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Abstract Cellular ageing is characterized by the accumulation
of oxidatively modified proteins which may be due to increased
protein damage and/or decreased elimination of oxidized protein.
Since the proteasome is in charge of protein turnover and re-
moval of oxidized protein, its fate during ageing and upon oxida-
tive stress has received special attention, and evidence has been
provided for an age-related impairment of proteasome function.
However, proteins when oxidized at the level of sulfur-containing
amino acids can also be repaired. Therefore, the fate of the
methionine sulfoxide reductase system during ageing has also
been addressed as well as its role in protection against oxidative
stress.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Reactive oxygen species-mediated damage to cellular com-

ponents is believed to be a main contributor to the ageing pro-

cess [1,2]. Oxidized protein build up represents a hallmark of

cellular ageing, a process that results, at least in part from a

failure of protein maintenance [3,4]. Indeed, the age-related

accumulation of oxidized protein has been proposed to be

due to either or both increased protein oxidative damage and

decreased oxidized protein degradation and repair (see

Fig. 1). In the cytosol and the nucleus, the proteasome has

been described as the main intracellular proteolytic pathway

implicated in both the degradation of oxidized proteins and

the general turnover of proteins [5,6], while the Lon protease

has been shown to selectively degrade oxidized proteins within

the mitochondrial matrix [7]. More recently, chaperone-medi-

ated autophagy has also been shown to be activated upon oxi-

dative stress [8]. Beside degradation, certain types of protein

oxidative damage affecting sulfur-containing amino acids have

been found to be reversible, hence leading to the possibility

that some oxidized proteins could be repaired [9,10]. Indeed,

several oxidation products of methionine and cysteine, that

are among the most susceptible amino acids to oxidative mod-
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ification, can be reversed by dedicated enzymatic systems. Thi-

oredoxin/thioredoxin reductase and glutaredoxin/glutathione/

glutathione reductase can reverse the oxidation of disulfide

bridges and cysteine sulfenic acids [10], while methionine sulf-

oxide reductases catalyze the reduction of methionine sulfox-

ide back to methionine within proteins [9]. An age-related

impairment of oxidized protein elimination (i.e., degradation

and repair) would therefore be expected to affect intracellular

protein homeostasis and to promote accumulation of oxida-

tively modified protein. In this minireview, the fate of these

oxidized protein degradation and repair systems during ageing

and upon oxidative stress will be addressed as well as their con-

tribution to protection against oxidative stress. Understanding

the mechanisms by which these crucial protein maintenance

systems are affected during ageing may open new strategies

for delaying ageing and increasing cellular resistance to oxida-

tive stress.
2. Reversible and irreversible protein oxidative damage

Protein oxidation results from the reaction of reactive oxy-

gen species (superoxide, hydrogen peroxide, and hydroxyl rad-

ical) and reactive nitrogen species (nitric oxide and

peroxynitrite) with both amino acid side chains and peptidic

backbone [2]. Such reactive species are produced endoge-

neously by intracellular aerobic metabolism, specially at the

peroxisome and the mitochondria level [1]. In addition, the

production of reactive oxygen/nitrogen species can be pro-

moted by different oxidative stress (UV irradiation, inflamma-

tion, ischemia–reperfusion, etc). Upon oxidative stress or

under physiopathological conditions, an increased production

of reactive oxygen/nitrogen species will disrupt the cellular re-

dox homeostasis and provoke damage to cellular components

(lipids, nucleic acids, and proteins). Oxidative damage to pro-

teins can virtually affect all amino acids, sulfur-containing ami-

no acids and aromatic amino acids being the most susceptible

to oxidation [2] . Interestingly, certain oxidation products of

cysteine and methionine are reversible since they can be

brought back to the reduced form of the amino acid within

proteins by specific enzymatic systems which correspond to

oxidized protein repair enzymes [9,10].

