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Abstract

Osteoarthritis is a leading cause of pain and disability across the world. With an aging population its prevalence is
likely to further increase. Current accepted medical treatment strategies are aimed at symptom control rather than
disease modification. Surgical options including joint replacement are not without possible significant
complications. A growing interest in the area of regenerative medicine, led by an improved understanding of the
role of mesenchymal stem cells in tissue homeostasis and repair, has seen recent focused efforts to explore the
potential of stem cell therapies in the active management of symptomatic osteoarthritis. Encouragingly, results of
pre-clinical and clinical trials have provided initial evidence of efficacy and indicated safety in the therapeutic use of
mesenchymal stem cell therapies for the treatment of knee osteoarthritis. This paper explores the pathogenesis of
osteoarthritis and how mesenchymal stem cells may play a role in future management strategies of this disabling
condition.
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Background
Osteoarthritis (OA) is a major cause of disability and
chronic pain. With advances in modern medicine im-
proving the prevention, diagnosis and treatment of many
diseases that were once life-threatening, the population
is now living longer. This increased life expectancy has
led to an increased burden of degenerative conditions
including osteoarthritis.
It is estimated that at least 27 million people across

the United States of America are affected by arthritis,
with an estimated total annual cost to the US economy
of $89.1 billion US dollars [1]. Worldwide, arthritis is
considered to be the fourth leading cause of disability
[2]. In both the developed and developing world, osteo-
arthritis is an important factor affecting disability-
adjusted life years [3].
Osteoarthritis is a progressive and painful condition that

can affect both the young and the old and is a highly
prevalent condition in the Western world. It has a

radiological prevalence of up to 80 % in subjects over the
age of 65 years [4–6]. Symptomatic osteoarthritis affects
10 % of males and 18 % of females over the age of 45 years
[7]. Prevalence is likely to further increase given the in-
creasing proportion of older people in society [4, 5].
Current medical treatment strategies for OA are aimed

at pain reduction and symptom control rather than
disease modification. These pharmaceutical treatments
are limited and can have unwanted side effects [8, 9].
Viscosupplement/hyaluronic acid (HA) intra-articular in-
jections have been used to treat symptoms of mild to
moderate knee OA, however, their mechanism of action is
uncertain, with some studies suggesting little improve-
ment beyond that achieved with placebo injections [10].
Methods used for repair of articular cartilage lesions in-

clude autologous chondrocyte transplantation, microfrac-
ture, and mosaicplasty. These techniques are, however,
limited to the repair of focal defects and consequently we
lack a reparative technique for the more global/diffuse
pathology of OA.
Surgical total knee replacement (TKR) is the current ac-

cepted treatment of choice for symptomatic knee OA that
is not controlled by traditional conservative therapies. It is
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estimated that approximately 600,000 TKR procedures are
performed annually in the US [11]. Alarmingly – and
perhaps reflecting increased rates of obesity - an increas-
ing proportion of patients who undergo a TKR are under
the age of 65 [12]. Further, revision rates of primary TKR
are 2.5 times higher in patients under 65 years of age [13].
Not surprisingly it is estimated that the number of annual
total knee revision operations performed will grow by over
600 % between the years 2005 and 2030 [14].
Total knee replacements are not without significant

complication [15, 16]. As many as 20 % of patients will
continue to have knee pain and other problems post
TKR [17]. Significant complications such as death, pul-
monary embolism and infections requiring readmission
to hospital occur in up to 2 % of patients [18].
The health and economical impact of OA has seen it

become an international public health priority and has
led to the active exploration and research of alternative
regenerative and joint preservation therapies including
mesenchymal stem cells.

Pathobiology of osteoarthritis
Osteoarthritis is characterized by progressive and irre-
versible cartilage degeneration. The capacity of articular
cartilage to repair is inherently poor, with the relative
avascularity of cartilage, and hence lack of systemic
regulation, likely leading to an ineffective healing and
reparative response [19, 20].
Structurally the changes of OA are observed as combi-

nations of the following: loss of cartilage thickness, peri-
articular bone formation (osteophytes), subchondral
sclerosis, cyst formation and peri-articular tissue changes
(i.e., synovitis) [21].
Whilst both mechanical, genetic and other factors influ-

ence development of OA, the primary risk factor is age [22].
Components of the cartilage extracellular matrix (ECM) in-
cluding type II collagen and proteoglycans undergo age re-
lated structural changes, leading to likely alteration in the
biomechanical properties of the ECM [23]. Advanced glyco-
sylation end products also accumulate within cartilage, lead-
ing to increased cross-linking and altered biomechanical
properties [24]. These changes lead to a loss in the ability of
cartilage to adapt to mechanical stress/load.
Chondrocytes within the cartilage matrix also exhibit age

related changes. It has been proposed that reactive oxygen
species (free radicals) induced by mechanical or biological
stressors may lead to cell senescence [25]. Cell senescence
is accompanied by reduced growth factor response and
production, coupled with an observed upregulation of
inflammatory cytokine expression such as Interleukin-1
(IL-1), Tumor Necrosis Factor Alpha (TNFα) and Matrix
Metallopeptidase -13 (MMP-13) [26, 27]. IL-1 and TNFα
are primary drivers of a cytokine led degradation of cartil-
age [28].

