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Abstract

Given a bounded doubly connected domain G ⊂ R
2, we consider a minimization problem for the

Ginzburg–Landau energy functional when the order parameter is constrained to take S
1-values on ∂G and

have degrees zero and one on the inner and outer connected components of ∂G, correspondingly. We show
that minimizers always exist for 0 < λ < 1 and never exist for λ � 1, where λ is the coupling constant
(
√

λ/2 is the Ginzburg–Landau parameter). When λ → 1 − 0 minimizers develop vortices located near
the boundary, this results in the limiting currents with δ-like singularities on the boundary. We identify the
limiting positions of vortices (that correspond to the singularities of the limiting currents) by deriving tight
upper and lower energy bounds. The key ingredient of our approach is the study of various terms in the
Bogomol’nyi’s representation of the energy functional.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

We study vortices located near the boundary (hereafter referred to as the near boundary vor-
tices) that appear in 2D Ginzburg–Landau model when the order parameter is constrained to take
S

1-values on the boundary of a domain. Such a boundary condition models perfectly supercon-
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ducting state of the system at the boundary. Following [5], we call this boundary condition along
with the natural one, the semi-stiff boundary conditions (Dirichlet for the modulus of the order
parameter and Neumann for the current, see details below). Mathematically, semi-stiff conditions
can be regarded as a relaxation of S

1-valued Dirichlet boundary data considered in the pioneer-
ing work [6] and pursued in [1,17,19] among others. In contrast to the Dirichlet boundary value
problem, semi-stiff boundary conditions lead, in general, to ill posed variational and boundary
value problems.

More specifically, given a bounded domain G ⊂ R
2, we consider the problem of finding crit-

ical points of the Ginzburg–Landau free energy functional

Fλ[u,A] = 1

2

∫
G

(
|∇u − iAu|2 + λ

4

(|u|2 − 1
)2

)
dx + 1

2

∫
R2

|curlA|2 dx (1.1)

in the space (u,A) ∈ J × H 1
loc(R

2;R
2), where

J = {
u ∈ H 1(G;C); |u| = 1 a.e. on ∂G

}
. (1.2)

The unknowns in (1.1) are the map u : G → C (order parameter) and the vector field
A : R2 → R2 (the potential of magnetic field); λ > 0 is a given coupling constant (

√
λ/2 is

the Ginzburg–Landau parameter). As shown in [10] the space J , endowed with the strong-H 1

topology, is not connected. Its connected components are obtained by prescribing the topological
degree of u on components of the boundary ∂G. It is natural then to seek critical points of func-
tional (1.1) by minimizing on the connected components of the space. However, the existence
of minimizers of the latter minimization problems is nontrivial because of a possible lack of
compactness of minimizing sequences. This is due to the fact that the degree on the boundary is
not preserved in weakly-H 1 convergent sequences.

In the case of simply connected domain G the minimizers of (1.1) with prescribed degree on
the boundary were studied in [10] for the special integrable (self-dual) case of the critical value
λ = 1 of the coupling constant. Recently, in [4], this problem was considered for the full range of
the parameter λ (where the elegant self-duality argument no longer applies). It was shown in [4]
that

– minimizers with prescribed nonzero degree always exist for 0 < λ < 1 and never exist for
λ > 1 (for λ = 1 minimizers exist but there are also minimizing sequences that do not con-
verge);

– in the limit λ → 1 − 0 vortices of minimizers converge to certain inner points of the domain,
these points maximize a finite-dimensional functional.

In this work we consider the simplest case of multiply connected domain. Namely, we assume
that G = Ω \ ω̄, where Ω , ω are smooth bounded simply connected domains in R

2, and ω̄ ⊂ Ω .
We consider the subspace J01 ⊂ J consisting of maps u whose topological degrees on ∂ω and
∂Ω are zero and one, correspondingly. Note that, by a simple topological consideration, every
u ∈ J01 has at least one essential zero (in the Lebesgue sense). The variational problem we are
interested in is

m(λ) = inf
{
Fλ[u,A]; u ∈ J01, A ∈ H 1 (

R
2;R

2)}. (1.3)
loc
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In this work we show that m(λ) is always attained for 0 < λ < 1 and never attained for λ � 1. The
nonattainability of m(1), which stands in sharp contrast to the case of simply connected domain,
leads to a singular behavior of minimizers as λ → 1 − 0. Namely, near boundary vortices appear,
and their properties, primarily locations, are the main concern of this work.

Our principal result is

Theorem 1. Let 0 < λ < 1 and let (uλ,Aλ) be minimizer of (1.1) in J01 × H 1
loc(R

2;R2). Then
we have, as λ → 1 − 0:

(i) uλ has exactly one zero (vortex) ξλ;
(ii) up to extracting a subsequence, ξλ → ξ∗ ∈ ∂Ω as λ → 1 − 0 and ξ∗ minimizes |∂V/∂ν| on

∂Ω , where ∂V/∂ν is the normal derivative of V and V is the unique solution of the (scalar)
problem

{
	V = V in G,

V = 0 on ∂Ω, and V = 1 on ∂ω; (1.4)

(iii) the tangential component of the current jλ = (iuλ,∇uλ − iAλuλ) on ∂Ω converges to
2πδξ∗ in D′(∂Ω), where δξ∗ is the Dirac delta centered at ξ∗.

Remark 1. In the course of the proof of Theorem 1 we show that (uλ,Aλ) converges weakly
in H 1(G;C) × H 1(G̃;R

2) (for every bounded domain G̃) to a limit (u,A) which is equivalent
(modulo a gauge transformation) to a trivial minimizer (u = const ∈ S

1, A = 0). The singular
behavior appears in the currents, as stated in (iii) of Theorem 1.

Note that the singular behavior of minimizers is rather unusual. In particular, it is different
from the one described in [8], where a related problem is studied in London limit of large λ.
Along with the prescribed degree of the order parameter, a Dirichlet boundary condition for
the tangential component of the current is imposed in [8]. This yields a well-posed variational
problem for all λ > 0, moreover, vortices of minimizers converge to inner points described by
a renormalized energy functional. The distinguishing feature of (1.3) is that the tangential com-
ponent of the currents exhibits δ-like behavior on ∂G as λ → 1 − 0, since vortices converge to
the boundary points (unlike in [8]). The normal component of currents is always zero (insulating
boundary condition), that is a natural boundary condition for (1.3).

For the simplified Ginzburg–Landau functional (obtained by setting A = 0 in (1.1)) minimiz-
ers with prescribed degrees were studied in [2,3,15], see also [16] for a related problem in another
context. The results of these works suggest that when there is an energy reason or a topological
reason for vortices to appear, minimizers do not exist. However, solutions with vortices of the
corresponding semi-stiff problem (local minimizers in the space J ) do exist for multiply con-
nected domains, as shown in [5] (see also [11]). The vortices of the these solutions are located
near the boundary and thus they are similar to that described in Theorem 1.

While the variational techniques developed in [5] (in particular, the lower and upper bounds)
are sufficient to prove the existence of local minimizers with vortices, they do not allow one
to determine the locations of vortices which is a key issue in the theory of Ginzburg–Landau
type problems. For inner vortices the variational methods of [6] lead to a renormalized energy
functional that captures limiting locations of that vortices. This approach, however, is not readily
applicable to the near boundary vortices.
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In this work we develop alternative techniques of tight upper and lower bounds for prob-
lem (1.3) that allow one to capture limiting locations of vortices on the boundary as λ → 1 − 0.
We emphasize that these limiting boundary vortices are seen in limiting currents rather than lim-
iting order parameter (unlike inner vortices that have been extensively studied in the literature).
The crucial point in our analysis is the following asymptotic (as λ → 1 − 0) lower bound for the
minimizing pair (uλ,Aλ),

Fλ

[
uλ,Aλ

]
� π + 2π2

KG

δ2
∣∣∣∣∂V

∂ν
(ξ∗)

∣∣∣∣
2(

1 + o(1)
) − π(1 − λ)δ2|log δ|(1 + o(1)

)
, (1.5)

where ξ∗ = ξ∗(λ) is the nearest point projection on ∂Ω of the unique zero (vortex) ξλ of uλ, KG

is a positive constant (that depends on G only) and δ is the distance from ξλ to ∂Ω (δ = δ(λ)

tends to zero as λ → 1 − 0). This bound is complimented by the matching upper bound of the
same form, where ξ∗ ∈ ∂Ω and (small) δ > 0 are parameters (local coordinates of a point ξ ∈ G

near ∂Ω). Therefore, we can minimize the right-hand side of (1.5) first in δ to get the asymptotic
relation − log δ = 2π

(1−λ)KG
| ∂V
∂ν

(ξ∗)|2(1 + o(1)), and then in ξ∗ to show (ii) of Theorem 1. This

yields also the following energy expansion Fλ[uλ,Aλ] = π − exp(− 4π
(1−λ)KG

MG(1 + o(1))),

where MG = min{| ∂V
∂ν

(ξ)|2; ξ ∈ ∂Ω}. Note that the problem of finding limiting locations of
vortices is nonlocal in the sense that we must minimize | ∂V

∂ν
| on ∂Ω , while | ∂V

∂ν
(ξ)| depends on

the geometry of the entire domain G (not only local properties of the boundary ∂Ω at ξ ).
The external magnetic field is zero in the energy functional (1.1) (only the induced magnetic

field curlA is present). We refer to [18] and references therein for the studies of models with
nonzero external field.

This paper is organized as follows. Next section contains necessary preliminaries. In Section 3
we derive an upper energy bound in terms of solutions of a one parameter family of semilinear
boundary value problems (3.3)–(3.4). On the basis of this upper bound, in Section 4, we establish
the existence of minimizers of problem (1.3) for 0 < λ < 1 (the approach there is similar to that
of [3]). In Section 4 we also show the nonattainability of m(λ) for λ � 1 by using the strong max-
imum principle and Hopf’s lemma. Sections 5 and 6 constitute the core of this work. We show
there the optimality of the upper energy bound for λ → 1 − 0 by deriving the matching lower
bound. To this end we perform an asymptotic decoupling of the Euler–Lagrange system for the
minimizing pair (uλ,Aλ) that leads to the study of a family of maps θλ with harmonic compo-
nents, constant moduli on the connected components of ∂G, and satisfying the Cauchy–Riemann
equations up to an error with controlled (small) Lp-norms (for p = 2 and p < 2). In Section 6
we prove a key lemma (see Lemma 3), which describes maps θλ versus their “projections” on
a family of holomorphic maps with prescribed zeros. Section 7 describes vortices of minimizers
and currents on the boundary. Finally, in Section 8 we use a linearization argument to get the
explicit bounds of the form (1.5) and complete the proof of Theorem 1.

2. Preliminaries

In this paper we use the following notations and conventions:

• Every closed curve is counterclockwise oriented. For such a curve τ and ν stand for the unit
tangent and unit normal vector vectors, respectively, that agree with the orientation ((ν, τ ) is
direct).
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• The complex plane C is identified with R
2, so that if x, y ∈ C then (x, y) = 1

2 (xȳ + yx̄) and
x ∧ y = i

2 (xȳ − yx̄) are the scalar and the wedge products, respectively.
• Given a fixed orthonormal frame (x1, x2) in R

2, ∂
∂z

= 1
2 ( ∂

∂x1
− i ∂

∂x2
) and ∂

∂z̄
= 1

2 ( ∂
∂x1

+ i ∂
∂x2

)

denote the classical Cauchy operators. For a scalar (real-valued) function f , ∇⊥f is the
vector field given by ∇⊥f = (−∂f/∂x2, ∂f/∂x1). For a vector field A, curlA = ∂A2/∂x1 −
∂A1/∂x2.

