem to (lc) globally. 
Thus, a reduction of the differential-algebraic system or descriptor form (1) to a system of ordinary 
differential equations in minimum coordinates, the state-space form or Lagrange equations of type 
two, cannot be taken into consideration. 

2.2. Computational tasks 

In order to specify the computational tasks associated with the descriptor form (1), the index is 
determined first. Intuitively, the index provides a measure of the singularity of a DAE and is defined 
by the number of differentiation steps necessary for the transformation to an ODE (see [6, 7, 14] for 
definitions). As a rule of thumb, the higher the index of a DAE, the more complicated is its 
numerical analysis. 

Differentiation of the constraints (lc) on position level with respect to time t leads to 

d 
0 = = 0 ( p )  = C(p)  = 6(p)v ,  

Gr 

d 2 

o = Ti  o(p) = O(p)  + z(p, v), z(p, v) := G(p) v = G(p, v)v. 

(2) 

(3) 
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Obviously, any solution of (1) must satisfy the constraints (2) on velocity level and the constraints 
(3) on acceleration level. Consequently, (lb) and (3) imply 

= Q(P)- L -z (p ,  v)J Q(p) := L G(p) , (4) 

where the matrix Q(p) is regular for a well-specified multibody system. Differentiating the right- 
hand side of 2 one more time results in a system of ODEs in terms of p, v, 2. To summarize, three 
differentiation steps transform the DAE (1) into an ODE, which means that the index of (1) is 3. 
Furthermore, the differentiation steps show that (1) is characterized by additional hidden con- 
straints, which impose consistency conditions on initial values Po = p(to), Vo = V(to), 2o = 2(to) and 
provoke severe difficulties for the numerical integration [-6, 14, 27]. 

On the other hand, consider again the ODE for p and v given by (la) and (4). This formulation is 
derived by differentiating the constraints twice and thus lowering the index from 3 to 1. Standard 
ODE methods can be applied to it by solving the linear system (4) for ~ and 2. Due to 
differentiation, however, this approach lacks information of the original constraints on position 
level (lc) and on velocity level (2) and may turn unstable - -  the numerical solution drifts offfrom the 
constraints [6, 9, 26]. 

Two computational tasks arise accordingly for any numerical method. 
Task 1: Compute consistent initial values Po, Vo, 2o satisfying the constraints (lc) and (2) and the 

linear system (4). 
Task 2: Integrate the DAE (1) such that all constraints (lc), (2) and (3) are satisfied by the 

numerical solution. 
A third task must be performed during the numerical integration of the wheel suspension. Due to 

the driveway specification and a piecewise defined force law of the tire model, discontinuities may 
appear in the forces f, which should be treated by the switchin9 function technique [-3, 9]. 

Task 3: Check signs of switching functions and interrupt the integration process if a zero was 
found. 

3. Projecting descriptor form 

Constructing numerical schemes for the descriptor form (1) is a focus of research in numerical 
analysis and mechanical engineering. In contrast to the ODE case, not only discretization schemes 
are analyzed but also stabilized reformulations of (1), see [-4, 11, 12, 20]. Here, an index-reduced 
formulation is presented which features a built-in projection for inconsistent data, is equivalent to 
(1) but of index 1 instead of 3. The derivation of the numerical algorithms in Section 4 will be based 
on this formulation. 

The projecting descriptor form realizes the following idea: With the Lagrange multipliers 2 in (1) 
being generalized constraint forces corresponding to the constraints (lc), is it possible to use 
additional multipliers, say r/and ~, which correspond to the hidden constraints (2) and (3)? In [12], 
Gear et al. gave one method how to introduce additional constraints and multipliers. Their 
approach, however, ends up with an index 2 system. Instead, the following formulation is derived 
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directly from the Euler -Lagrange  formalism by imposing constraints (lc) and hidden constraints 
(2), (3) simultaneously on the motion of the multibody system, yielding the projecting descriptor form 
[25] 

M(p)O -= M(p)v + )91(p,D)(p -- q) + (~(p, iO)'rz, (5a) 

m ( p ) a  = M ( p ) w  + ¢I(p,  v)(v - u) + G(p, v # n ,  (5b) 

0 = ~M(p)w - f ( p ,  v, t) + C(p)";t l (5c) 
LG(p)w + G(p, v)v J 

0 = ~M(p)(v - u) + G(p)rr/1 
(5d) 

LG(p) v J 

0 = ~M(p)(p - q) + G(p)Xz 1 (5e) 
kg(p) J 

Here additional position variables q • R",, velocity variables u • N"~, acceleration variables w • R ",, 
and multipliers q, r • R "~ have been introduced. 