These cytokines also directly stimulate the production
of other pro-inflammatory factors including IL-8, IL-6,
leukotriene inhibiting factor, proteases and prostaglandin
E2 (PGE2). IL-1 and TNFα both increase synthesis of
MMP and decrease MMP enzyme inhibitors, resulting
in a net catabolic environment and loss of extracellular
matrix [28]. MMP-13 serves as a major mediator of type
II collagen cleavage and matrix degradation [26, 29]. An-
other catabolic cytokine MMP-7 (mattrolysin) has been
localized to chondrocytes in the superficial and transi-
tional layers in OA but not the deeper layers [30].
Nitric Oxide (NO) is a free radical that has also been

implicated in the pathology of OA. Both NO and NO
Synthase are synthesized by chondrocytes. NO has an
ability to inhibit proteoglycan synthesis and also to in-
hibit the effect of IGF-1 on chondrocytes. It is thought
to also perhaps play a role in the apoptosis of chondro-
cytes [31, 32]. Further, chondrocyte apoptosis leads to
the formation of apoptotic bodies which express cata-
bolic properties. These may contribute to the observed
abnormal chondral calcification and osteophyte forma-
tion that is seen in OA [32].
Evidently there are a host of enzymatic compounds that

are involved in the disruption of the collagen matrix lead-
ing to the degradative process of OA. However, despite
OA being considered a degenerative condition, several
studies have confirmed that in areas of OA, many chon-
dral cells demonstrate enhanced synthesis of extracellular
matrix components [33–39]. This anabolic response, how-
ever, seems to be limited to the deeper chondral zones,
with the upper zones exhibiting reduced expression of
matrix components such as agrecan [28, 40].
Whilst chondrocytes may remain active in the area of

OA, research has indicated that they can undergo dedif-
ferentiation as a result of interaction with the changing
ECM environment. Chondrocytes in the upper to middle
zones are seen to express type III rather than type II col-
lagen and in fact those cells in the deeper zones display
Type X collagen expression - typical of cartilage within
growth plates and prone to ossification [28, 41].
These observed differences in anabolic and catabolic

processes, and presence of degradative cytokines
within chondrocytes of differing layers, may explain
the progressive nature of OA from superficial to deep
zones.
Changes of osteoarthritis are not only limited and influ-

enced by the cartilage environment. It is understood that
the process of degeneration is also under the influence by
the release of pro-inflammatory mediators from the syno-
vium. This seems in part the effect of synovial originating
cytotoxic M1 macrophages on the down-regulation of
chondrogenic gene expression of mesenchymal stem cells
(MSCs) [42]. Low-grade synovial inflammation – observed
in OA - is also associated with increased expression of
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catabolic mediators including PGE2, NO and neuropep-
tides [43].
Interestingly, evidence indicates that osteoarthritis is

associated with a depleted local population of stromal
MSCs, and those that exist exhibit reduced proliferative
and differentiation capacity [44, 45]. The depletion and
functional alteration/down regulation of MSC popula-
tions with reduced differentiation capacity has also been
postulated as a cause for progressive degenerative OA
[46, 47]. Despite these findings, it has been noted that
there exists MSCs with chondrogenic differentiation po-
tential in patients with OA, irrespective of age or the eti-
ology of disease [48].
Other important contributing factors which affect both

the onset and progression of OA – but which are not a
focus of this article - include obesity, history of trauma,
genetics, muscle weakness and various heritable and ac-
quired disorders [49].
Simplistically it is accepted that OA occurs when there

exists an imbalance between inflammatory/catabolic and
anabolic pathways. Age related loss of the ability of
chondrocytes and tissues within the ECM to maintain a
homeostasis between these pathways, leads to a pro-
catabolic state favoring matrix degradation [50]. This
loss of homeostasis and inability to adapt to external
mechanical stressors results in the development of OA.
Acknowledgement of this imbalance between catabolic

and anabolic pathways has led to renewed interest in
therapies that may be able to influence and encourage
maintenance of an appropriate chondral homeostasis.