• If u ∈ H 1/2(Γ ;S
1) (where Γ is either ∂Ω or ∂ω), then deg(u,Γ ) is the topological degree

(winding number) given by

deg(u,Γ ) = 1

2π

∫
Γ

u ∧ ∂u

∂τ
ds,

where the integral is understood via H 1/2–H−1/2 duality.
• Br(y) denotes an open disk with the radius r and the center at y.

One of the main properties of the functional (1.1) is its invariance under gauge transformations
u �→ eiφu, A �→ A+∇φ (where φ ∈ H 2

loc(R
2)). This allows us to reduce the study of (1.1) to the

functional (still denoted Fλ[u,A])

Fλ[u,A] = 1

2

∫
G

(
|∇u − iAu|2 + λ

4

(|u|2 − 1
)2

)
dx + 1

2

∫
Ω

|curlA|2 dx (2.1)

(see, e.g., [18]). Moreover, without loss of generality, we can assume that A is in the Coulomb
gauge, i.e.

{
divA = 0 in Ω,

A · ν = 0 on ∂Ω.
(2.2)

Thus the minimization problem (1.3) can be equivalently restated as

m(λ) = inf
{
Fλ[u,A]; u ∈ J01, A ∈ H 1(Ω;R

2) and A satisfies (2.2)
}
. (2.3)

Recall that

J01 = {
u ∈ H 1(G;C); |u| = 1 a.e. on ∂G, deg(u, ∂Ω) = 1, deg(u, ∂ω) = 0

}
.

Critical points of Fλ[u,A] in J ×H 1(Ω;R
2), in particular, minimizers of (2.3), are solutions

of the system of Euler–Lagrange equations

−(∇ − iA)2u + λ

2
u
(|u|2 − 1

) = 0 in G, (2.4)

−∇⊥h =
{

j in G,

0 in ω,
(2.5)

where h = curlA is the magnetic field (scalar real-valued function in 2D), and
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j = (iu,∇u − iAu)

is the current. Furthermore, h ∈ H 1(Ω) and the following boundary conditions are satisfied,

|u| = 1, j · ν = 0 on ∂G, h = 0 on ∂Ω,
∂h

∂τ
= 0 on ∂ω. (2.6)

We assume that ∂G ∈ C∞, then we have u ∈ C∞(Ḡ;C) and A ∈ C∞(Ḡ;R
2). This regularity

property is established analogously [4]. We also have the pointwise inequality

|u| � 1 in G,

which is a consequence of the maximum principle, since we have

	|u|2 = λ|u|2(|u|2 − 1
) + 2|∇u − iAu|2 in G. (2.7)

The following energy representation plays an important role in the analysis of problem (2.3)
and it is valid for every u ∈ J01 and A ∈ H 1(Ω;R

2),

Fλ[u,A] = π + F+[u,A] + 1

2

∫
ω

|curlA|2 dx − 1 − λ

8

∫
G

(|u|2 − 1
)2 dx, (2.8)

where

F+[u,A] = 2
∫
G

∣∣∣∣∂u

∂z̄
+ A2 − iA1

2
u

∣∣∣∣
2

dx + 1

2

∫
G

∣∣∣∣curlA + |u|2 − 1

2

∣∣∣∣
2

dx. (2.9)

This representation is due to a remarkable observation of Bogomol’nyi [9]. A detailed derivation
of (2.8) can be found in [10].

3. Upper bound construction

To obtain an upper bound for m(λ) we introduce a family of testing pairs (u(ξ),A(ξ)) ∈ J01 ×
H 1(Ω;R

2) that depends on the parameter ξ ∈ G (the unique zero of u(ξ)). We are seeking u(ξ)

and A(ξ) in the form

u(ξ) = ũ(ξ), A(ξ) =
{

E(ξ) + B+ in G,

B− in ω,
(3.1)

with (ũ(ξ),E(ξ)) minimizing F+[ũ,E] over (ũ,E) ∈ J01 × H 1(G;R
2) such that ũ(ξ) = 0. To

simplify the notations we suppress the dependence of B± on the parameter ξ .
Clearly F+[ũ(ξ),E(ξ)] � 0 and the equality F+[ũ(ξ),E(ξ)] = 0 leads to the system of the first

order partial differential equations,

∂ũ(ξ)

+ E
(ξ)
2 − iE

(ξ)
1 ũ(ξ) = 0 and curlE(ξ) + 1(∣∣ũ(ξ)

∣∣2 − 1
) = 0 in G. (3.2)
∂z̄ 2 2
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The latter system is reduced, by Taubes’ procedure (see [20]) of factorizing ũ(ξ) into the product
of the holomorphic part γξ (z) and the factor eϕξ /2, to the following single second-order equation
for ϕξ ,

−	ϕξ + ∣∣γξ (z)
∣∣2

eϕξ = 1 in G. (3.3)

In order to have |ũ(ξ)| = 1 on ∂G, we supplement (3.3) with the boundary condition

ϕξ = −2 log
∣∣γξ (z)

∣∣ on ∂G. (3.4)

We choose a special holomorphic map γξ ∈ H 1(G;C) that satisfies

∂γξ

∂z̄
= 0 in G; γξ (ξ) = 0;

{ |γξ | = 1 on ∂Ω, deg(γξ , ∂Ω) = 1,

|γξ | = const on ∂ω, deg
(
γξ /|γξ |, ∂ω

) = 0.
(3.5)

These conditions define γξ uniquely, up to a constant factor of modulus one. Moreover, if we fix
a conformal map F from Ω onto the unit disk B1(0), and set

aξ (z) = F (z) − F (ξ)

1 − F (ξ)F (z)
, (3.6)

then σξ = log |γξ /aξ | is a (unique) harmonic in G function satisfying the boundary conditions
σξ = 0 on ∂Ω , σξ = const− log |aξ | on ∂ω, and

∫
∂ω

∂σξ

∂ν
ds = 0. (3.7)

Thanks to the last condition, there exists a single valued harmonic conjugate ψξ ∈ C∞(Ḡ)

( ∂ψξ

∂z̄
= i

∂σξ

∂z̄
) so that γξ = aξ exp(σξ + iψξ ) satisfies (3.5). Next we set

ũ(ξ) = γξ e
ϕξ /2 and E(ξ) = −1

2
∇⊥ϕξ . (3.8)

It is shown in [10, Theorem 4.3] that there is a unique solution ϕξ ∈ H 2(G) of the problem
(3.3)–(3.4).

Next step is the construction of B± in (3.1). Using (2.8)–(3.2) and (3.8), we get

Fλ

[
u(ξ),A(ξ)

] = π + 1

2

∫
G

(∣∣B+∣∣2 + (
curlB+)2)dx + 1

2

∫
ω

∣∣curlB−∣∣2 dx

+ 1

2

∫ ((|γξ |2eϕξ − 1
)∣∣B+∣∣2 − 1 − λ

4

(|γξ |2eϕξ − 1
)2

)
dx. (3.9)
G
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Consider minimization in B± of the first line in the right-hand side of (3.9). This yields the
following Euler–Lagrange equations

∇⊥h+ = B+ in G and ∇⊥h− = 0 in ω, (3.10)

and the boundary condition

h+ = 0 on ∂Ω,

where h± = curlB±. Since A(ξ) ∈ H 1(Ω;R
2) we also have the conjugation condition

B+ + E(ξ) = B− on ∂ω. (3.11)

The second equation in (3.10) implies that h− = const, then in view of (3.11) we obtain

|ω|h− =
∫
ω

h− dx =
∫
∂ω

B− · τ ds =
∫
∂ω

(
B+ + E(ξ)

) · τ ds, (3.12)

that is

h− = 1

|ω|
∫
∂ω

(
B+ + E(ξ)

) · τ ds.

Since for the actual critical points of (2.1) curlA is continuous across ∂ω, we require that
h+ = h− on ∂ω. Then taking curl in the first equation in (3.10) we arrive at the following bound-
ary value problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

	h+ = h+ in G,

h+ = 0 on ∂Ω,

h+ = 1

|ω|
∫
∂ω

(
B+ + E(ξ)

) · τ ds on ∂ω.

According to (3.10) we have B+ · τ = ∂h+/∂ν on ∂ω. This yields

h+(x) =
(

1

KG

∫
∂ω

E(ξ) · τ ds

)
V (x),

where

KG = |ω| +
∫
G

(|∇V |2 + V 2)dx,

and V is the unique solution of problem (1.4). We now define B± by B+ = ∇⊥h+ and B− =
∇χ + ∇⊥μ, where μ is a solution of
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⎧⎨
⎩

	μ = h− in ω,

∂μ

∂ν
= (

B+ + E(ξ)
) · τ on ∂ω,

(3.13)

and χ ∈ H 2(ω) is a function satisfying the boundary conditions χ = 0 and ∂χ
∂ν

= ∂μ
∂τ

on ∂ω

(for the sake of definiteness we may assume that χ solves 	2χ = 0 in ω). Existence of a so-
lution μ ∈ H 2(ω) of problem (3.13) follows from (3.12). Then we have B− · τ = ∂χ

∂τ
+ ∂μ

∂ν
=

(B+ + E(ξ)) · τ and B− · ν = ∂χ
∂ν

− ∂μ
∂τ

= 0 on ∂ω, while (B+ + E(ξ)) · ν = 1
2

∂ϕξ

∂τ
− ∂h+

∂τ
= 0 on

∂ω (since ϕξ ,h
+ = const on ∂ω). Thus A(ξ) defined by (3.1) belongs to H 1(Ω;R

2).
We have constructed (u(ξ),A(ξ)) which is an admissible testing pair, up to a gauge transfor-

mation, for the minimization problem (2.3). A straightforward calculation of Fλ[u(ξ),A(ξ)], that
takes into account (3.9), yields the following upper bound,

m(λ) � Fλ

[
u(ξ),A(ξ)

] = π + 1

2KG

( ∫
∂ω

A(ξ) · τ ds

)2

+ 1

2

∫
G

((|γξ |2eϕξ − 1
)∣∣B+∣∣2

− 1 − λ

4

(|γξ |2eϕξ − 1
)2

)
dx

� π + 1

8KG

( ∫
∂ω

∂ϕξ

∂ν
ds

)2

− 1 − λ

8

∫
G

(|γξ |2eϕξ − 1
)2 dx, (3.14)

where we have also used the pointwise inequality |γξ |2eϕξ � 1 in G which can be obtained
by applying the maximum principle to the problem (3.3)–(3.4) (see Remark 4 in Section 8).
The asymptotic behavior of the right-hand side I (ξ, λ) of (3.14) as ξ → ∂Ω will be studied in
Section 8. Namely, it will be shown that, if ξ∗ denotes the nearest point projection of ξ on ∂Ω

and δ = |ξ∗ − ξ | is small, then

I (ξ, λ) = π + 2π2

KG

δ2
∣∣∣∣∂V

∂ν
(ξ∗)

∣∣∣∣
2

− π(1 − λ)δ2|log δ| + o
(
δ2 + δ2

∣∣(1 − λ) log δ
∣∣). (3.15)

Letting δ → +0 in (3.15) (i.e. ξ → ∂Ω), we get

m(λ) � π, for every λ > 0, (3.16)

and

m(λ) < π, for every 0 < λ < 1. (3.17)

4. Existence/nonexistence of minimizers

Bounds (3.16)–(3.17) allow us to resolve the question of attainability of the infimum m(λ)

in (2.3). We make use of the following result, which is a straightforward adaptation of Lemma 1
from [3].
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Lemma 1. Let (u(n),A(n)) ∈ J01 × H 1(Ω;R
2) be a sequence such that (u(n),A(n)) → (u,A)

weakly in H 1(G;C) × H 1(Ω;R
2), then u ∈ J and

lim inf
n→∞ Fλ

[
u(n),A(n)

]
� Fλ[u,A] + π

(∣∣deg(u, ∂Ω) − 1
∣∣ + ∣∣deg(u, ∂ω)

∣∣).
Theorem 2. (i) The infimum m(λ) is always attained for 0 < λ < 1, (ii) m(λ) is never attained
for λ � 1.