Concerning cysteine oxidation products, the thioredoxin/thi-

oredoxin reductase system has been implicated in the reduction

of disulfide bridges and cystein sulfenic acid, while both

disulfide bridges and low molecular mixed disulfides such as

glutathione adducts are reduced by the glutaredoxin/glutathi-
blished by Elsevier B.V. All rights reserved.
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one/glutathione reductase system [10]. Thioredoxin and glut-

aredoxin are small ubiquitous proteins belonging to the

thiol/disulfide oxidoreductase family, the members of which

contain a redox active center made of two cysteins that can

form a disulfide bridge upon oxidation. Oxidized thioredoxin

is then reduced by thioredoxine reductase, a selenocysteine

and flavin containing enzyme, in a NADPH dependant man-

ner, while oxidized glutaredoxin is reduced by glutathione

reductase also in a NADPH dependent manner. Interestingly,

in eukaryotes, both thioredoxin/thioredoxin reductase and

glutaredoxin/glutathione/glutathione reductase system are

present in the cytosol and the mitochondria and have long

been recognized to be involved not only in oxidized protein re-

pair but also in cellular protection against oxidative stress as

well as in redox signalling process [10]. Moreover, the oxida-

tive inactivation of thioredoxin-dependent peroxidases, perox-

iredoxins, has been shown to be reversible in mammalian cells

and the reversion of cysteine-sulfinic acid, resulting from

hyperoxidation of peroxiredoxins, back to reduced cystein

has been recently documented to be carried out in an ATP-

and thioredoxin-dependent manner by specific and yet unex-

plored enzymes, sulfiredoxin and sestrins [11,12]. Oxidation

of methionine residues in proteins has been shown to contrib-

ute to the impairment of protein function and in the loss of

their activity. In fact methionine residues in proteins can be

oxidized in methionine S and R sulfoxide diastereoisomeric

forms that can be catalytically reversed by the peptide methio-

nine sulfoxide enzymes, MsrA and MsrB, respectively, allow-

ing in some cases the recovery of the protein function [13].

In eukaryotes, MsrA is expressed from a single gene and is

found in almost all cellular types in the cytosol as well as in

the mitochondria [14,15] and in the nucleus of mouse cells

[16]. MsrB enzymes are encoded by three different genes and

their products are designated as MsrB1 (SelX), a selenoprotein

which is present in the nucleus and the cytosol, MsrB2 (Cbs-1)

which is localized in the mitochondria and MsrB3A/B, gener-

ated by alternative splicing, that are targeted to the reticulum

endoplasmic and to the mitochondria, respectively [17]. Msr

enzymes, especially MsrA, were described as very important

oxidized protein repair systems and as an anti-oxidant enzymes

through the catalyzed reversion of oxidized exposed methio-

nines in proteins, hence contributing to the regulation of the

cellular redox homeostasis [18].

Irreversible oxidation products of other amino acids are

most frequently hydroxylated and carbonylated amino acid

derivatives and detection of protein associated carbonyls rep-

resents a usual way of assessing protein oxidation after

carbonyl derivatization by dinitrophenyl hydrazine [19]. Oxi-

dized proteins are generally less active, less thermostable and

are exposing hydrophobic amino acids at their surface. In

addition, protein damage can result from protein adduct for-

mation with lipid peroxidation products such 4-hydroxy-2-

nonenal and from oxidation of glycation products leading to

the formation of glycoxidation adducts such as pentosidine

or carboxymethyllysine [2]. These latter modifications often

bring carbonyl groups and/or cross-links within the protein.

In the cytosol, oxidized proteins have been shown to be prefer-

entially degraded by the 20S proteasome in an ATP- and ubiq-

uitin-independent manner [6,20] although other studies have

shown that the ubiquitin-26S proteasome pathway can also

be implicated in the degradation of oxidized proteins [21].

Moreover, upon oxidative stress chaperone-mediated autoph-
agy has been recently shown to participate to the accelerated

degradation of oxidized proteins carrying a KFERQ motif [8].