Theorem 3.1. The projecting descriptor form (5) is of index 1. For arbitrary initial values Uo and initial 
values qo sufficiently close to the constraint manifold {/~:0=g(/5)},  the initial values 
Po, Vo, Wo, 20,17o "Co are uniquely determined, the solution in terms of p, v, 2 satisfies (1), and it holds 
~ = w ,  0 = ' / = 0 .  

Proof. First, the number  of differentiation steps necessary to transform (5) to a system of ODEs  is 
determined. Eqs. (5c) and (5d) are rewritten as 

Due to the regularity of matrix Q from (4), (6) can be solved for the algebraic variables 
w = W(p,  v, t), 2 = A(p, v, t), v = V(p, u, t), and 11 = E(p, u, t). Thus, one differentiation step suffices 
to obtain an O D E  for these variables. For  the remaining variables p and z, (5e) is differentiated, 
yielding 0 = G(p)[~ and 

M(p)~ + ~l(p,[~)p = M(p)dl + l~/l(p,~)q - G(p)T~ -- G(p,/~)Tz 
(5a) 

M(p)f~ = M(p)v  - O(p)T~ 

Again, the regularity of Q implies that (7) is an O D E  for p and z whence the index of (5) is 1. Next, 
concerning the initial values for given qo and Uo, the linear systems (6) define Vo, wo, 20, r/o uniquely. 
However, the nonlinear constraints (5e) enable only a local result for Po and %. Due to the implicit 
function theorem, (5e) can be solved for Po and "Co depending on qo if 
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Fig. 2. Interpretation of (5). 

is regular, which holds if qo is sufficiently close to the manifold {/3:0 = g(/3)}. Finally, it remains to 
show that  the solut ion in terms of p, v, 2 satisfies (1). Using one more  time the regularity of Q, it 
follows that  G M - 1 G  T is regular. Hence, (7) can be solved explicitly for 4, and from 
0 = G(p)D = G(p)v one concludes 

G ( p ) M ( p ) -  ~G(p)I i  = G(p)v = 0 =~ ~ = 0 and p = v. 

By analogous  arguments,  starting at (5d) and inserting (5b), one shows # = 0 and t3 = w. Inserting 
the latter relation in (5c), (lb) follows immediately.  This completes the proof  since the constraints  
(lc) are part  of(5e). []  

Theorem 3.1 gives the basic properties of the projecting descriptor form (5): The index is reduced 
to 1, and the solut ion in terms of p, v, and 2 still satisfies the equat ions of mot ion  - -  there is no loss 
of information.  Fig. 2 illustrates the built-in project ion mechanism. The integrat ion starts with 
potentially inconsistent data  qo, u0 and then proceeds. Though  the solution in terms of q, u may  not  
satisfy the constraints,  (5e) and (5d) define implicitly a p ro jec t ion /7  which maps  q and u to p and 
v on the constraint  manifold. 

Moreover ,  (5) contains addit ional  informat ion in terms of the multipliers q and ~, which are 
a measure  for the deviation of q and u from the constraint  manifold,  

q = ( G ( p ) M ( p ) -  ~G(p)T) - 1G(p)u, (8) 

z = (G(p)M(p)- 1G(p)T)- lg(q) + O(l lP -- q IIz). (9) 

and ~ vanish if q and u satisfy the constraints.  In this case, the curvature expressions in terms 
of 1~/= ( d / d t ) M  and G = ( d / d t ) G  in (Sa) and (5b) also vanish. Otherwise, however, these 
expressions are necessary in order to guarantee the properties stated in Theorem 3.1, in particular 

= ~  = 0 .  