Proof. (i) follows easily from (3.17) and Lemma 1. Indeed, let (u(n),A(n)) be a minimizing
sequence. By (3.17) this sequence is bounded in H 1(G;C)×H 1(Ω;R

2). Thus, up to extracting
a subsequence, (u(n),A(n)) → (u,A) weakly in H 1(G;C) × H 1(Ω;R

2). We need only to show
that u ∈ J01. To this end, applying Lemma 1 we get

m(λ) = lim inf
n→∞ Fλ

[
u(n),A(n)

]
� Fλ[u,A] + π

∣∣1 − deg(u, ∂Ω)
∣∣ + π

∣∣deg(u, ∂ω)
∣∣.

Since m(λ) < π , it follows that deg(u, ∂Ω) = 1 and deg(u, ∂ω) = 0, i.e. u ∈ J01.
Let us now show (ii). Assume by contradiction that (u,A) is a minimizer. By (2.8) and (3.16),

m(λ) = π + F+[u,A] + 1

2

∫
ω

(curlA)2 dx + λ − 1

8

∫
G

(|u|2 − 1
)2 dx � π.

Since λ � 1, we have

∂u

∂z̄
= iA1 − A2

2
u in G, and curlA = 0 in ω. (4.1)

The first equation in (4.1) yields the following relation

∂|u|2
∂ν

− 2u ∧ ∂u

∂τ
+ 2A · τ = 0 on ∂ω,

therefore, according to the second equation in (4.1) and the fact that deg(u, ∂ω) = 0,

∫
∂ω

∂|u|2
∂ν

ds = 4π deg(u, ∂ω) − 2
∫
ω

curlA = 0.

On the other hand, by (2.7), (|u|2 − 1)/2 solves

⎧⎪⎪⎨
⎪⎪⎩

	
|u|2 − 1

2
− λ|u|2 |u|2 − 1

2
= |∇u − iAu|2 in G,

|u|2 − 1

2
= 0 on ∂G.

By the (strong) maximum principle and Hopf’s lemma we have, either |u| ≡ 1 in G, or |u| < 1

in G and ∂|u|2
∂ν

< 0 on ∂ω. It follows that |u| ≡ 1 in G and therefore u /∈ J01. �
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5. Lower bound

The upper bound construction of Section 3 provides the existence of minimizers (uλ,Aλ) of
problem (2.3) for every 0 < λ < 1. In this section we show the optimality of this construction for
λ → 1 − 0. Namely, we prove

Lemma 2. There exists a point ξλ such that ξλ → ∂Ω as λ → 1 − 0 and

m(λ) = Fλ

[
uλ,Aλ

]
� π + 1

8KG

( ∫
∂ω

∂ϕξλ

∂ν
ds

)2

− (
1 + o(1)

)1 − λ

8

∫
G

(|γξλ |2eϕ
ξλ − 1

)2 dx, (5.1)

where γξλ , ϕξλ are defined by (3.5) and (3.3)–(3.4) with ξ = ξλ.

Proof. To get the result we study, in several steps, the asymptotic behavior of minimizers
(uλ,Aλ) as λ → 1 − 0. As the first step we show that

∃Ψ λ = const ∈ S
1 such that uλ − Ψ λ → 0 weakly in H 1(G;C), (5.2)

Aλ → 0 strongly in H 1(Ω;R
2). (5.3)

By the Sobolev embedding (5.2) will imply that∫
G

(∣∣uλ
∣∣2 − 1

)2 dx → 0. (5.4)

Thus, we can introduce a small positive parameter

ε
(= ε(λ)

) :=
(

1 − λ

8

∫
G

(∣∣uλ
∣∣2 − 1

)2 dx

)1/2

, (5.5)

such that

ε2/(1 − λ) → 0,

and write Fλ[uλ,Aλ] as (cf. (2.8))

Fλ

[
uλ,Aλ

] = π + F+[
uλ,Aλ

] + 1

2

∫
ω

∣∣curlAλ
∣∣2 dx − ε2. (5.6)

Proof of claim (5.2)–(5.3). According to (3.17) we have Fλ[uλ,Aλ] = m(λ) < π , therefore
‖uλ‖H 1(G;C) � C and ‖Aλ‖H 1(Ω;R2) � C with C independent of 0 < λ < 1. Thus, up to extract-
ing a subsequence, (uλ,Aλ) → (u,A) weakly in H 1(G;C) × H 1(Ω;R

2) as λ → 1 − 0, where
u ∈ J . We have
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F1[u,A] � lim inf
λ→1−0

F1
[
uλ,Aλ

] = lim inf
λ→1−0

Fλ

[
uλ,Aλ

]
,

and, for every v ∈ J01 and B ∈ H 1(Ω;R
2) satisfying (2.2),

Fλ

[
uλ,Aλ

] = m(λ) � Fλ[v,B], ∀0 < λ < 1,

therefore F1[u,A] � F1[v,B]. The infimum in (2.3) for λ = 1 is never attained, hence u /∈ J01.
Thus |1 − deg(u, ∂Ω)| + |deg(u, ∂ω)| � 1, and we have

π � lim inf
λ→1−0

Fλ

[
uλ,Aλ

] = lim inf
λ→1−0

F1
[
uλ,Aλ

]
� F1[u,A] + π,

where we have used Lemma 1. We see that F1[u,A] = 0, hence u = const ∈ S
1. This shows (5.2).

To prove (5.3) we note that ‖Aλ‖H 1(Ω;R2) � C‖curlAλ‖L2(Ω) (with C independent of λ), thanks
to the gauge choice (2.2). Then (3.16) and (5.8)–(5.6) imply that ‖Aλ‖H 1(Ω;R2) → 0 as λ →
1 − 0. �
Step II. (A priori bounds.) By (3.17), (5.6) and (2.9) we have

2
∫
G

∣∣∣∣∂uλ

∂z̄
+ Aλ

2 − iAλ
1

2
uλ

∣∣∣∣
2

dx � ε2, (5.7)

∫
G

(
vλ

)2 dx � 2ε2,
∣∣hλ

ω

∣∣2 � 2ε2/|ω|, (5.8)

where

vλ := curlAλ + 1

2

(∣∣uλ
∣∣2 − 1

)
, hλ

ω(= const) := restriction of curlAλ to ω.

In Section 3 we have constructed testing pairs (u(ξ),A(ξ)) in a gauge such that divA(ξ) = 0
in G and A(ξ) · ν = 0 on ∂G. Now let us pass to such a gauge for minimizers (uλ,Aλ) (Aλ was
previously assumed to satisfy (2.2)). To this end consider a solution ψλ of the problem

⎧⎨
⎩

	ψλ = 0 in G,

∂ψλ

∂ν
= 0 on ∂Ω,

∂ψλ

∂ν
= −Aλ · ν on ∂ω.

Note that Aλ +∇ψλ → 0 strongly in L2(G;R
2) as λ → 1 − 0, thanks to (5.3). Extend ψλ inside

ω so that ψλ ∈ H 2(Ω), and perform the gauge change uλ �→ eiψλ
uλ, Aλ �→ Aλ +∇ψλ. The new

Aλ still belongs to H 1(Ω;R
2) and

divAλ = 0 in G, Aλ · ν = 0 on ∂Ω and ∂ω. (5.9)

Additionally, we have
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∥∥Aλ
∥∥

L2(G;R2)
→ 0 as λ → 1 − 0. (5.10)

Step III. (Asymptotic behavior of vλ = curlAλ + 1
2 (|uλ|2 − 1).) Note that the Euler–Lagrange

equation (2.5) implies that

∂vλ

∂z̄
= uλ

(
∂uλ

∂z̄
+ Aλ

2 − iAλ
1

2
uλ

)
in G. (5.11)

By taking ∂
∂z

of (5.11), on account of Eq. (2.4), we get

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

	vλ − ∣∣uλ
∣∣2

vλ = 4

∣∣∣∣∂uλ

∂z̄
+ Aλ

2 − iAλ
1

2
uλ

∣∣∣∣
2

+ 1 − λ

2

(
1 − ∣∣uλ

∣∣2)∣∣uλ
∣∣2 in G,

vλ = 0 on ∂Ω,

vλ = hλ
ω on ∂ω.

(5.12)

Set

ṽλ := hλ
ωV, (5.13)

where V is the solution of problem (1.4), then

	
(
vλ − ṽλ

) − (
vλ − ṽλ

) = 4

∣∣∣∣∂uλ

∂z̄
+ Aλ

2 − iAλ
1

2
uλ

∣∣∣∣
2

+ 1 − λ

2

∣∣uλ
∣∣2(1 − ∣∣uλ

∣∣2)
− (

1 − ∣∣uλ
∣∣2)

vλ in G,

and vλ − ṽλ = 0 on ∂G. Owing to (5.7), the first bound in (5.8) and the pointwise inequality
|uλ| � 1 in G, we can estimate the L1-norm of the terms in the right hand of the equation as 2ε2,
(2(1 − λ)|G|)1/2ε and 4ε2/(1 − λ)1/2 (= o(ε)), respectively. Therefore, by using well-known
estimates for elliptic equations with right-hand side in L1 (see, e.g., [13]), we find, as λ → 1 − 0

1

ε

∥∥vλ − ṽλ
∥∥

W 1,p(G)
→ 0 for every 1 � p < 2. (5.14)

Step IV. (Change of unknowns.) We represent Aλ and uλ as

Aλ = hλ
ω∇⊥V + Ẽλ = hλ

ω∇⊥V − 1

2
∇⊥ϕ̃λ and uλ = eϕ̃λ/2(θλ + wλ

)
,

where hλ
ω is the restriction of curlAλ to ω; V is the solution of problem (1.4); ϕ̃λ is a function

which takes constant values on the connected components of ∂G and satisfies a certain partial
differential equation (see problem (5.19) below); θλ satisfies 	θλ = 0 in G; wλ vanishes on
∂G and has a negligibly small H 2-norm (of order o(ε)). We will also get a lower bound for
Fλ[uλ,Aλ] in terms of hλ , ϕ̃λ, θλ and wλ.
ω
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We begin the aforementioned transformations by setting

Ẽλ := Aλ − ∇⊥ṽλ = Aλ − hλ
ω∇⊥V. (5.15)

Then, using (5.11) we obtain

F̃λ

[
uλ, Ẽλ

] := Fλ

[
uλ,Aλ

] = π + F+[
uλ, Ẽλ

] − 1 − λ

8

∫
G

(∣∣uλ
∣∣2 − 1

)2 dx

+ 4
∫
G

(
∂vλ

∂z̄
− ∂ṽλ

∂z̄
,
∂ṽλ

∂z̄

)
dx +

∫
G

(
vλ − ṽλ

)
ṽλ dx

+ 1

2

∫
G

(∣∣∇ṽλ
∣∣2 + (

ṽλ
)2)dx + 1

2

∫
ω

∣∣hλ
ω

∣∣2 dx

+ 1

2

∫
G

∣∣∇ṽλ
∣∣2(1 − ∣∣uλ

∣∣2)dx. (5.16)