The 20S proteasome is a high molecular weight multienzy-

matic proteolytic complex consisting of a catalytic core that

interacts with a variety of regulators such as PA 700 (to form

the 26S proteasome) or PA 28 [5,22]. The proteasome, which is

present in the archebacteria and in the nucleus and the cytosol

of eukaryotic cells, is made up of four stacked rings of seven

subunits. The apical rings are formed with a-type subunits

while the inner rings are formed with b-type subunits that

are carrying the proteolytic activities. Interestingly, in the

eukaryotic version of the proteasome only three b-type sub-

units possess the N-terminal active site threonine [23]. The

peptidylglutamyl peptide hydrolase activity, that cleaves after

acidic amino acids, is carried by the b1 subunit, the trypsin-like

activity, that cleaves after basic amino acids, is carried by the

b2 subunit and the chymotrypsin-like activity, that cleaves

after hydrophobic and aromatic amino acids, is carried by

the b5 subunit. Upon c-interferon stimulation, these catalytic

subunits can be replaced by inducible subunits ib1, ib2 and

ib5 to form the so-called immunoproteasome which exhibits

higher chymotrypsin-like and trypsin-like activities and lower

peptidylglutamyl peptide hydrolase activity [24,25]. Oxidized

proteins represent good substrates for the 20S proteasome un-

less they become heavily oxidized and cross-linked [26]. In such

a situation, not only these highly damaged proteins become

resistant to proteolysis by the proteasome but they can also

act as inhibitors as clearly demonstrated for proteins cross-

linked after modification by the lipid peroxidation product 4-

hydroxy-2-nonenal [27,28].

Mitochondria are the major source of intracellular reactive

oxygen species and they are also one of the main targets for

reactive oxygen species induced damage. In the mitochondria,

oxidized protein degradation has been shown to be achieved

by the ATP-stimulated Lon protease which is homologous to

the oligomeric bacterial Lon protease [29]. Indeed, Davies

and coworkers have shown that the oxidant-sensitive Krebs

cycle enzyme aconitase, when oxidatively damaged, is de-

graded by the Lon protease in an ATP-stimulated fashion

[7]. In the same study, treatment with anti sense oligonucleo-

tides in WI-38 human lung fibroblasts resulted in decreased

Lon protease content and activity while causing an accumula-

tion of oxidatively modified aconitase.
3. Impaired removal of oxidized proteins during ageing

Age-related impairment of proteasome function has been

evidenced in a wide range or organs or cell types [4]. Such a

decline of proteasome activity would therefore be expected

to promote the accumulation of oxidized protein with age. In-

deed, as first shown by us for the peptidylglutamyl peptide

hydrolase activity of proteasome purified from rat liver [30],

an age-related decrease of at least certain proteasome pepti-

dase activities, has been since reported for human keratino-

cytes, human fibroblasts, human eye lens, human

lymphocytes, rat liver, rat cardiomycytes, rat brain and rat

skeletal muscle [31–42]. Our initial finding of decreased pept-

idylglutamyl peptide hydrolase activity of proteasome purified

from the liver of old rats was in favor of its specific inactiva-

tion. Further analyses comparing the 2D gel electrophoresis

patterns of proteasome subunits were indicative of either
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Fig. 1. Intracellular degradation and repair of oxidized proteins. Following protein oxidative damage, oxidized proteins are either degraded or
repaired depending on whether the damage is reversible or not. Age-related accumulation of oxidized and aggregated proteins is therefore dependent
on the balance between oxidative modification of proteins and oxidized protein elimination through repair and degradation.
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subunit replacements and/or post-translational modifications