Mesenchymal stem cells
Mesenchymal stem cell properties
Regenerative cellular therapies, rather than being unique
and experimental, are well established and practiced in
the area of blood transfusion, bone marrow and tissue
transplantation and reproductive in-vitro fertilization.
It has been over 40 years since mesenchymal stem cells

were first characterized by Dr Alexander Friedenstein. They
were initially recognized in bone marrow and display plasti-
city and multipotency. Similar cells have been shown to be
present in other tissues including peripheral blood, cord
blood, skeletal muscle, heart and adipose tissue [51, 52].
The presence of these cells within other tissues has meant
that they are perhaps more accurately described as mesen-
chymal stromal cells.
MSCs are able to form cells of the mesodermal

lineage, being able to differentiate towards osteoblasts,
chondrocytes and adipocytes [52–54]. Their presence
throughout the body suggests an intrinsic role in tissue
repair and regeneration.
Several in vitro techniques have been explored to as-

sist MSCs to differentiate along a path of chondrogene-
sis. Both Transforming Growth Factor Beta 1 (TGFβ1)

and Insulin-Like Growth Factor 1 (IGF-1) act synergis-
tically to stimulate chondrogenesis. This is in part medi-
ated by MAPKinase and Wnt signaling pathways [55, 56].
Importantly the expression of collagen type II and pro-
teoglycans associated with hyaline cartilage are similar in
in-vitro MSC derived chondrocytes to mature adult chon-
drocytes [56]. Other compounds found to assist in the
propagation of MSCs along a chondrogenic lineage are
dexamethasone [57], some bone morphogenic proteins
(BMP) – primarily BMP-7 [58], and fibroblast growth fac-
tor (FGF-2) [59].
Whilst evidence of the capacity of MSCs to differenti-

ate along a chosen cell lineage represents great promise
in the area of regenerative medicine it is postulated that
their beneficial effect is also achieved through an immu-
nomodulatory and paracrine mechanism and hence ma-
nipulation of the disease process [60].
MSCs are observed to suppress inflammatory T–cell

proliferation, and inhibit maturation of monocytes and
myeloid dendritic cells resulting in an immunomodulatory
and anti-inflammatory effect. This immunomodulatory
mechanism raises potential for their use in auto-immune
mediated inflammatory conditions including inflammatory
arthropathies [61].
Along with their immunomodulatory and differenti-

ation potential, MSCs have been shown to express es-
sential cytokines including Transforming Growth Factor
beta (TGFβ), Vascular Endothelial Growth Factor
(VEGF), Epidermal Growth Factor (EGF) and an array of
bioactive molecules that stimulate local tissue repair
[62–64]. These trophic factors, and the direct cell to cell
contact between MSCs and chondrocytes, have been ob-
served to influence chondrogenic differentiation and car-
tilage matrix formation [65, 66]. Importantly, analysis of
mRNA levels within cartilage chondrocytes present at
end stage arthritis, indicates that endogenous cells are
not inert and remain metabolically active and continue
to synthesize cartilage proteins. This supports the hy-
pothesis that MSCs may be able to assist the existing
chondrocytes - much like what is observed in their peri-
vascular stromal role within the bone marrow.
Indeed, the anti-inflammatory, anti-apoptotic, and

anti-fibrotic mechanisms influenced by the properties of
MSCs may be their primary mode of activity [67].
Autologous MSCs can differentiate into cartilage and

bone supporting their potential in the treatment in
OA [68, 69]. Further research highlighting the pro-
inflammatory cytokines involved in the destruction of
hyaline cartilage and development of degenerative osteo-
arthritis has also highlighted the potential of MSCs as a
disease modifying agent due to their immunomodulatory/
anti-inflammatory properties [27]. An ability to migrate to
sites of injury, inhibit pro-inflammatory pathways and pro-
mote tissue repair through release of anabolic cytokines
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and direct differentiation into an array of specialized con-
nective tissue cells, has led to renewed focus on MSCs in
the area of regenerative medicine.

Mesenchymal stem cell characterization
MSCs are a heterogeneous population of cells that lack a
specific and unique marker. It is postulated that it is
their heterogeneity that allows MSCs to respond to a
wide variety of cues in the local environment, and there-
fore carry out a number of functions [70].
MSCs are characterized by their plastic adherent prop-

erties and expression of several surface antigens includ-
ing CD105, CD 90 and CD73, and their absence of
hematopoietic markers CD34, CD45, CD14 or CD11b,
CD79α or CD19 and also the absence of HLA Class II
molecules [71].
The international Society of Cellular Therapy has pro-

posed that the MSC population must exhibit at least
≥95 % expression of CD105, CD73 and CD 90 and ≤2 %
of hematopoietic markers for an accepted level of purity.
Further, these cells must be able to show an ability to
differentiate along osteogenic, chondrogenic or adipo-
genic cell lines [71].