Due to the facts that 	ṽλ = ṽλ in G and vλ = ṽλ on ∂G, representation (5.16) is further simpli-
fied to

Fλ

[
uλ,Aλ

](= F̃λ

[
uλ, Ẽλ

]) = π + F+[
uλ, Ẽλ

] − 1 − λ

8

∫
G

(∣∣uλ
∣∣2 − 1

)2 dx

+ (hλ
ω)2

2

(
KG +

∫
G

|∇V |2(1 − ∣∣uλ
∣∣2)dx

)
. (5.17)

Note that, in view of (5.9), (5.13) and (5.15), div Ẽλ = 0 in G and Ẽλ ·ν = 0 on ∂G. Therefore
there exists a potential ϕ̃λ such that

Ẽλ = −1

2
∇⊥ϕ̃λ, (5.18)

and ϕ̃λ takes constant values on ∂Ω and ∂ω. Due to the fact that ϕλ is defined up to an additive
constant, we can assume that the constant value of ϕλ on ∂Ω is zero. Then ϕ̃λ is the solution of
the boundary value problem⎧⎪⎨

⎪⎩
−	ϕ̃λ = 2 curl Ẽλ = 2

(
vλ − ṽλ

) − ∣∣uλ
∣∣2 + 1 in G,

ϕ̃λ = 0 on ∂Ω,

ϕ̃λ = αλ on ∂ω,

(5.19)

where αλ is some constant. Since |∇ϕ̃λ| = 2|Ẽλ| → 0 strongly in L2(G) (by (5.10), (5.15) and
the second bound in (5.8)), we know that αλ → 0 as λ → 1 − 0. We also know that for every
q � 1 the Lq -norm of the right-hand side in the above equation vanishes when λ → 1 − 0, as
follows from (5.4), (5.14) and the pointwise inequality |uλ| � 1 in G. Then by elliptic estimates
we have
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ϕ̃λ → 0 in W 2,q (G) (∀q � 1) and, in particular, in C1(Ḡ). (5.20)

This fact plays an important role in the further analysis.
Now introduce

θ̃ λ := e−ϕ̃λ/2uλ. (5.21)

Observe that

∂ϕ̃λ

∂z̄
= −Ẽλ

2 + iẼλ
1 and therefore

∂uλ

∂z̄
+ Ẽλ

2 − iẼλ
1

2
uλ = eϕ̃λ/2 ∂θ̃λ

∂z̄
.

Since uλ minimizes (5.17) with respect to its own boundary data, θ̃ λ satisfies the following
equation

4
∂

∂z

(
eϕ̃λ ∂

∂z̄
θ̃λ

)
=

(
curl Ẽλ + λ

2

(∣∣uλ
∣∣2 − 1

) − (
hλ

ω

)2|∇V |2
)

eϕ̃λ

θ̃λ in G.

Next we pass from θ̃ λ to θλ, which satisfies 	θλ = 0 in G, by setting

θλ := θ̃ λ − wλ, (5.22)

where wλ is the unique solution of the equation

	wλ = −4
∂ϕ̃λ

∂z

∂θ̃λ

∂z̄
+

(
curl Ẽλ + λ

2

(∣∣uλ
∣∣2 − 1

) − (
hλ

ω

)2|∇V |2
)

θ̃ λ in G, (5.23)

subject to the boundary condition

wλ = 0 on ∂G. (5.24)

By the very definition of θλ we have the following properties,

	θλ = 0 in G; (5.25)∣∣θλ
∣∣ = 1 on ∂Ω and deg

(
θλ, ∂Ω

) = 1; (5.26)

∣∣θλ
∣∣ = exp

(−αλ/2
)

on ∂ω, deg
(
θλ/

∣∣θλ
∣∣, ∂ω

) = 0(
note that exp

(−αλ/2
) → 1 as λ → 1 − 0, according to (5.20)

)
. (5.27)

Let us show that θλ also satisfy

∫
G

∣∣∣∣∂θλ

∂z̄

∣∣∣∣
2

dx � Cε2. (5.28)

Indeed, we observe that
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∂θλ

∂z̄
+ ∂wλ

∂z̄
= e−ϕ̃λ/2

(
∂uλ

∂z̄
+ Ẽλ

2 − iẼλ
1

2
uλ

)

= e−ϕ̃λ/2
(

∂uλ

∂z̄
+ Aλ

2 − iAλ
1

2
uλ − hλ

ω

∂V

∂z̄
uλ

)
. (5.29)

Then (5.28) immediately follows from (5.7)–(5.8), (5.20), the pointwise bound |uλ| � 1 in G and
the following claim,

1

ε

∥∥wλ
∥∥

H 2(G)
→ 0 as λ → 1 − 0. (5.30)

Proof of claim (5.30). Since wλ is a solution of problem (5.23)–(5.24), we have, by elliptic
estimates,

∥∥wλ
∥∥

H 2(G)
� C

(∥∥∂ϕ̃λ/∂z
∥∥

L∞(G;C)

∥∥∂θ̃λ/∂z̄
∥∥

L2(G;C)
. +

∥∥∥∥curl Ẽλ + 1

2

(∣∣uλ
∣∣2 − 1

)∥∥∥∥
L2(G)

+ (1 − λ)
∥∥∣∣uλ

∣∣2 − 1
∥∥

L2(G)
+ (

hλ
ω

)2
)

,

where we have also used the pointwise bound |θ̃ λ| = e−ϕ̃λ/2|uλ| � e−ϕ̃λ/2 � C in G (cf. (5.20)).
Thanks to (5.7) and the second bound in (5.8), (5.15), (5.20) the following results hold,

∥∥∥∥∂θ̃λ

∂z̄

∥∥∥∥
L2(G;C)

�
∥∥e−ϕ̃λ/2

∥∥
L∞(G)

∥∥∥∥∂uλ

∂z̄
+ Ẽλ

2 − iẼλ
1

2
uλ

∥∥∥∥
L2(G;C)

= O(ε)

and ‖∂ϕ̃λ/∂z‖L∞(G;C) → 0 as λ → 1−0, also (1−λ)‖|uλ|2 −1‖L2(G) = o(ε) and |hλ
ω| = O(ε).

Besides curl Ẽλ + 1
2 (|uλ|2 − 1) = vλ − ṽλ while (5.14) implies that ‖vλ − ṽλ‖L2(G) = o(ε) (by

the Sobolev embedding), and we are done. �
Finally, we note that, in view of the pointwise inequality |uλ| � 1 in G, (5.17) leads to the

lower bound

Fλ

[
uλ,Aλ

]
� π + KG

2

(
hλ

ω

)2 − 1 − λ

8

∫
G

(
eϕ̃λ ∣∣θλ + wλ

∣∣2 − 1
)2 dx. (5.31)

Step V. (Identification of θλ, ϕ̃λ.) The following result is crucial.

Lemma 3. The properties (5.25)–(5.28) of θλ imply that

(i) θλ has exactly one zero ξλ when λ → 1 − 0 and ξλ → ∂Ω ; moreover, there are constants
C1,C2 > 0 such that

C1|γξλ | � ∣∣θλ
∣∣ � C2|γξλ | in G,

where γξλ is defined by (3.5) with ξ = ξλ;
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(ii) if, in addition,

1

ε

∥∥∂θλ/∂z̄
∥∥

Lp(G;C)
→ 0 for some p � 1, (5.32)

then

log
∣∣θλ

∣∣ − log |γξλ | = o(ε) on ∂ω

and there is ϑλ such that |ϑλ| � Cε|γξλ | in G,

∥∥∣∣ϑλ
∣∣∥∥

Lq(G)
= o(ε),

∥∥log
(∣∣θλ − ϑλ

∣∣/|γξλ |)∥∥
Lq(G)

= o(ε), ∀q � 1.

Remark 2. Maps γξλ in Lemma 3 can be regarded as projections of θλ on the (rigid) family of
holomorphic maps defined by (3.5). Note that the constant value of |γξ | is uniquely determined
by the zero ξ of γξ . Thus, Lemma 3 allows, in particular, to reconstruct the unknown constant
value of |θλ| on ∂ω via the unique zero ξλ of θλ (up to a negligibly small error). Additionally, it
follows from Lemma 3 that ‖|θλ|2 − |γξλ |2‖Lq(G) = o(ε) for every q � 1.

The proof of Lemma 3 is presented in Section 6. Let us show that θλ satisfies condition (5.32)
of Lemma 3. We note that, by (5.11) and (5.29),

∣∣∣∣∂θλ

∂z̄
+ ∂wλ

∂z̄

∣∣∣∣ = e−ϕ̃λ/2

|uλ|
∣∣∣∣∂vλ

∂z̄
− ∣∣uλ

∣∣2 ∂ṽλ

∂z̄

∣∣∣∣ when
∣∣uλ

∣∣ > 0.

Due to (5.28), (5.30) we also have ‖ 1
ε
| ∂θλ

∂z̄
+ ∂wλ

∂z̄
|‖L2(G) � C. On the other hand,

1

ε

∣∣∣∣∂vλ

∂z̄
− ∣∣uλ

∣∣2 ∂ṽλ

∂z̄

∣∣∣∣ � 1

ε

∣∣∣∣∂vλ

∂z̄
− ∂ṽλ

∂z̄

∣∣∣∣ + (
1 − ∣∣uλ

∣∣2)hλ
ω

ε

∣∣∣∣∂V

∂z̄

∣∣∣∣
and the right-hand side converges to zero in measure, as follows from (5.4), (5.14) and the second
bound in (5.8). Then, using (5.4) and (5.20), we see that 1

ε
| ∂θλ

∂z̄
+ ∂wλ

∂z̄
| tends to zero in measure

as λ → 1 − 0. Therefore ‖ 1
ε
| ∂θλ

∂z̄
+ ∂wλ

∂z̄
|‖Lp(G) → 0 for every 1 � p < 2. Finally, we make use

of (5.30) to conclude that condition (5.32) is satisfied.
Using Lemma 3 we can identify the constant αλ in problem (5.19),

αλ = −2 log
∣∣γξλ(∂Ω)

∣∣ + κλ
(|γξλ | = const on ∂Ω

)
,

with the remainder κλ satisfying

1

ε

∣∣κλ
∣∣ → 0 as λ → 1 − 0. (5.33)

Next, we identify ϕ̃λ by the following



L. Berlyand et al. / Journal of Functional Analysis 258 (2010) 1728–1762 1745
Lemma 4. Let ξλ be the unique zero of θλ (cf. Lemma 3), then

∥∥ϕ̃λ − ϕξλ

∥∥
H 2(G)

= o(ε) as λ → 1 − 0,

where ϕξλ is the solution of problem (3.3)–(3.4) with ξ = ξλ.