B. Simeon~Journal of Computational and Applied Mathematics 66 (1996) 443-456 4 4 9  

Remarks. 
• For constant mass matrix M, (5e) can be interpreted as a minimum distance criterion for the 

projection of inconsistent data q. This criterion utilizes a quadratic form in the mass matrix 
M and reads 

(p -- q)VM(p -- q) " min subject to 9(P) = 0. (10) 

Similarly, (5d) is related to the criterion (with p fixed) 

(v - u)Vm(p)(v  - u) " rain subject to G(p)v = 0. (11) 

• The curvature expressions in terms of.~/and (~ are available. The forces f contain an expression 
My representing generalized Coriolis forces, and the acceleration constraints (3) include t~. 
Hence, (5) does not require additional derivative information. 

• In contrast to the formulation of Gear et al. [12] where the additional multipliers vanish along 
any solution, in (5) only the derivatives of the additional multipliers vanish. This is an essential 
requirement to derive the built-in projection mechanism. 

4. Numerical algorithms 

The above introduced projecting descriptor form consists of 2np differential and 3(np + n~) 
constraint equations. In most practical applications, a direct discretization of this index 1 system is 
rather expensive. Yet it can be used in an indirect way to derive numerical methods since it contains 
all information of the equations of motion in an explicit form. 

4.1. Computing consistent data 

The projection of inconsistent data q, u with g(q) v~ 0 and G(q)u ~ 0 to the constraint manifold 
given by (lc) and (2) plays a key role in the following. Basically, there are various ways to perform 
such a projection step [9], but only one corresponds to the natural metric of the multibody system, 
which is the quadratic form (10) and (11) in the mass matrix M. In this way, the projecting 
descriptor form supplies with (5e) and (5d) the following algorithm for the computation of 
consistent data p and v: 

Start: q, u; 

0 = M ( p ) ( p  - q) + G(p)rz  
Solve for p, z ; (12a) 

0 = g(p)  

0 = M(p) (v  - u) + G(p)Tr/ 
Solve for v, q. (12b) 

0 = 6 ( p ) v  

The nonlinear system (12a) can be solved efficiently by a chord-Newton process of the form 
p(j+l) = p(j) _ Ap(j), T ( j + I )  = T ( j )  __ Az(J) j = 0,1, . . . ,  with Ap(J) ,Ar (j) given by 

Ap'J '  l ~M (p (J ) ) (p  (j) - -q )  + " . 
Ar~J) J = Q(q) -  L 9(p~j~ ) G(P~;))Tz~J) 1. (13) 
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For  q sufficiently close to the constraint  manifold,  the iteration converges at least linearly to the 
solution p [19]. Of  course, the initial guess q may not  be arbitrary but  must  be somehow related to 
the configurat ion of the mechanical  system. This requirement,  however, is also essential for the 
s imulat ion since otherwise the results have no technical interpretation. 

Combined  with the solution of the linear system (12b) for v and ~/, (13) can be employed both  for 
the computa t ion  of consistent initial values, cf. Task 1, and a stabilization of the numerical  
integration process, see below. It should be remarked that  the terminology natural metric was first 
in t roduced by Alishenas [1] and Lubich [17] who both  give a similar a lgori thm with M(q) and 
G(q) in (12a) instead of M(p)  and G(p). 

4.2. Numerical integration 

For  the simulat ion of the wheel suspension, a R u n g e - K u t t a  me thod  is presented which is based 
on the informat ion of the projecting descriptor form. We start with the index 1 system given by (la) 
and (4). S tandard  O D E  methods  [28] can be applied to it by solving the linear system (4) for t~ and 
2. In order  to guarantee that  the constraints  are satisfied, the integrat ion process must  be stabilized 
by applying addit ional  projections. After each integrat ion step the numerical  solution is projected 
to the manifold of posit ion and velocity constraints  and then the next integration step is performed 
[1, 10]. In the more  general setting of ODEs  with invariants, the convergence of such a two-stage 
algori thm was shown in [24] for one-step methods  and in [10] for mult is tep methods.  The basic 
assumpt ion  is that  the projected solution p, v satisfies 