Source of mesenchymal stem cells
Mesenchymal stem cells are found throughout the adult
body – hence they are often referred to as mesenchymal
stromal cells. The ability to use adult MSCs placates the
ethical concerns of using embryonic stem cells. The best
source of adult MSCs, however, remains unclear. Several
different tissues have been explored including bone mar-
row, adipose tissue, and umbilical cord tissue (Wharton’s
jelly).
Traditionally bone marrow has been used as a source of

MSCs, though research has shown a relative paucity of
MSCs within bone marrow aspirates (BMA) – comprising
only .001–.02 % of mononucleated cells isolated from as-
pirates [72, 73]. In comparison, human adipose tissue
through a lipoaspirate procedure, yields MSC numbers of
~ 1–7 % of the nucleated cell population [74]. Its ease of
harvest and the relative abundance of MSCs in adipose
tissue has seen this method increasingly used for autolo-
gous therapies.
Whilst past research has indicated bone marrow MSCs

to have superior chondro-progenitor capacity, a number
of recent publications have indicated comparative chon-
drogenic ability of MSCs from either bone marrow or
adipose tissue [48, 74–77].
Past research has indicated that MSCs exhibit reduced

proliferative and differentiation capacity with age [44, 45] –
with some authors proposing this as a cause of age related
degenerative conditions. Human umbilical cord perivascu-
lar cells (HUCPVCs) – otherwise known as Wharton’s
Jelly – are a rich source of mesenchymal stem cells [78].

HUCPVCs are closer to an embryonic cell lineage and are
robust/stable, show increased differentiation capacity and
retain properties of true stem cells even after extended in-
vitro expansion/culture [79]. Further, HUCPVCs appear
to lack tumorgenicity and, even when used in the presence
of cancer, are not associated with enhanced growth of
solid tumors [80].
Like MSCs of other origins, HUPVCs are hypo-

immunogenic and therefore offer promise as an allogen-
eic source. MSCs are negative for HLA Class II surface
antigens and express only low levels of HLA Class I anti-
gens [81]. Perhaps surprisingly, as MSCs differentiate to-
wards chondrocytes, adipocytes or osteocytes, they
continue to be non-immunogenic and lack HLA Class II
expression.
The chosen source of MSCs is dependent upon ease of

harvest and the differentiation capacity towards a chosen
tissue. Whilst autologous therapies offer an attractive
option, the cost of individual harvest, isolation and
expansion of cells in an appropriate `clean facility’, is
obstructive. Allogeneic MSC therapies may offer ac-
cessibility of disease modifying regenerative therapies
to the broader community.

Current regenerative techniques
With an aging population, and an alarmingly increasing
rate of total joint replacements being performed on
those under the age of 65, there has been significant
focus on regenerative joint preservation techniques.
These include: autologous chondrocyte transplantation
(ACT), mosaicplasty, and microfracture. Whilst they are
limited to isolated areas of chondral loss and are less
adaptable to the generalized degenerative changes as
seen in arthritis they are often considered, when clinic-
ally appropriate, in an attempt to improve both pain and
function, delay progression to arthritis and therefore to
delay the later need for total joint replacement. Whilst
not a focus of this review, as current mesenchymal stem
cell based therapies are often modeled and compared to
these techniques, it is important to understand the the-
ory and observed clinical efficacy of these accepted sur-
gical approaches.

Autologous chondrocyte transplantation
ACT involves the autologous harvesting of cartilage
from a non-weight bearing area. Chondrocytes are then
isolated from the cartilage and seeded in vitro in mono-
layer culture and expanded. They are injected into the
chondral defect and a cover – traditionally a periosteal
flap – is then sutured in place to secure the chondrocyte
graft [82].
Preclinical trials have successfully shown this method

to be successful in resulting in hyaline like cartilage re-
growth/repair compared to control groups [83–85].
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ACT clinical results have correspondingly been en-
couraging with reasonable observed long-term durability
[82, 86]. However, despite these encouraging clinical
outcomes, there remains a lack of comparative, con-
trolled, long-term clinical studies.
ACT is limited by the paucity of autograft donor sites,

damage caused by the technique of harvesting and at
times poor integration of the grafted defect with sur-
rounding cartilage [87]. Further, studies have indicated
that up to 40 % of ACTs show evidence of chondrocyte
dedifferentiation. This may be linked to the down regu-
lation of chondrocytes during ex vivo culture resulting
in the production of collagen type I rather than type
II [88, 89]. This down regulation of chondrocytes is not
only an effect of dedifferentiation during the monolayer
expansion phase but is also understood to be due to the
loss of interaction between the implanted chondrocyte
and a normal surrounding ECM.
Down regulation of chondrocytes with expression of

type I collagen may lead to formation of fibrocartilage
rather than hyaline cartilage, with resultant reduced load
bearing properties. Roberts and colleagues showed vary-
ing histology of ACT sites biopsied up to 34 months post
implantation with predominantly hyaline features in
22 % of specimens, fibrocartilage formation in 30 % and
a mixed collagen population in 48 % of samples [90].
Donor site morbidity, down regulation of chondrocytes

with fibrocartilage formation and poor integration has
meant that we continue to need to explore and develop-
ment other alternative techniques in chondral defect re-
pair. A further limitation of ACT is that its current use in
the treatment of isolated chondral defects does not easily
translate to treatment of the more global chondral degen-
erative changes as found in generalized OA.