Proof. Set

f λ := ϕ̃λ − κλU,

where U is the unique solution of the equation 	U = 0 in G subject to the boundary conditions
U = 0 on ∂Ω and U = 1 on ∂ω. Then f λ satisfies −	f λ = 2(vλ − ṽλ) − eϕ̃λ |θλ + wλ|2 + 1 in
G (cf. (5.19), (5.21), (5.22)). Therefore, after simple calculations, we get the following boundary
value problem for f λ,

⎧⎪⎪⎨
⎪⎪⎩

−	f λ + |γξλ |2ef λ = 1 + rλ in G,

f λ = 0 on ∂Ω,

f λ = −2 log |γξλ | on ∂ω,

(5.34)

where

rλ = 2
(
vλ − ṽλ

) + (|γξλ |2e−κλU − ∣∣θλ − ϑλ
∣∣2)

eϕ̃λ

− (∣∣ϑλ + wλ
∣∣2 + 2

(
θλ − ϑλ,ϑλ + wλ

))
eϕ̃λ

, (5.35)

and ϑλ is as in Lemma 3. Let us show that L2-norm of rλ is negligibly small. To this end we
use (5.14) and the Sobolev embedding for the first term of (5.35); for the last term we make use
of statement (ii) of Lemma 3 and (5.30) in conjunction with the Sobolev embedding; finally, the
middle term we represent as

((
e−κλU − 1

) − (
e

2 log(|θλ−ϑλ|/|γ
ξλ |) − 1

))|γξλ |2eϕ̃λ

and estimate it with the help of the elementary inequality |et − 1| � |t |e|t |, Lemma 3, (5.20)
and (5.33). As the result we get the following bound

∥∥rλ
∥∥

L2(G)
= o(ε). (5.36)

This bound allows us to estimate the H 1-norm of the function f λ−ϕξλ . We have −	(f λ−ϕξλ)+
|γξλ |2ef λ − |γξλ |2eϕ

ξλ = rλ in G. Multiply this equation by f λ − ϕξλ to get, after integrating by
parts,

∫ ∣∣∇(
f λ − ϕξλ

)∣∣2
dx �

∫ ∣∣rλ
∣∣∣∣f λ − ϕξλ

∣∣dx,
G G
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where we have used the monotonicity of the operator φ �→ |γξλ |2eφ and the fact that f λ −ϕξλ = 0
on ∂G. It follows that

∥∥f λ − ϕξλ

∥∥
H 1(G)

= o(ε). (5.37)

Next we show that the H 1-bound (5.37) in conjunction with an L∞-estimate for f λ (following
from (5.20) and (5.33)) yield ‖	(f λ − ϕξλ)‖L2(G) = o(ε). By elliptic estimates this will imply
that

∥∥f λ − ϕξλ

∥∥
H 2(G)

= o(ε). (5.38)

In order to estimate 	(f λ − ϕξλ) we write

−	
(
f λ − ϕξλ

) = rλ − |γξλ |2
1∫

0

(
f λ − ϕξλ

)
e
(1−t)f λ+tϕ

ξλ dt,

to get, using the obvious pointwise inequality |γξλ | � 1 in G,

∥∥	
(
ϕξλ + f λ

)∥∥
L2(G)

�
∥∥rλ

∥∥
L2(G)

+
1∫

0

∥∥∣∣f λ − ϕξλ

∣∣e(1−t)f λ+tϕ
ξλ

∥∥
L2(G)

dt

�
∥∥rλ

∥∥
L2(G)

+ ∥∥f λ − ϕξλ

∥∥
L4(G)

e‖f λ‖L∞(G)

1∫
0

∥∥e
2t (ϕ

ξλ−f λ)∥∥1/2
L2(G)

dt.

Thus, in order to accomplish the proof of (5.38), it suffices to show that

sup
t∈[0,1]

∥∥ exp
(
2t

(
ϕξλ − f λ

))∥∥
L2(G)

remains bounded as λ → 1 − 0. (5.39)

Indeed, according to (5.36) and (5.37) we have ‖rλ‖L2(G), ‖f λ − ϕξλ‖L4(G) = o(ε), while
‖f λ‖L∞(G) � ‖ϕ̃λ‖L∞(G) + |κλ|‖U‖L∞(G) → 0, as follows from (5.20) and (5.33).

It is straightforward to verify that for any φ ∈ H 1(G), φ �≡ 0, and any C1 > 0

exp
(
2|φ|) � exp

(
C1‖φ‖2

H 1

)
exp

( |φ|2
C1‖φ‖2

H 1(G)

)
in G. (5.40)

On the other hand, as shown in [14, Chapter VII], there are C1,C2 > 0 such that

∫
exp

( |φ|2
C1‖φ‖2

H 1(G)

)
dx � C2 for every φ ∈ H 1(G), φ �≡ 0.
G
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Therefore, integrating (5.40) over G, we get ‖ exp(φ)‖L2(G) � C exp(C1‖φ‖2
H 1(G)

). Then (5.37)

implies that (5.39) does hold, and thus (5.38) is proved. Finally, since ϕ̃λ = f λ + κλU and
κλ = o(ε), the claim of the lemma follows. �
Step VI. (Derivation of the lower bound.) Using (5.15), (5.18) and the definition of hλ

ω (hλ
ω is the

restriction of curlAλ to ω), we get

−1

2

∫
∂ω

∂ϕ̃λ

∂ν
ds =

∫
ω

curlAλ dx − hλ
ω

∫
∂ω

∂V

∂ν
ds = hλ

ω

(
|ω| −

∫
∂ω

∂V

∂ν
ds

)
= hλ

ωKG.

Hence, by Lemma 4,

(
hλ

ω

)2 = 1

4K2
G

( ∫
∂ω

∂ϕξλ

∂ν
ds

)2

+ o
(
ε2). (5.41)

It is not hard to show also that, by (5.5), (5.21)–(5.22), (5.30), Lemma 4 and (ii) of Lemma 3,

ε2 = 1 − λ

8

∫
G

(
eϕ̃λ ∣∣θλ + wλ

∣∣2 − 1
)2 dx

= (
1 + o(1)

)1 − λ

8

∫
G

(|γξλ |2eϕ
ξλ − 1

)2
dx. (5.42)

Now substitute (5.41) and (5.42) in (5.31) to get (5.1). Lemma 2 is proved. �
6. Proof of the key lemma

This section is devoted to the

Proof of Lemma 3. In the proof we will repeatedly make use of the formula

∫
G

|∇u|2 dx = 1

2

∫
G

∣∣∣∣∂u

∂z̄

∣∣∣∣
2

dx + π
(∣∣u(∂Ω)

∣∣2 deg
(
u/|u|, ∂Ω

) − ∣∣u(∂ω)
∣∣2 deg

(
u/|u|, ∂ω

))
,

(6.1)

that is valid for any u ∈ H 1(G;C) satisfying |u| = const > 0 on ∂Ω and on ∂ω (with possibly
another constant). To see (6.1) one integrates the pointwise identity

|∇u|2 = 2
∂u

∂x1
∧ ∂u

∂x2
+ 1

2

∣∣∣∣∂u

∂z̄

∣∣∣∣
2

= ∂

∂x1

(
u ∧ ∂u

∂x2

)
− ∂

∂x2

(
u ∧ ∂u

∂x1

)
+ 1

2

∣∣∣∣∂u

∂z̄

∣∣∣∣
2

over G and applies the divergence theorem.
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We first show

Lemma 5. We have

∣∣θλ
∣∣2 → 1 strongly in L2(G) as λ → 1 − 0 (6.2)

and

∇ θ̃ λ → 0 in Cloc
(
G;C

2). (6.3)

Proof. Since θλ satisfies 	θλ = 0 in G, we have

	
∣∣θλ

∣∣2 = 2
∣∣∇θλ

∣∣2 � 0 in G. (6.4)

Then, by the maximum principle, |θλ| � max{1, e−αλ/2} in G. Besides, by (5.28),

1

2

∫
G

∣∣∇θλ
∣∣2 dx = π + 1

4

∫
G

∣∣∣∣∂θλ

∂z̄

∣∣∣∣
2

dx � π + Cε2, (6.5)

where we have used formula (6.1). It follows that ‖θλ‖H 1(G;C) � C with a constant C indepen-
dent of λ. Therefore, up to extracting a subsequence, θλ → θ weakly in H 1(G;C), and |θ | = 1
on ∂G. Moreover, in view of (5.28) and (6.5),

∫
G

∣∣∣∣∂θ

∂z̄

∣∣∣∣
2

dx = 0, i.e.
∂θ

∂z̄
= 0 in G,

and

1

2

∫
G

|∇θ |2 dx � π. (6.6)

It follows that θ = const ∈ S
1. Indeed, since ∂θ

∂z̄
= 0 in G, it suffices to show that |θ | ≡ 1 in G.

We have 	|θ |2 = 2|∇θ |2 + 2(	θ, θ) = 2|∇θ |2 � 0 in G and |θ | = 1 on ∂G. If we assume that
|θ | �≡ 1 in ∂G, we obtain, by using Hopf’s lemma, that ∂|θ |

∂ν
> 0 on ∂Ω and ∂|θ |

∂ν
< 0 on ∂ω.

The equation ∂θ
∂z̄

= 0 in G implies that θ ∧ ∂θ
∂τ

= ∂|θ |
∂ν

> 0 on ∂Ω and u ∧ ∂θ
∂τ

= ∂|θ |
∂ν

< 0 on ∂ω,
consequently deg(θ, ∂Ω) � 1 and deg(θ, ∂ω) � −1. Hence, by using formula (6.1), we get

1

2

∫
G

|∇θ |2 dx = π deg(θ, ∂Ω) − π deg(θ, ∂ω) � 2π,

and thus obtain a contradiction with (6.6). We have shown that, up to extracting a subsequence,
θλ → const ∈ S

1 weakly in H 1(G;C) as λ → 1 − 0. The statement of the lemma follows by the
Sobolev embedding and elliptic estimates. �
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We next study the pointwise asymptotic behavior of |θλ| to get the

Proof of (i) of Lemma 3. Since deg(θλ, ∂Ω) = 1 and deg(θλ/|θλ|, ∂ω) = 0, θλ has at least one
zero in G. Let ξλ be a zero of θλ nearest to ∂Ω then, by (6.2)–(6.3),

ξλ → ∂Ω as λ → 1 − 0.

Let us prove that ξλ is the unique zero. To this end we first show that other zeros (if exist) are
localized near ξλ. We use the coarea formula of H. Federer and W.H. Fleming (see, e.g., [12]) to
compute

∫
G

∣∣1 − ∣∣θλ
∣∣2∣∣|∇|θλ

∣∣∣∣dx =
max{1,exp(−αλ/2)}∫

0

dt

∫
{x: |θλ(x)|=t}

∣∣1 − t2
∣∣ dH1,

where H1 is 1-dimensional Hausdorff measure on R
2. On the other hand, by the Cauchy–

Schwarz inequality, (6.2) and (6.5), we obtain

∫
G

∣∣1 − ∣∣θλ
∣∣2∣∣|∇|θλ

∣∣∣∣dx � C
∥∥1 − ∣∣θλ

∣∣2∥∥
L2(G)

→ 0 as λ → 1 − 0.

It follows that there is a regular value tλ ∈ (4/5,6/7) of |θλ| such that H1({x ∈ G; |θλ| = tλ}) →
0, as λ → 1 − 0. (Note that by Sard’s lemma almost all t ∈ (0,max{1, exp(−αλ/2)}) are regular
values of |θλ|.) Set

T λ := {
z ∈ G; ∣∣θλ

∣∣ < tλ
}
,

then, assuming that 1 − λ is sufficiently small, the boundary ∂T λ of T λ consists of a finite
collection of k (= k(λ)) closed curves enclosing simply connected subdomains �λ

0 , . . . ,�λ
k

of G, where �λ
0 is a subdomain containing ξλ. By the (strong) maximum principle applied

to (6.4) we have |θλ| < tλ in each �λ
j . This means, in particular, that these domains are disjoint.