[31,43,44]. More recently, an increased load of modifications

by the lipid peroxidation product 4-hydroxy-2-nonenal and

the glycoxidation adduct carboxymethyllysine, for specific

20S proteasome subunits was found associated with the age-re-

lated decline of 26S proteasome chymotrypsin-like activity

purified from human peripheral blood lymphocytes [32]. In-

creased modification of proteasome b-subunits by 4-hydroxy-

2-nonenal was also reported to be associated with decreased

proteasome activity in the spinal cord of aged rats [37], while

an age-related increased modification of the proteasome by

glycoxidation was observed in human lens [42]. In addition

to increased modification of proteasome with age, a decreased

proteasome subunit expression has been documented in hu-

man keratinocytes, human fibroblasts, rat cardiomyocytes

and rat spinal cord [31,34,37,39]. Interestingly, fibroblasts

from healthy centenarians exhibited a sustained proteasome

subunit expression and proteolytic activity which were close

to the levels obtained with the young individuals, suggesting

that a preserved proteasome function may have contributed

to the longevity of these individuals [33]. Transcriptome anal-

yses of both human dermal fibroblasts and mouse skeletal

muscle have pointed out an age-related decreased expression

of several 20S and 26S proteasome subunits [45,46]. In the

mouse model, dietary restriction was shown to reverse this

downregulation, implying that the anti ageing effects of dietary

restriction could be explained, at least in part, by stimulation

of protein turnover and elimination of macromolecular dam-

age [45]. More recently, the expression of only b catalytic 20

S proteasome subunits was found to be decreased in senescent

human WI 38 fibroblasts leading to the presence of free a sub-

units and less assembled proteasome [34]. In the same study,

partial inhibition of the proteasome in young WI 38 fibroblasts

for two weeks was found to induce a senescent-like phenotype.

Finally, in aged rat skeletal muscle, the decreased proteasome

activity was attributed to a reduced ability of both PA 28 and

PA 700 regulators to bind to the proteasome, while immuno-

proteasome and constitutive proteasome content were, respec-
tively, increased and decreased [35]. Beside direct inactivation

of the proteasome and decreased proteasome subunits expres-

sion, highly modified and cross-linked proteins, that have been

shown to accumulate with ageing, have been implicated in the

inhibition of proteasome activity [27,28,47]. Indeed, a decline

of proteasome peptidase activities was observed upon loading

of fibroblasts with artificial lipofuscin [48]. In addition, protea-

some peptidase activities that were strongly inhibited in heart

homogenates from old rats were partially recovered upon puri-

fication of the proteasome, strongly suggesting the presence of

endogeneous inhibitors in the homogenates that were removed

during proteasome purification [31]. Thus, decline of protea-

some activity with age is dependant on at least three different

inhibition mechanisms: direct inactivation of the proteasome

through subunit modification, decreased expression of certain

proteasome subunits and increased presence of endogenous

inhibitors such as cross-linked proteins.

As for the mitochondrial oxidized protein status and the fate

of the Lon protease during ageing, we have reported an age-re-

lated accumulation of oxidized and glycoxidized proteins in

the liver mitochondrial matrix of rats and a considerable de-

crease of the ATP-stimulated Lon-like proteolytic activity in

27-month-old rats [49]. This decline of ATP-stimulated Lon-

like proteolytic activity was not associated with a concomitant

decrease in the level of Lon protein expression suggesting that

the Lon protease activity is getting either inhibited or inacti-

vated. However, this decline in Lon protease activity was

found to be associated with a decrease in the activity of mito-

chondrial aconitase [50], an essential Krebs’cycle enzyme

known to be very sensitive to oxidative inactivation in mam-

malian mitochondria. An age-related decline of both Lon gene

and protein expression has been documented in mouse skeletal

muscle [45,51]. Interestingly, this decline in gene expression

was completely prevented when the animals were subjected

to dietary restriction, the only intervention known to retard

ageing in mammals [45]. Finally, contrary to what we observed

in the liver and what was previously observed in mouse skeletal

muscle, the ATP-stimulated protease activity was found to re-
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main constant in the heart mitochondrial matrix during age-

ing, and the levels of expression of the Lon protease increased

in the older animals in comparison with the younger ones [50].