q _ p = O(hk+l), u -- V = O(h a+l) (14) 

for an integrat ion me thod  of order  k and stepsize h. The s tandard convergence proof  can be carried 
over in this case. Condi t ion  (14) is the only one on the projection step, and thus several strategies 
have been developed [1, 3, 9]. Here, the project ion (12) induced by the projecting descriptor form is 
used. It reflects the natural  metric of the mechanical  system and is independent  of a specific 
discretization scheme. 

The algori thm presented below for the numerical  integrat ion is based on the fifth-order explicit 
R u n g e - K u t t a  me thod  of D o r m a n d  and Prince [8] with coefficients a~j,cz, i =  2 , . . . , 7 ,  
j = 1 . . . .  , i - 1 and embedded  error coefficients a8~, j = 1, . . . ,  7. It employs a s tandard  weighted 
root  mean  square norm for error est imation 

I l x l l 2 := -  f o r x = ( x  a, . x") a" 
n~=l R T O L ' W T  t + A T O L  "" ' ' 

(15) 

where R T O L  and A T O L  stand for the prescribed relative and absolute tolerances and the weights 
WT ~ -- l YlJ are defined by some reference data  Y. With these preparations,  the basic a lgori thm for 
one time step from po,Vo,2o at t ime to to p l , v l , ; t l  at t ime tl = to + h with stepsize h reads 

For i = 1 , . . . , 6  
i - 1  , .  

Pi = Po + h y~j = 1 aijPj, 
e~ = Vi; 

i - - 1  t .  V,. = Vo + h 7£j= 1 aijV j , 
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Solve 

[ v , ]  = pf(p,, v,,to + c,h)] 
Q(P' )LA,J  L - z ( P , ,  v,) J 

for V;,Ai; 

6 '" V7 = Vo + h26=1 aTjV~; P7 = Po + h 2j= 1 a7jPj, 
Projection Pv ---" PT, Vv = V7 using (12); 

if (no convergence): reduce stepsize and repeat step; 
P'v = V7, 
Solve 

+ 1 for Q(PT) LAvj = m - z (PT ,VT)  
V'7,AT; 

Error estimation: P7 = Po + h yq=A7 1 asjPj," ~'7 = Vo + h y~jT= 1 asyj," 
if(ll Pv - P~ I[ > 1 or I[ Vv - V7 II > 1): reduce stepsize and repeat step; 

Pl := PT, va := V7, )q := A.7; 

Several remarks on this algorithm should be given. For one, the application of a projection 
procedure like (12) is not straightforward since the end of one integration step and the beginning of 
the next step are not separated. The Dormand and Prince method consists of 7 stages where the last 
stage yields an approximation PT, V7 and where the increments P~, V~ required for error estima- 
tion enter the next integration step. In fact, only 6 effective stages arise per step and consequently, 
two possibilities for the projection step exist: Either the projection is performed before the 
evaluation of P~, V~ or thereafter. The first alternative is favorable since it provides P~, V~ already 
evaluated for the projected values P7 = Pl, V7 = vl, in contrast to the second alternative. Of course, 
the embedded solution used for error estimation is then perturbed, but due to (14) the leading term 

A 

of the fourth-order solution P7, V7 is not affected. 
Next, practical experience shows that projection after each integration step is often more 

expensive but does not yield more accurate results than skipping the projection (12a) for some steps 
and performing only the "velocity projection" [1] of (12b) (cf. Section 5). The crucial point is the 
feedback of the drift, i.e. the deviation in the constraints, on the integration error. 