Moreover, the following lemma shows that for sufficiently small 1 − λ we have

∣∣θλ
∣∣ � 1/5 in T λ \ �λ

0 . (6.7)

Lemma 6. Let � be a simply connected domain with a smooth boundary and let v ∈ H 1(�,C)

satisfy 	v = 0 in � and |v| � 4/5 on ∂� . Then, if |v(y)| � 1/5 at a point y ∈ � , we have

1

2

∫
�

|∇v|2 dx � 3π

5
.

Proof. Since the equation 	v = 0 and the Dirichlet integral are conformally invariant, we can
assume, without loss of generality, that � = B1 and |v(0)| � 1/5. Then
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v = v(0) +
∞∑

k=1

bkz
k + ckz̄

k in B1(0),

and the Dirichlet integral is expressed as

1

2

∫
�

|∇v|2 dx = π

∞∑
k=1

k
(|bk|2 + |ck|2

)
,

while

16

25
π � 1

2

∫
S1

|v|2 ds = π

(∣∣v(0)
∣∣2 +

∞∑
k=1

(|bk|2 + |ck|2
))

.

Therefore

1

2

∫
�

|∇v|2 dx � π

(
16

25
− 1

25

)
= 3π

5
. �

Proof of (i) of Lemma 3 completed. Lemma 6 in conjunction with (6.5) imply that zero ξλ lies
in �λ

0 , when λ is sufficiently close to 1. Besides, according to (6.7),

∣∣θλ
∣∣ � min

{
inf

T λ\�λ
0

∣∣θλ
∣∣, inf

G\T λ

∣∣θλ
∣∣} � 1/5 in G \ �λ

0 .

In order to study θλ in �λ
0 we perform the rescaling by means of the conformal map aξλ , given

by (3.6). Prior to that we extend θλ into ω in order to have ‖θλ‖L∞(Ω;C), ‖θλ‖H 1(Ω;C) � C with
C independent of λ (it is possible because of L∞- and H 1-bounds already established in the
proof of Lemma 5). Set

Θλ(ζ ) := θλ
(
a−1
ξλ (ζ )

)
.

Thanks to the conformal invariance of the Dirichlet integral we have Θλ ∈ H 1(B1(0);C) and
‖Θλ‖H 1(B1(0);C) � C. Moreover, Θλ satisfies 	Θλ = 0 in aξλ(G) and Θλ(0) = θλ(ξλ) = 0.

Without loss of generality we may assume that ∂Θλ

∂ζ
(0) is real and ∂Θλ

∂ζ
(0) � 0 (this always can

be achieved by multiplying θλ by a constant with modulus one). We claim that

Θλ(ζ ) → ζ weakly in H 1(B1(0);C
)

as λ → 1 − 0.

Clearly, up to extracting a subsequence, Θλ converges to some Θ weakly in H 1(B1(0);C) as
λ → 1 − 0, and |Θ| = 1 on S

1 = ∂B1(0). One easily checks that |aξ (x)| → 1 uniformly on ω̄ as
ξ → ∂Ω , therefore for any fixed 0 < r < 1 we have a−1

ξλ (Br(0)) ⊂ G when 1 − λ is sufficiently

small. For such λ, Θλ satisfies 	Θλ = 0 in Br(0), consequently elliptic estimates imply the
following convergence result,
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Θλ → Θ in Ck
(
Br(0);C

)
for every k > 0. (6.8)

We have, in particular,

Θ(0) = lim
λ→1−0

Θλ(0) = 0 and
∂Θ

∂ζ
(0) = lim

λ→1−0

∂Θλ

∂ζ
(0) � 0.

Besides, using (6.5) we see that

∫
B1(0)

|∇Θ|2 dζ = lim
r→1−0

lim
λ→1−0

∫
Br(0)

∣∣∇Θλ
∣∣2 dζ

= lim
r→1−0

lim
λ→1−0

∫
a−1
ξλ (Br (0))

∣∣∇θλ
∣∣2 dx

� lim
λ→1−0

∫
G

∣∣∇θλ
∣∣2 dx � 2π. (6.9)

On the other hand 	Θ = 0 in B1(0), as follows from (6.8). Hence Θ can be represented as
Θ = ∑∞

k=1(bkζ
k + ckζ̄

k), and we can compute

∫
B1(0)

|∇Θ|2 dζ − 2π =
∫

B1(0)

|∇Θ|2 dζ −
∫
S1

|Θ|2 ds = 2π

∞∑
k=1

(k − 1)
(|bk|2 + |ck|2

)
.

Then (6.9) holds only if bk = ck = 0 for k > 1, i.e. Θ = b1ζ + c1ζ̄ . Since |b1|2 + |c1|2 = 1,
b1 = ∂Θ

∂ζ
(0) � 0 and

|c1|2 = 4

π

∫
B1/2(0)

∣∣∣∣∂Θ

∂ζ̄

∣∣∣∣
2

dζ = lim
λ→1−0

4

π

∫
a−1
ξλ (B1/2(0))

∣∣∣∣∂θλ

∂z̄

∣∣∣∣
2

dζ = 0
(
by (5.28)

)
,

we conclude that Θ(ζ) = ζ .
Now from (6.8) we see that �λ

0 ⊂ a−1
ξλ (B7/8(0)) when 1−λ is sufficiently small (since |θλ| =

tλ on ∂�λ
0 and tλ ∈ (4/5,6/7) while

min
{∣∣θλ(x)

∣∣; x ∈ ∂a−1
ξλ

(
B7/8(0)

)} → 7/8);

(6.8) also implies that |Θλ(ζ )| = |ζ |(1+o(1)) in B7/8(0) as λ → 1−0, or |θλ| = |aξλ |(1+o(1))

in a−1
ξλ (B7/8(0)), where o(1) stands for a function whose L∞-norm vanishes in the limit. On the

other hand, by (5.27) and (6.7), we have log(1/5) � log |θλ| � max{0,−αλ/2} � C in G \ �λ
0 .

Thus ξλ is the unique zero of θλ. Moreover C1|aξλ | � |θλ| � C2|aξλ | in G for some constants
0 < C1 < C2. It remains to note only that |γξλ | admits the factorization |γξλ | = |aξλ | exp(σξλ)

(see Section 3) and σξλ → 0 uniformly on Ḡ when ξλ → ∂Ω . �
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Let us next introduce ϑλ satisfying the requirements in (ii) of Lemma 3.
Since the unique zero ξλ of θλ tends to ∂Ω as λ → 1−0, we can assume that a−1

ξλ (B8/9(0)) ⊂
G. Rescaling θλ as above, Θλ(ζ ) = θλ(a−1

ξλ (ζ )), we have 	Θλ = 0 in B8/9(0) and Θλ(0) = 0.

It follows that Θλ admits the representation

Θλ(ζ ) =
∞∑

k=1

(
bk,λζ

k + ck,λζ̄
k
)

in B8/9(0).

We set ϑ̃λ to be the antiholomorphic part of Θλ,

ϑ̃λ :=
∞∑

k=1

ck,λζ̄
k,

and show that

∣∣ϑ̃λ(ζ )
∣∣ � Cε|ζ | in B7/8(0), (6.10)∣∣∇ϑ̃λ
∣∣ � Cε in B7/8(0). (6.11)

Both these bounds follow from the estimate |ck,λ| � C(9/8)kε, where C is independent of k

and ε. The latter estimate is verified as follows,

π

∞∑
k=1

k(8/9)2k|ck,λ|2 =
∫

B8/9(0)

∣∣∣∣∂Θλ

∂ζ̄

∣∣∣∣
2

dζ �
∫
G

∣∣∣∣∂θλ

∂z̄

∣∣∣∣
2

dx,

due to (5.28) the right-hand side is bounded by Cε2.
Now introduce ϑλ by

ϑλ(z) := σ
(
aξλ(x)

)
ϑ̃λ

(
aξλ(x)

)
,

where σ is a smooth cut-off function such that

σ(ζ ) =
{

1 if ζ ∈ B1/4(0),

0 if ζ /∈ B1/2(0).

Lemma 7. We have

∣∣ϑλ(z)
∣∣ � Cε

∣∣γξλ(z)
∣∣ in G, (6.12)∫

G

∣∣∇ϑλ(x)
∣∣2 dx � Cε2 and

∫
G

∣∣∇ϑλ(x)
∣∣p dx = o

(
εp

)
for every 1 � p < 2, (6.13)

∂

∂z̄

(
θλ − ϑl

) = 0 in a−1
ξλ

(
B1/4(0)

)
. (6.14)
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Proof. Bound (6.12) follows from (6.10) and the pointwise inequality |aξλ | � |γξλ | in G (this
inequality can be easily derived from the constructive definition of |γξλ | given in Section 3);
(6.14) is a straightforward consequence of the very definition of ϑλ. To show the first bound
in (6.13) we argue by the conformal invariance of the Dirichlet integral,

∫
G

∣∣∇ϑλ(x)
∣∣2 dx =

∫
B1/2(0)

∣∣∇(
σ(ζ )ϑ̃λ(ζ )

)∣∣2 dζ,

and make use of (6.10)–(6.11). Finally the second bound in (6.13) follows from the first one and
the fact that the measure of supp(|∇ϑλ|) tends to zero as λ → 1 − 0. �

Note that the second bound in (6.13) in conjunction with the fact that ϑλ = 0 on ∂G imply, by
the Sobolev embedding, that ‖ϑλ‖Lq(G) = o(ε) for every q � 1. In order to complete the proof
of (ii), we need to estimate log |sλ|, where

sλ := (
θλ − ϑλ

)
/γξλ .

Observe that 0 < C1 � |sλ| � C2 when 1 − λ is sufficiently small, which follows from (i)
and (6.12). We also have |sλ| = 1 on ∂G and |sλ| = const > 0 on ∂ω, moreover deg(sλ, ∂Ω) =
deg(sλ/|sλ|, ∂ω) = 0. Thus, we can fix a single-valued branch of log sλ on G, and set

Sλ := 1

ε
log sλ.

Lemma 8. The real part of Sλ converges weakly in H 1(G) to zero as λ → 1 − 0.

Proof. We have

∫
G

∣∣∇Sλ
∣∣2

dx = 1

ε2

∫
G

∣∣∇sλ
∣∣2 dx

|sλ|2 � C

ε2

∫
G

∣∣∇sλ
∣∣2

dx

= 4C

ε2

∫
G

∣∣∣∣∂sλ

∂z̄

∣∣∣∣
2

dx = 4C

ε2

∫
G\a−1

ξλ (B1/4(0))

∣∣∣∣∂sλ

∂z̄

∣∣∣∣
2

dx

� C1

ε2

∫
G

(∣∣∣∣∂θλ

∂z̄

∣∣∣∣
2

+
∣∣∣∣∂ϑλ

∂z̄

∣∣∣∣
2)

dx � C2,

where we successively used the pointwise bound 1/|sλ|2 � C, formula (6.1), property (6.14), the
bound |γξλ | � |aξλ | � 1/4 in G\a−1

ξλ (B1/4(0)), and (5.28) together with the first bound in (6.13).