Microfracture
Microfracture – otherwise known as osteoplasty - has be-
come a commonly used surgical technique to assist in
stimulating a healing response at the site of an isolated
chondral defect. The procedure involves the drilling or
punching of holes through the subchondral plate at the
site of a full thickness chondral defect. This stimulates an
inflammatory response, and the subsequent migration of
bone marrow derived pluripotent cells to the articular sur-
face creates an environment amenable to healing [91].
Whilst several studies have successfully demonstrated a

cartilaginous response at the sites of microfracture, histo-
logical analysis has suggested that the resultant tissue is
consistent with collagen type I fibrocartilage rather than
the hyaline – collagen type II - cartilage typical of normal
articular surfaces [92, 93]. Although effective short to
medium term functional improvement of joint function
has been noted following microfracture, long-term results
are less encouraging. Follow-up of 33 ankles post

arthroscopic microfracture for ankle talus lesions found a
disappointing fair to poor clinical outcome in 54 % of pa-
tients at a mean follow up of 66 months [94].
Inadequate defect filling, and the poor load bearing

quality of fibrocartilage with early degeneration, have
been postulated as reasons for poor long-term outcome
following microfracture [95, 96].

Mosaicplasty
Mosaicplasty involves the use of autologous osteochon-
dral grafts to an area of full thickness chondral loss of
up to 9 mm. Grafts are taken from areas of non-weight
bearing at the periphery of the joint and transplanted to
the site of the defect. It is expected that fibrocartilagi-
nous growth will occur between these grafts, acting as
`grouting’ for the mosaicplasty [97].
Several follow up studies have, however, indicated the

resorption of the chondral layer of the graft and degen-
eration of the surrounding chondral surface [98, 99]. A
randomized controlled trial comparing mosaicplasty ver-
sus ACT in osteochondral defects of the knee, demon-
strated at 12 months follow-up arthroscopy excellent or
good results in 82 % of patients who received ACT ver-
sus only 34 % patients after mosaicplasty [100]. As ACT
techniques have also shown success even in areas of
osteochondral loss with significant depth of cancelous
defect, the reasoning to perform mosaicplasty is less
apparent.

MSCs and cartilage repair
MSCs, due to ease of harvest and isolation with minimal
donor site morbidity, coupled with an ability to expand
into chondrocytes, have meant that they have been ac-
tively explored in regards to tissue engineering and
repair.

MSC scaffold transplantation techniques – preclinical
results
Preclinical trials using techniques similar to ACT, but
substituting the chondrocytes with MSCs, have shown
positive results with formation of tissue with histological
properties consistent with hyaline cartilage and a high
type II collagen presence [101, 102]. The efficacy of mes-
enchymal cellular scaffold constructs has been further
substantiated with a porcine model, which again showed
hyaline like cartilage regeneration at 3 and 6 months
post implantation [103].
Dragoo and colleagues used isolated and expanded

adipose derived MSCs in fibrin glue to treat chondral
defects in rabbits [104]. Post treatment histological ana-
lysis showed hyaline like cartilage repair in 12 of 12 sub-
jects, versus only 1 in 12 control subjects, supporting
the use of cellular tissue matrixes in tissue engineering.
Other studies, which have pre-differentiated the MSCs

Freitag et al. BMC Musculoskeletal Disorders  (2016) 17:230 Page 5 of 13



towards chondrocytes prior to implantation, have simi-
larly shown success [105–107].

MSC scaffold transplantation techniques – clinical results
The results of initial clinical studies have reflected the
results of preclinical trials. Wakitani and colleagues suc-
cessfully transplanted isolated MSCs - seeded onto a
type I collagen network - to an area of chondral defect,
resulting in successful filling of the defect [108]. Later
biopsy at two years indicated hyaline like cartilage with
type II collagen on histological evaluation.
Nejadnkik and colleagues published their results of a

comparative cohort study assessing both the safety and
efficacy of bone marrow MSC impregnated scaffolds
(n = 36) in direct comparison to autologous chondrocyte
transplantation (n = 36) for an isolated chondral defect
[109]. There was no difference between these groups in
clinical outcome.
Interestingly, these positive findings, however, are in

contrast to earlier research that suggested transplanted
MSCs might result in hypertrophic chondrocyte differenti-
ation and expression of collagen type X [110]. Collagen
Type X is associated with endochondral ossification [111].