In this context, the projecting descriptor form gives both an interpretation of the integration 
process and information on the feedback of the drift. For this purpose, consider again (5). As long 
as the constraints are satisfied, the additional multipliers t/, z vanish and the differential equations 
in (5) correspond to the index 1 system (la) and (4). If the constraints are violated, r/and z measure 
the deviation and enter the differential equations• If t/ and z remain small compared to the 
discretization error, their influence or feedback can be neglected• If they grow larger, a projection 
step must be performed, and r/and ~ are set to zero again• Performing only the "velocity projection" 
now means that t/is set to zero after each step, which is inexpensive, while z is neglected• In case of 
constant matrices M and G, however, (5) shows that there is no feedback of the drift on the 
integration error• 

A measure of the feedback of the drift is given by Az I°), the first increment in the iteration (13). 
Yet the integration error is controlled in terms of the variables p, and thus Ap (°) = - M-1GTAT(°) 
is used instead. The following criterion has proved to yield an efficient projection control. It is 
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based on I1AP ~°) II 
performed without the projection (12a). Default values are k = 4, kmax = 8, kmin = 1: 

Perform the projection (12); 

if [J Ap ~°) 1[ < 0.009: kne w = min(2k, kmax) 

else if [1Ap ~°) II < 0.02: knew = k 

else k.ew = max(½ k, kmin) 

and employs an integer variable k which specifies the number of steps to be 

(16) 

f, 

Considering the average computational effort for one integration step, it turns out that only 
6 decompositions of matrix Q are necessary to solve 9 arising systems of linear equations including 
the projection procedure (12). For the projection of position variables (12a), Q(P6) of the previous 
stage can be applied as iteration matrix. An average of 2 iterations is sufficient for convergence. 
Moreover, the evaluation of M(p ~j)) and G(p ~j)) on the right-hand side of (13) can usually be 
skipped by taking M(P6) and G(P6) instead. For the projection of velocity variables (12b), the 
matrix Q(Pv) must be evaluated and decomposed, but this does not enter the operation count since 
Q(Pv) is also used for the evaluation of the last stage, which in turn forms the first stage of the next 
step. In this way, the additional cost for the whole projection step (12), on average, sums up to the 
solution of 3 linear systems with given matrix decompositions. Two linear systems can be saved if 
the above control mechanism is used. Accordingly, per step 6 evaluations of mass matrix M, 
constraint Jacobian G, forces f, and second derivative terms z are required and about 2 additional 
evaluations of the constraints 9 if (12a) is performed. 

Finally, it is worth mentioning that special algorithms exploiting the structure have been 
developed for the decomposition of the symmetric indefinite matrix Q [3, 18]. In case of the wheel 
suspension, however, the linear algebra plays not the most important role. Standard solvers like 
DGETRF of LAPACK [2] are sufficient here. 

4.3. Root finding 

In order to locate efficiently zeros of switching functions, a continuous solution representation is 
required. For the Dormand and Prince method, the dense output formulas of [13] provide 
a fourth-order representation. However, in the algorithm above, the dense output is based on the 
formulation of index 1. Applying a standard root-finding procedure to this representation results in 
a solution which, again, may not satisfy the constraints. Hence, the projection procedure (12) comes 
one more time into play. As proposed in [18], the location of zeros is split into two phases: 

(1) Monitor the signs of the switching functions using the standard dense output formulas. In case of 
a sign change, apply a few iterations of the root-finding algorithm to get a smaller enclosing interval. 

(2) Continue the iteration process with projected dense output until the length of the enclosing 
interval is below the given tolerance. 

Of course, the critical step is the switching from phase 1 to phase 2 where the enclosing interval 
may be lost, resulting in a stepsize reduction and repetition of the step. On the other hand, the 
application of the projection (12) to the dense output is expensive due to an additional matrix 
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decomposition for (12b) and thus the savings obtained by splitting the root finding can be 
substantial. 

Remarks. 
, The overall algorithm for computing consistent initial values, numerical integration, and root 

finding has been implemented as FORTRAN77 code MDOP5. It is via e-mail available to 
interested readers. 

• MDOP5 is part of the program library MBSPACK - - "Mul t iBody  System PACKage" [25]. 
MBSPACK is divided into two groups. The algorithms of group 1 including MDOP5 are based 
on explicit or half-explicit discretization schemes while group 2 contains more general solvers 
with implicit discretization schemes. Since each method has its merits and drawbacks, this 
package provides a versatile tool for advanced simulation software. 