The real part Sλ
1 of Sλ satisfies Sλ

1 = 0 on ∂Ω , therefore, after subtracting the mean value 〈Sλ
2 〉

from the imaginary part, we get

∥∥Sλ − i
〈
Sλ

〉∥∥
1 � C.
2 H (G;C)
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Thus, up to extracting a subsequence,

Sλ − i
〈
Sλ

2

〉 → S weakly in H 1(G;C),

where S ∈ H 1(G;C) and its real part vanishes on ∂Ω and takes constant values on ∂ω while the
imaginary part has zero mean over G. On the other hand

∫
G

∣∣∣∣∂Sλ

∂z̄

∣∣∣∣
p

dx � C

εp

∫
G\a−1

ξλ (B1/4(0))

(∣∣∣∣∂θλ

∂z̄

∣∣∣∣
p

+
∣∣∣∣∂ϑλ

∂z̄

∣∣∣∣
p)

dx

|γξλ |p

� C

εp

∫
G

(∣∣∣∣∂θλ

∂z̄

∣∣∣∣
p

+
∣∣∣∣∂ϑλ

∂z̄

∣∣∣∣
p)

dx,

and according to (5.32) and the second bound in (6.13) the right-hand side tends to zero as
λ → 1 − 0. Thus

∂S

∂z̄
= 0 in G. (6.15)

It follows that exp(S) : G → C is a holomorphic map, | exp(S)| = 1 on ∂Ω , | exp(S)| = const
on ∂ω and deg(exp(S), ∂Ω) = deg(exp(S)/| exp(S)|, ∂ω) = 0 (since the imaginary part of S is a
single valued function). Thus, by (6.15),

1

2

∫
G

∣∣∇ exp(S)
∣∣2 dx = 2

∫
G

∣∣∣∣∂ exp(S)

∂z̄

∣∣∣∣
2

dx = 0, (6.16)

where we have used formula (6.1). Hence S ≡ 0 in G, because (6.16) implies that S is a constant
while the real part of S vanishes on ∂Ω and its imaginary part has zero mean. �

Lemma 8 implies the convergence of traces, |Sλ| → 0 on ∂ω, i.e. log |θλ| − log |γξλ | = o(ε),

and also, by the Sobolev embedding, the convergence of Sλ = 1
ε

log(|θλ − ϑλ|/|γξλ |) in Lq(G)

to zero for every q � 1. Lemma 3 is proved. �
7. Near boundary vortices and δ-like behavior of currents

In this section we analyze the behavior of vortices of minimizers as λ → 1 − 0 and describe
the effect of δ-like concentration of currents on the outer boundary of G.

First we show

Lemma 9. For 0 < λ < 1 sufficiently close to 1, uλ has a unique zero (vortex) ξ̃ λ and
dist(ξ̃ λ, ξλ) = o(dist(ξλ, ∂G)), where ξλ is the unique zero of θλ defined through (5.21)–(5.22).
Moreover, there is μ0 > 0 such that
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∣∣uλ
∣∣ � μ0 in G \ a−1

ξλ

(
B1/2(0)

)
, (7.1)

where aξλ is the conformal map given by (3.6) with ξ = ξλ.

Proof. Recall that uλ = eϕ̃λ/2(θλ + wλ) and ϕ̃λ → 0 uniformly on Ḡ (cf. (5.20)). It follows
from (5.30) and (i) of Lemma 3 that for λ → 1−0 we have |uλ| � C(|γξλ |−ε) � C(|aξλ |−ε) �
C(1/2 − ε) in a−1

ξλ (B1/2(0)), where C is some positive constant independent of λ. This
shows (7.1).

In order to study local (in a−1
ξλ (B1/2(0))) behavior of uλ we perform the rescaling x �→

ζ = aξλ(x). Set Uλ(ζ ) = uλ(a−1
ξλ (ζ )), Θλ(ζ ) = θλ(a−1

ξλ (ζ )) and Wλ(ζ ) = wλ(a−1
ξλ (ζ )). Note

that (5.23) can be written as

	wλ = gλ
1

(
∂θλ

∂z̄
+ ∂wλ

∂z̄

)
+ gλ

2 curlAλ + gλ
3

with coefficients gλ
k whose L∞-norms are uniformly in λ bounded (this follows from results in

Section 5, cf. (5.15), (5.20), (5.21) and the second bound in (5.8)). We will show below that the
L∞-norm of curlAλ is also uniformly bounded. Thus we get after rescaling the above equation,
for λ sufficiently close to 1,

∣∣	Wλ
∣∣ � C1 dist

(
ξλ, ∂Ω

)∣∣∣∣∂Θλ

∂ζ̄
+ ∂Wλ

∂ζ̄

∣∣∣∣ + C2 dist2
(
ξλ, ∂Ω

)
in B3/4(0), (7.2)

where we have used the obvious bound |∇(a−1
ξλ )| � C dist(ξλ, ∂Ω) in B3/4(0). The behavior of

Θλ when λ → 1 − 0 is already examined in Section 6, and we know that (up to multiplication
on a constant with modulus one) Θλ(ζ ) → ζ in Ck(B3/4(0);C) for every k > 0. By (5.30) we
also know that ‖Wλ‖H 1(B3/4(0);C) � ‖Wλ‖H 1(a

ξλ (G);C) → 0 as λ → 1 − 0. It follows from (7.2),

by elliptic estimates, that Wλ → 0 in H 2
loc(B3/4(0);C). In particular, ‖Wλ‖W 1,q (B2/3(0);C) → 0

for every q � 1. Then (7.2) restricted to B2/3(0) implies that ‖Wλ‖W 2,q (B1/2(0);C) → 0 (∀q > 1),

therefore ‖Wλ‖C1(B1/2(0);C) → 0. Thus Θλ +Wλ has exactly one zero in B1/2(0) which tends to

the origin as λ → 1−0, that is uλ = eϕ̃λ/2(θλ +wλ) does have a unique zero ξ̃ λ and aξλ(ξ̃ λ) → 0.

By an explicit computation this yields dist(ξ̃ λ, ξλ) = o(dist(ξλ, ∂G)). �
Lemma 10. We have (i) ‖hλ‖L∞(G) � C, (ii) ∂hλ

∂ν
� 0 on ∂Ω , (iii) hλ converges to zero weakly

in H 1(G) as λ → 1 − 0.

Proof. (i) We assume hereafter that the minimizer (uλ,Aλ) is in the Coulomb gauge (2.2). Take
curl in (2.5) to get the equation

−	h = 2
∂uλ

∂x1
∧ ∂uλ

∂x2
− curl

(∣∣uλ
∣∣2

Aλ
)

in G, (7.3)

we also have the following boundary conditions
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h = 0 on ∂Ω and h = hλ
ω on ∂ω. (7.4)

We can represent hλ as hλ = ĥλ
1 + ĥλ

2 with ĥλ
2 solving 	ĥλ

2 = curl(|uλ|2Aλ) in G subject to the
boundary conditions ĥλ

2 = 0 on ∂Ω and ĥλ
2 = hλ

ω on ∂ω. According to (5.3) and bound (5.8)
we have |hλ

ω| � C and ‖Aλ‖Lq(G;R2) � Cq , ∀q � 1, where Cq is independent of λ. Therefore,

by elliptic estimates, the norm ‖ĥλ
2‖W 1,q (G) is uniformly in λ bounded. This in turn implies

the uniform boundedness of ‖ĥλ
2‖C(Ḡ), thanks to the compactness of the embedding W 1,q (G) ⊂

C(Ḡ) for q > 2. We next consider ĥλ
1 which satisfies −	ĥλ

1 = 2 ∂uλ

∂x1
∧ ∂uλ

∂x2
in G and zero boundary

conditions on ∂G. Applying a result from [21] (see also [7]) we have ‖ĥλ
1‖H 1(G), ‖ĥλ

1‖L∞(G) �
C‖uλ‖2

H 1(G;C)
, so that the required L∞-bound follows from the fact that ‖uλ‖H 1(G;C) � C (cf.

Section 5).
To demonstrate (iii) we just note that the weak convergence of hλ follows from (5.8), (5.13)

and (5.14), since we already know that ‖hλ‖H 1(G) is bounded.
To prove (ii) it suffices to show that hλ � 0 in G (hλ = 0 on ∂Ω). For this purpose we derive

from the pointwise equality jλ = −∇⊥h, dividing it by |uλ| and than taking curl, that

−div

(
1

|uλ|2 ∇hλ

)
+ hλ = 0 in

{
x ∈ G; ∣∣uλ(x)

∣∣ > 0
}
. (7.5)

Let 1 > ρ > 0 be a regular value of |uλ| (by Sard’s lemma almost all ρ ∈ (0,1) are regular values
of |uλ|), and let x0 be a minimum point of hλ on the closure of Gρ = {x ∈ G; |uλ(x)| > ρ}.
Assume by contradiction that hλ(x0) < 0. Then by the maximum principle applied to (7.5) the
point x0 cannot be in the interior of Gρ . It cannot also be on ∂ω, otherwise hλ(x0) = hλ

ω < 0 and
therefore

∫
∂ω

∂hλ

∂ν
ds = −

∫
∂ω

jλ · τ ds = −2π deg
(
uλ, ∂ω

) +
∫
∂ω

Aλ · τ ds

=
∫
ω

hλ dx = |ω|hλ
ω < 0,

thus hλ(x0) is not a minimal value of hλ in Gρ . Similar computations show that, if |uλ(x0)| = ρ

then

1

ρ2

∫
|uλ|=ρ

∂hλ

∂ν
ds = −2π +

∫
|uλ|<ρ

hλ dx, (7.6)

where we have used the fact that the sum of degrees of uλ/ρ over connected components of
∂{x ∈ G; |uλ(x)| < ρ} is 1. Assuming ρ → 0 in (7.6) we again get a contradiction, therefore
hλ � 0 on Ḡρ when ρ is sufficiently small. Thus hλ � 0 in G. �

Next we study the asymptotic behavior of currents jλ. According to (iii) of Lemma 10, jλ → 0
weakly in L2(G;R

2) as λ → 1 − 0. One can also show that the convergence is uniform on
compacts in G. Hence the currents on the boundary are of special interest to us.
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Lemma 11. Let ξλ → ξ∗ (∈ ∂Ω , cf. Lemma 3) as λ → 1−0, along a subsequence. Then jλ ·τ →
2πδξ∗ in D′(∂Ω), where δξ∗ stands for the Dirac delta centered at ξ∗.

Proof. From (ii) of Lemma 10 we know that jλ · τ � 0. Hence the total variation of the measure
jλ · τ ds is

∫
∂Ω

jλ · τ ds = 2π deg
(
uλ, ∂Ω

) −
∫
Ω

hλ dx = 2π −
∫
Ω

hλ dx,

and, by (iii) of Lemma 10, it tends to 2π . Therefore it suffices to show that

∫
∂Ω

Φjλ · τ ds → 0, ∀Φ ∈ C1(∂Ω) such that Φ = 0 in a neighborhood of ξ∗.

Let Φ be extended into G to have Φ ∈ C1(Ḡ), Φ = 0 on ∂ω and in G ∩ Bρ(ξ∗) for some ρ > 0.
Assume that λ is so close to 1 that a−1

ξλ (B1/2(0)) ⊂ Bρ(ξ∗), then, by Lemma 9, |uλ| � μ0 > 0 in
G \ Bρ(ξ∗). Multiply (7.5) by Φ to get after integrating over G \ Bρ(ξ∗),

−
∫

∂Ω

Φjλ · τ ds =
∫

∂Ω

Φ
∂hλ

∂ν
ds =

∫
G

(
1

|uλ|2 ∇Φ · ∇hλ + hλΦ

)
dx.

The right-hand side of this equality tends to zero as λ → 1 − 0, since 1
|uλ|2 ∇Φ → ∇Φ strongly

in L2(G;R
2), while hλ → 0 weakly in H 1(G). �

Remark 3. A reasoning similar to the proof of Lemma 11 shows that jλ → 0 in D′(∂ω) as
λ → 1 − 0. (This is due to the fact that uλ has a unique vortex approaching ∂Ω in the limit.)