MSC injectable techniques – preclinical results
Recognizing the limitation of biological scaffolds in the
treatment of OA – where there exists more diffuse car-
tilage loss rather than an isolated cartilage lesion - other
researchers have sought to assess the effect of intra-
articular MSC injections.
Preclinical trials have successfully indicated the benefit

of MSC intra-articular injections on improvement in
function, though results have been inconsistent on car-
tilage restoration. Some studies, whilst indicating signifi-
cant pain and functional improvement, have not seen
any observable difference in disease progression against
controls, whilst others have successfully shown disease
modification.
In a mono-iodoacetate induced rat model of OA, use

of intra-articular bone marrow MSCs, resulted in ani-
mals being able to distribute significantly greater weight
through the affected limb. In contrast to this functional
improvement, no statistically significant difference be-
tween the treatment and control groups, in regard to
cartilage and subchondral bone pathology and synovial
inflammation, was observed [112].
In a surgically induced model of OA in the goat, intra-

articular injections of labeled bone marrow MSCs re-
sulted in regeneration of chondral tissue in comparison
to the control group. This observation was made despite
the relative lack of labeled MSCs being later found
within the regenerative cartilage area [113]. Further, in a
later porcine model, MSC injectable therapies again

showed preclinical efficacy with improved cartilage heal-
ing of chondral defects when compared to control [114].
The use of MSC based therapy in conjunction with

the accepted surgical technique of microfracture has
been explored in a surgically induced isolated chondral
lesion goat model. Post microfracture intra-articular in-
jections of bone marrow aspirate (BMA) in combination
with hyaluronic acid resulted in both improved integra-
tion of tissue and superior quality of tissue repair with
type II collagen represented on histology [115].
Black and colleagues assessed the clinical effect of adi-

pose derived MSCs within a randomized, placebo con-
trolled trial showing a significant improvement in
lameness and range of motion in dogs following a single
intra-articular adipose derived MSC injection [116].

MSC injectable techniques – clinical results
Similarly to preclinical results, clinical trials using inject-
able MSC techniques have reproducibly shown pain and
function improvements, though observation of disease
modification has been less consistent.
Using a combination of both isolated bone marrow

MSCs, BMA and platelet lysate, Centeno and colleagues
have published the observed improvement in both chon-
dral volume and meniscus volume in two limited case
studies [117, 118]. In 2011, Centeno later published a
case series of 339 patients, reporting that of those pa-
tients requiring total knee replacement (69 % of the pa-
tient cohort) only 6.9 % still required replacement
surgery after MSC therapy. Sixty percent of patients re-
ported >50 % pain relief and 40 % reported >75 % pain
relief at 11 months [119].
The success of such combination therapy has also

been indicated by a limited case series assessing the ben-
efits of adipose derived MSC, where MSC was combined
with both a platelet lysate and a hyaluronic acid carrier
with additional use of low dose dexamethasone [120].
Again, both functional and disease modification was
observed.
Indication of disease modification has had further sub-

stantiation with Kuroda and colleagues successfully
treating a femoral condyle cartilage defect with autolo-
gous bone marrow MSCs, showing repair with `hyaline-
like’ tissue at later arthroscopy and biopsy [121]. In an-
other study, use of a single intra-articular injection of
autologous isolated expanded bone marrow derived
MSCs resulted in both pain and functional improvement
in all patients and increased cartilage thickness in 3 out
of 6 patients [122]. The authors of this article, however,
did note an increase in pain after 6 months, suggesting
that a repeat injection may be of benefit.
Extending upon the observed positive preclinical out-

come of the use of MSCs in conjunction with arthro-
scopic techniques, Saw and colleagues have recently
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published a randomized controlled trial involving the
use of peripheral blood MSCs in combination with
arthroscopic microfracture/microdrilling of chondral le-
sions. Importantly, the participant group receiving MSCs
showed significant improvement in the quality of articu-
lar cartilage repair (by histological and MRI evaluation)
in comparison to the control group that underwent
microfracture and hyaluronic acid injections alone [123].
A randomized clinical trial assessing the efficacy of MSCs

post arthroscopic partial medical meniscectomy, showed
improvement in clinical outcome in comparison to control
but also evidence of regeneration of meniscal volume [124].
Most recently, Phase I and II trials using expanded

adipose derived MSCs in the treatment of OA have
shown MRI evidence of cartilage regrowth [125]. Follow-
ing a single intra-articular injection of 100 million
MSCs, radiological (MRI) follow-up at 6 months showed
increased cartilage volume and histological assessment
confirmed hyaline–like cartilage regeneration with the
presence of type II collagen.
Similarly, the use of allogeneic bone marrow MSCs in

symptomatic osteoarthritis that was unresponsive to
conservative management, has resulted in both pain ad
functional improvement and significant improvements
in cartilage quality on T2 MRI cartilage mapping at
12 months in comparison to controls [126].
These positive results showing disease modification

are in contrast to a limited case series of four patients,
where each patient received isolated adipose derived
MSCs. Whilst functional improvement was noted at fol-
low up, no structural change and joint space improve-
ment was noted at repeat imaging – though this only
involved X-ray rather than MRI [127]. The authors ac-
knowledged that cell number, use of co-stimulators/car-
rier media (i.e., Platelet Lysate), the number and
frequency of injections, and also stage of disease, might
have influenced outcome.
A recent Phase 1 dosing trial on the use of adipose de-

rived MSCs in severe osteoarthritis indicated a signifi-
cant effect over a 12 month follow-up on the need for
total joint replacement with only 2 out of the 18 patients
still requiring arthroplasty [128]. This is similar to Cen-
teno’s observation of the effect of MSC based therapy in
delaying need for joint replacement.
Despite MSCs being commonly associated with regenera-

tive medicine, and level IV evidence of chondral regrowth
and disease modification, there is a paucity of well-
controlled trials assessing structural outcome (see Table 1).
Tucker and colleagues have appropriately highlighted that
future research in the area of cellular therapies needs to
focus on what they have termed an `outcome triad’ [129].
This includes - a) molecular and cellular responses both
intra-articularly and systemically; b) clinical outcome – pain
and function; c) structural outcome.