5. Simulation results 

Numerical results of the code MDOP5 when applied to the wheel suspension example are now 
presented. All experiments were run on an HP-Apollo DN4500 workstation in double precision 
arithmetic. Fig. 3 shows the simulation result for a first driving maneuver where the wheel passes 
a smooth bump with a speed of 30 m/s. Here no discontinuities appear. The oscillations are 
damped out by the shock absorber and the suspension returns to the initial configuration within 
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Fig.  3. So lu t ion  of  whee l  su spens ion  for s m o o t h  b u m p  a n d  drift  effect. 
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T a b l e  1 

# P r o j .  (12a)  [[9(P)[]2 [] G(p)v[[2 Rel .  e r r o r  (p) C P U  (s) 

I n d e x  1 0 1.8E - 2 1 .1E - -  1 7 .7E  - 5 40.1 

V e l o c i t y  s t a b i l i z a t i o n  0 7 .4E  - 4 8 .2E  - 12 4 . 0 E  - 5 40 .8  

P r o j e c t i o n  c o n t r o l  12 1 .5E - 13 1 .0E - 11 3 . 9 E  - -  5 41 .0  

P r o j e c t i o n  e a c h  s t e p  83 1.6E - 13 5 .1E - 12 3 .9E  - 5 42 .6  

less than 1 s. In addition, Fig. 3 gives information on the projection algorithm (12) and the control 
(16). 

With a prescribed tolerance of RTOL = 10 -4, four different versions were tested where in each 
case 83 integration steps were performed. Clearly, integrating the formulation of index 1 without 
stabilization results in substantial drift-oK as shown in the second diagram and Table 1. Applying 
only the velocity stabilization (12b) leads already to a significant improvement. The projection 
control (16) is as precise as projection in each step and requires only the solution of 12 nonlinear 
systems (12a) instead of 83. For the wheel suspension, the savings are not that important  since the 
evaluation of the equations, in particular of the second derivative terms z, is the most expensive 
part [-25]. 

MDOP5 was also compared with the code HEM5 of Brasey [-5], a fifth-order half-explicit 
Runge-Kut ta  method which avoids the evaluation of z. In contrast to MDOP5,  the arising 
systems of linear equations are not symmetric. Using the same tolerance RTOL and the same 
linear algebra method, HEM5 computed the solution in 49.2 s with a relative error of 1.7.10 -s. 
Though HEM5 saves about 50% computing time per function evaluation since z is not evaluated, 
these savings are neutralized by additional stages (8 instead of 6 for MDOP5) and larger error 
constants. Hence, both codes show comparable efficiency for this problem. But if the linear algebra 
becomes dominant,  MDOP5 can be improved by exploiting the symmetry of matrix Q, which is 
not possible for HEM5. Further comparisons verifying the good performance of MDOP5 are given 
in [-21]. 

For the second driving maneuver, the smooth driveway is replaced by a stair (Fig. 1) applying 
thus a discontinuous excitation on the wheel. Furthermore, with the resulting forces being much 
larger, another discontinuity of the tire force law has to be taken into account now. Due to the 
tire elasticity, the wheel loses contact with the driveway if the tire has been compressed very 
rapidly - -  a well-known phenomenon in vehicle dynamics, especially if the shock absorber is 
defect. For this reason, two switching functions have to be monitored during the numerical 
integration. The first describes the jump of the driveway and the second the different modes of 
the tire force law. 

An animation sequence of the simulation result is shown in Fig. 4, where the wheel has been 
scaled in order to demonstrate the effects better. Passing the stair at tl = 0.2 s, the wheel loses 
contact and hits the driveway again at time t2 = 0.2342. Then the tire is compressed, and at 
t3 = 0.2897 the wheel bounces back and loses contact one more time until t4 = 0.3289. Another 
bounce occurs between t5 = 0.3900 and t6 = 0.4096. All roots tl . . . . .  t6 were found by the above 
algorithm without any problems. 
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Fig. 4. Animation of wheel travel over stair. 
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