8. Explicit formula for energy bounds

The right-hand side I (ξ, λ) in the upper bound (3.14) can be equivalently rewritten as

I (ξ, λ) = π + 1

8KG

( ∫
∂ω

∂φξ

∂ν
ds

)2

− 1 − λ

8

∫
G

(|aξ |2eφξ − 1
)2 dx, (8.1)

where φ is the unique solution of

⎧⎪⎪⎨
⎪⎪⎩

−	φξ = 1 − ∣∣aξ (z)
∣∣2

eφξ in G,

φξ = 0 on ∂Ω,

φξ = − log
∣∣aξ (z)

∣∣2 on ∂ω,

(8.2)

aξ (z) is given by (3.6) with F being a fixed conformal map from Ω onto the unit disk. Indeed, the
solution ϕξ of (3.3)–(3.4) and φξ are related by ϕξ = φξ − σξ , where σξ = log |γξ /aξ | (	σξ = 0
in G). Note also that
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∫
∂ω

∂ϕξ

∂ν
ds =

∫
∂ω

∂φξ

∂ν
ds,

since σξ satisfies (3.7).
The following lemma proves the explicit asymptotic formula (3.15).

Lemma 12. Let ξ ∈ G and let ξ∗ = ξ∗(ξ) ∈ ∂Ω to be the nearest point projection of ξ on ∂Ω .
Then for sufficiently small δ = dist(ξ, ∂Ω)

(i)
∫
∂ω

∂φξ

∂ν
ds = 4πδ ∂V

∂ν
(ξ∗) + o(δ), where V is the solution of (1.4),

(ii)
∫
G
(|aξ |2eφξ − 1)2 dx = 8πδ2|log δ| + O(δ2).

In the proof of both statements of Lemma 12 we will make use of the following formulas, as
ξ → ∂Ω

∫
G

(
1 − |aξ |2

)2 dx = 8πδ2(|log δ| + O(1)
)
, (8.3)

∫
G

(
1 − |aξ |2

)
dx = O(δ), (8.4)

where δ is the distance from ξ to ∂Ω . We postpone the proof of these formulas and proceed to
the

Proof of (i) of Lemma 12. We first show that

∫
∂ω

∂φξ

∂ν
ds =

∫
∂ω

∂φ∗
ξ

∂ν
ds + o(δ) as δ → 0, (8.5)

where φ∗
ξ is the unique solution of the auxiliary linear problem

⎧⎪⎪⎨
⎪⎪⎩

−	φ∗
ξ + φ∗

ξ = 1 − ∣∣aξ (z)
∣∣2 in G,

φ∗
ξ = 0 on ∂Ω,

φ∗
ξ = − log

∣∣aξ (z)
∣∣2 on ∂ω.

(8.6)

We claim that

‖φξ‖C(Ḡ) < Cδ as δ → 0. (8.7)

This implies the bound

∥∥−	
(
φξ − φ∗

ξ

) + (
φξ − φ∗

ξ

)∥∥
L2(G)

= ∥∥φξ

(
1 − |aξ |2

) + |aξ |2
(
1 − eφξ + φξ

)∥∥
L2(G)

� δ
∥∥1 − |aξ |2

∥∥
2 + Cδ2 � C1δ

2(|log δ| + 1
)
,

L (G)
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where we have used (8.3). Since φξ = φ∗
ξ on ∂G, we can easily derive (8.5) by standard elliptic

estimates.

Proof of claim (8.7). Due to (8.2) we have −	(φξ + log |aξ (z)|2) = 1 − |aξ (z)|2eφξ in
G \ Br(ξ) for every r > 0. By applying the maximum principle to this equation, we conclude
that φξ � − log |aξ (z)|2 in G. The latter inequality implies that 1 − |aξ (z)|2eφξ � 0. Hence,
we can apply the maximum principle once more to (8.2) to conclude that φξ � 0 in G. Thus,
0 � 1 − |aξ (z)|2eφξ � 1 − |aξ (z)|2. On the other hand, a direct computation shows that

1 − ∣∣aξ (z)
∣∣2 = (∣∣F (ξ)

∣∣2 − 1
) |F (z)|2 − 1

|F (z)F (ξ) − 1|2 � C
δ

|z − ξ∗| as δ → 0. (8.8)

This allows us to estimate Lp-norm of the right-hand side of (8.2) for every 1 < p < 2 and next
obtain, by standard elliptic estimates, that

‖φξ‖W 2,p(G) � C(p)δ as δ → 0.

By using the Sobolev embedding the required result (8.7) follows. �
Remark 4. In the proof of claim (8.7) we showed that |aξ |eφξ � 1 in G, therefore |γξ |eϕξ � 1 in
G (since ϕξ = φξ − log |γξ /aξ |).

Proof of (i) of Lemma 12 completed. Now multiply the equation in (8.6) by V (the unique
solution of problem (1.4)) and integrate by parts to get

∫
∂ω

∂φ∗
ξ

∂ν
ds =

∫
G

(
1 − |aξ |2

)
V −

∫
∂ω

log |aξ |2 ∂V

∂ν
ds. (8.9)

On the other hand, since 	 log |aξ |2 = 4πδξ (x) in Ω and log |aξ |2 = 0 on ∂Ω , we have

4πV (ξ) =
∫
G

log |aξ |2V dx +
∫
∂ω

log |aξ |2 ∂V

∂ν
ds. (8.10)

By adding (8.9) to (8.10), we obtain

∫
∂ω

∂φ∗
ξ

∂ν
ds = 4π

(
V (ξ∗) − V (ξ)

) +
∫
G

(
log |aξ |2 + 1 − |aξ |2

)
V dx.

Thus, in view of (8.5) it remains only to show that the last term in the above equality is of
order o(δ). To this end we split it as

∫
G

(
log |aξ |2 + 1 − |aξ |2

)
V dx =

∫
G\B√ (ξ∗)

· · · +
∫

G∩B√ (ξ∗)

· · · =: I1 + I2.
δ δ
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According to (8.8) we have |log(1 − 1 + |aξ |2) + 1 − |aξ |2| � Cδ2/|x − ξ∗|2 in G \ B√
δ(ξ

∗),
therefore I1 = O(δ2) (note that |V (x)| � C|x − ξ∗|); while I2 = O(δ3/2|log δ|), that can be
verified by using the obvious bound |log |aξ |2 + 1 − |aξ |2| � C(|log |x − ξ || + 1). Statement (i)
is proved. �
Proof of (ii) of Lemma 12. Integrating the identity

(|aξ |2eφξ − 1
)2 = (|aξ |2 − 1

)2 + 2|aξ |2
(
eφξ − 1

)(|aξ |2 − 1
) + |aξ |4

(
eφξ − 1

)2

over G we use estimates (8.3), (8.4), (8.7) and the Cauchy–Schwarz inequality to establish the
following

∫
G

(∣∣aξ (z)
∣∣2

eϕ − 1
)2 dx =

∫
G

(∣∣a(z, ξ)
∣∣2 − 1

)2 dx + O
(
δ2) = 8πδ2|log δ| + O

(
δ2).

Thus Lemma 12 is completely proved. �
Calculation of (8.3) and (8.4). For brevity we show only (8.3) (the demonstration of (8.4) fol-
lows the same lines). Perform the change of variables ζ = F (x) to get, after simple computations,

∫
G

(
1 − |aξ |2

)2 dx =
∫

B1(0)\F (ω)

(
1 − |mF (ξ)|2

)2 dζ

Jac F (ζ )

= 1

Jac F (ξ)

∫
B1(0)

(
1 − ∣∣mF (ξ)(ζ )

∣∣2)2 dζ + O
(
δ2), (8.11)

where mμ(z) = (z − μ)/(μ̄z − 1) is the classical Möbius conformal map from the unit disk onto
itself. The integral in the right-hand side of (8.11) can be calculated explicitly. We obtain, by
using the coarea formula twice,

∫
B1(0)

(∣∣mμ(x)
∣∣2 − 1

)2 dx =
1∫

0

dt

∫
|mμ(x)|=t

(
t2 − 1

)2 dH1

|∇|mμ(x)||

=
1∫

0

(
t2 − 1

)2 d

t∫
0

dτ

∫
|mμ(x)|=τ

dH1

|∇|mμ(x)||

=
1∫

0

(
t2 − 1

)2 d
(
area

(
m−1

μ

(
Bt(0)

)))
.

Note that the inverse conformal map m−1
μ (z) coincides with mμ(z). Moreover, the inverse image

m−1
ξ (Bt (0)) of the disk Bt(0) is the disk Br(y) with the radius r = t (1 − |μ|2)/(1 − t2|μ|2) and

the center at y = μ(1 − t2)/(1 − t2|μ|2). Therefore we get, after integrating by parts,
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∫
B1(0)

(∣∣mμ(x)
∣∣2 − 1

)2 dx = 2
(
1 − |μ|2)2

π

1∫
0

(1 − t2)t2 dt2

(1 − t2|μ|2)2
,

and elementary calculations lead to the following asymptotic formula, as |μ| → 1 − 0

∫
B1(0)

(
1 − ∣∣mμ(ζ )

∣∣2)2 dζ = 2π
(
1 − |μ|2)2(∣∣log

(
1 − |μ|2)∣∣ + O(1)

)
. (8.12)

Finally, by the conformality of F we have

(
1 − ∣∣F (ξ)

∣∣2)2 = 4δ2 Jac F (ξ) + O
(
δ3). (8.13)

Thus (8.11), (8.12) and (8.13) yield (8.3).
Lemma 12 allows us to rewrite the lower bound (5.1) of Lemma 2 in the form

m(λ) = Fλ

[
uλ,Aλ

]
� π + 2π2

KG

δ2
∣∣∣∣∂V

∂ν

(
ξ̂ λ

)∣∣∣∣
2

− πδ2(1 − λ)|log δ|(1 + o(1)
) + o

(
δ2),

(8.14)

as λ → 1−0, where ξ̂ λ is the nearest point projection on ∂Ω of the point ξλ and δ = dist(ξλ, ∂Ω)

(δ = δ(λ) → 0). Recall that the point ξλ ∈ G was defined in Section 5 as the unique zero of the
auxiliary map θλ constructed by means of uλ and Aλ. By Lemma 9 we can redefine ξλ as the
unique zero (vortex) of uλ so that (8.14) remains valid. On the other hand, by (3.14), (8.1) and
Lemma 12,

m(λ) � I (ξ, λ) = π + 2π2

KG

δ̃2
∣∣∣∣∂V

∂ν
(ξ̂ )

∣∣∣∣
2

− π(1 − λ)
(
δ̃2|log δ̃| + O

(
δ̃2)) + o

(
δ̃2), (8.15)

where ξ̂ is an arbitrary point on ∂Ω and δ̃ > 0 is a small parameter (ξ̂ is the nearest point
projection on ∂Ω of ξ ∈ G and δ̃ = dist(ξ, ∂Ω)). It follows from (8.14) and (8.15) that, as
λ → 1 − 0:

(a) δ = exp( −2π
(1−λ)KG

| ∂V
∂ν

(ξ̂ λ)|2(1 + o(1)));

(b) | ∂V
∂ν

(ξ̂ λ)|2 → MG, where MG = min{| ∂V
∂ν

(ξ̂ )|2; ξ̂ ∈ ∂Ω} (> 0).

Thus we have, in particular, that the unique zero (vortex) of uλ converges (up to extracting a
subsequence) to a point minimizing | ∂V

∂ν
|2 on ∂Ω . This completes the proof of Theorem 1.
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