The reproducible pain and functional improvement
seen with MSC injectable therapies, raises the question
of whether the biological mechanism of action may be a
strong anti-inflammatory effect - including on neuro-
genic inflammation – rather than regeneration. Further,
the observed disease modification in studies that use
combination therapy suggests that the efficacy of MSC
therapies may be influenced by additional agents includ-
ing platelet concentrates and hyaluronic acid - though
this creates a further layer of confusion regarding cause
and effect.

MSC + carrier media
Platelet concentrate/platelet-rich plasma
The function of MSCs has been explored under the in-
fluence of bioactive carriers such as platelet-rich plasma
(PRP). Platelets contain greater than 1500 protein based
factors with bioactive ability [130]. This broad spectrum
of compounds includes growth factors, peptide hor-
mones, chemokines, fibrin and also proteins with anti-
bacterial and fungicidal properties.
Growth factors released by platelets may potentially

play a positive role in the up regulation of MSCs. TGFβ1
is seen to reduce collagen type I gene expression and up
regulate expression of collage type II and aggrecan genes
[131]. Further, TGFβ1 works in association with basic
Fibroblast Growth Factor (FGF2) to assist in the migra-
tion of stromal cells to a site of injury [132, 133].
Importantly, whilst in vitro studies indicate the poten-

tial benefits of PRP in the modification of OA pathways,
these preclinical results have not been observed in clin-
ical trials where, despite an observed pain and functional
improvement, PRP therapy in isolation has not been
associated with disease modification and structural
change.
The combination of PRP with MSCs in intra-articular

injections has shown increased collagen type II expres-
sion and reduced chondrocyte apoptosis [134]. FGF2
also plays a critical role in suppressing collagen Type X
formation and hence may also have an ability to prevent
hypertrophic endo ossification [135]. Both symptomatic
and structural improvement has been noted in a recent
case series using a combination of PRP with MSC [136].
MSCs seeded in a PRP scaffold have been shown to

both proliferate and express cartilage marker genes,
resulting in improved cartilage differentiation and suc-
cessful repair of chondral defects in rabbits [137]. Simi-
lar results were observed in an early pilot case study by
Haleem and colleagues [138].
Further studies have indicated the combined benefits

of using PRP in an ACT approach with a hydrogel scaf-
fold seeded with both chondrocytes and PRP [139]. This
application was used successfully in a broad cohort study
of 81 patients with OCD of the ankle [140].
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PRP has an anabolic effect on both chondrocytes and
MSCs – assisting in proliferation, inhibiting deregulation
and also assisting in matrix development that further
supports appropriate chondrocyte and stem cell
development.
The issue of PRP remains the variability in both its

preparation and the resultant amount of bioactive fac-
tors that it expresses. Platelet count can also vary de-
pending on the donor’s age, health, hydration and
gender. Further, there are factors within PRP that may
have unwanted effects on both the joints and MSCs –
i.e. Vascular Endothelial Growth Factor.

Hyaluronic acid
Preclinical studies have often used MSCs suspended in a
hyaluronic acid (HA) based media with good efficacy.
Murphy and colleagues showed successful regeneration
of chondral tissue in a goat model with surgically in-
duced OA [113]. Many clinical trials of MSC therapies
have similarly used HA as a carrier media [120, 123].
The benefits of hyaluronic acid may be more than just

its action as a carrier. Preclinical studies have observed

both enhancement of synovial cell migration and chon-
drocyte migration with the application of HA in combin-
ation with FGF2 [141]. The observed interaction of HA
with both MSCs and chondrocytes, through cell surface
receptors CD44 and RHAMM (Receptor for Hyaluronic
Acid Mediated Migration), indicates that HA may facili-
tate migration and adherence of MSCs to a chondral de-
fect [114, 142–144].
Further, hyaluronic acid hydrogels have been shown to

be an effective 3-dimensional environment in which
MSCs both proliferate and express early changes associ-
ated with chondrogenesis [145].

Safety
The investigation of MSCs in the treatment of various
conditions including OA continues to grow. The National
Institutes of Health lists 404 current trials in the area of
MSCs [146]. With such continued interest in the possible
clinical applications of MSC therapies, it is imperative to
determine not just efficacy but also safety.
Rubio and colleagues in a controversial study in 2005

questioned the safety of adipose derived MSCs [147].

Table 1 Summary of regenerative techniques

Technique Indication Outcome Level of
evidence

Ref

Autologous Chondrocyte
Transplantation

Isolated chondral defects Benefits
- can result in hyaline like cartilage formation
- observed pain and functional improvement
Limitations
- donor site morbidity
- poor integration with surrounding tissue
- may result in fibrocartilage formation

Level II-V [82–90]

MIcrofracture Isolated chondral defects Benefits
- single stage surgical technique
- observed pain and functional improvement
Limitations
- fibrocartilage formation
- inadequate defect filling
- poor long term outcome

Level I-V [92–96]

Mosaicplasty Isolated osteochondral
defects

Benefits
- use in deep osteochondral defects
Limitations
- graft resorption
- donor site morbidity
- poor long term outcome

Level II-V [98–100]

MSC Scaffold Transplantation Isolated chondral defects Benefits
- hyaline like cartilage repair
- nil donor site morbidity
- observed pain and functional improvement
Limitations
- potential chondrocyte hypertrophy

Level II- V [108–111]

MSC Injectable Techniques Isolated chondral defects
Osteoarthritis

Benefits
- use in generalized arthritis
- relatively simple application
- observed pain and functional improvement
Limitations
- limited evidence of efficacy
- inconsistent observation of disease
modification

Level II-V [117–128]
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After in vitro culture over 4 months they demonstrated
spontaneous stem cell transformation and development
of malignancy when implanted in immune-deficient
mice. Later this study was retracted after evidence indi-
cated that the malignant transformation related to a
contaminant cell line and not the MSCs [148]. In similar
circumstances, a later study on long term cultured Bone
Marrow MSCs - with evidence of malignant transform-
ation - was retracted on identical grounds [149, 150].
A recent publication studying bone marrow and hep-

atic MSCs showed evidence of abnormal cell growth
after culture beyond 5 weeks, with development of ma-
lignancy in immune-deficient mice [151]. They noted
loss of MSC markers and also identified RNA/DNA gene
sequences that may serve as biomarkers of cell trans-
formation. In contrast to these findings, Bernado and
colleagues demonstrated no abnormal growth of bone
marrow MSCs after 25 passages or senescence and fur-
ther culture for 8–12 weeks [152].
Importantly, based upon current clinical trial out-

comes, MSC therapy appears safe. A recent systematic
review and meta-analysis of trials involving a total of
1012 participants receiving intra-vascular MSC therapy
for various clinical conditions including ischaemic
stroke, Crohn’s disease, cardiomyopathy, ischaemic heart
disease and graft versus host disease, did not identify
any significant adverse events other than transient fever
[153]. Patients were followed up in some studies for over
90 months. This meta-analysis included both autologous
and allogeneic MSCs and also expanded/cultured cells.
Further, systematic review of clinical studies involving

the use of intra-articular injections of autologous ex-
panded MSCs, with a mean follow-up of 21 months of
844 procedures, showed no association with adverse
events such as infection, death or malignancy [154].
Additionally, the use of carrier media’s such as PRP

may improve safety further with PRP displaying both
anti-bacterial and fungicidal properties [155].

Conclusion
Osteoarthritis is a progressive and degenerative condition.
With an aging population it promises to remain a signifi-
cant cause of pain and disability. Whilst osteoarthritis is
an active, inflammatory and progressive condition, there
has been no development of disease modifying pharma-
ceutical therapies. Indeed, all currently accepted therapies
are aimed at symptom control rather than disease preven-
tion. Current conservative management strategies fail to
alter disease progression and surgical management in the
form of joint replacement is associated with not insignifi-
cant complications.
Methods for the repair of articular cartilage lesions –

including surgical microfracture and cellular scaffold
transplantation – have been investigated with success in

both preclinical and clinical trials. Unfortunately, these
techniques are limited to the repair of focal lesions only
and are not easily transferable to osteoarthritis, where
there is more generalized loss of cartilage volume.
Intra-articular injections of MSCs have resulted in

pain and functional improvement in a number of pre-
clinical and clinical trials. Importantly, recent limited
case series evidence has shown regrowth of cartilage vol-
ume and disease modification following MSC injections.
Whilst recognizing the low level of scientific evidence
(Level IV), a significant increase in cartilage volume in
an accepted degenerative and progressive condition rep-
resents an exciting development.
Despite initial concerns regarding MSC therapies, sys-

tematic review of clinical trials has indicated a relative
safety in both intravascular and intra-articular injections.
Evidence does support however that caution needs to be
undertaken when culturing/expanding these cells.
The burden of musculoskeletal disease is progressively

expanding and highlights the need for both preventative
and reparative therapies rather than commonly accepted
pain management interventions. MSC based cell therap-
ies offer an exciting possibility in the treatment of OA
and importantly show promise in disease modification,
with potential inhibition of progression and recent evi-
dence of reversal of this degenerative process. Import-
antly further randomized controlled trials are needed to
evaluate the most effective application of MSCs in osteo-
arthritis management.
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