These results indicate that matrix proteins such as the critical

enzymes aconitase and Lon protease are getting inactivated

with ageing and that the effects of ageing on the Lon protease

vary from one organ to another.

Concerning oxidized repair systems, we have shown that, in

rat organs in which MsrA is particularly abundant, i.e., liver,

kidney, and brain, peptide methionine sulfoxide reductase

activity is notably reduced during ageing [52]. This is related

to a decrease in MsrA gene expression in liver and kidney.

In contrast, in the brain, the differences in gene expression were

not statistically significant and the MsrA protein level was re-

duced only in 26-month-old rats at the very end of the life of

the animals. This intriguing observation may now be explained

in light of the existence, in addition to MsrA, of several MsrB

genes encoding at least four proteins in mammalian cells.

Although MsrB2 (Cbs-1) is not abundant in brain, the other

MsrB could be responsible for the alteration in peptide methi-

onine sulfoxide reductase activities determined during brain

ageing. The status of the peptide methionine sulfoxide reduc-

tases system was also analyzed in WI-38 human fibroblasts

during cellular senescence [53]. Total peptide methionine sulf-

oxide reductase activity was tested by monitoring the reduction

of the synthetic substrate N-acetyl(3H)MetR,S(O) to N-ace-

tyl(3H)MetR,S, which can be reduced by either MsrA or

MsrB. A decreased peptide methionine sulfoxide reductase

activity was observed in senescent cells, that correlated with

a decrease in both MsrA and MsrB2 (Cbs-1) gene expression.

Impaired expression and/or activity of the peptide methionine

sulfoxide reductases system may therefore explain an accumu-

lation of unrepaired proteins, and might contribute to the age-

related accumulation of oxidized proteins.
4. Protein maintenance and protection against oxidative stress

To gain better insights in the relationship between oxidized

protein removal and cellular resistance against oxidative stress,

the effects of oxidative stress on repair and degradation systems

have been investigated as well as the influence of increased pro-

tein degradation and repair on cellular protection against oxi-

dative stress. Thus, the proteasome has been evidenced as a

target for modification by oxidation and related pathways

in vivo. Following the demonstration that the proteasome

can be inactivated by iron catalyzed oxidation in vitro, treat-

ment of FAO hepatoma cells with iron and ascorbate resulted

in the impairment of proteasome peptidylglutamyl peptide

hydrolase and trypsin-like activities [54]. Interestingly, overex-

pression of chaperone proteins such as Hsp 90 or HDJ-1 was

found to exert protection against inactivation of the protea-

some following oxidative insults to FAO hepatoma cells and

neural SH-SY5Y cells, respectively [54,55]. Moreover,

treatment of kidney with ferryl nitriloacetate and brain ische-

mia–reperfusion were associated with decreased proteasome

function and modification of the proteasome by the lipid perox-

idation product 4-hydroxy-2-nonenal [56,57]. Specific modifi-

cation of three proteasome subunits by 4-hydroxy-2-nonenal

was also associated with inactivation of the trypsin-like activity

upon cardiac ischemia–reperfusion [58]. In addition, we have

recently found that in vitro treatment of proteasome purified
from rat heart results in the preferential inactivation of the

trypsin-like activity and the modification of restricted set of

proteasome subunits that include those previously reported to

be targeted upon ischemia–reperfusion, hence making 4-hydro-

xy-2-nonenal modification of proteasome as a likely mecha-

nism for proteasome inactivation in vivo [59]. UV irradiation

of human keratinocyte also results in a decline of proteasome

peptidase activities that has been primarily associated with

the build-up of damaged proteins, including proteins modified

by 4-hydroxy-2-nonenal [47]. Since low molecular weight com-

pounds such as certain fatty acids have been shown to stimulate

proteasome activity in vitro, we have assayed plant and algae

extracts for their ability to stimulate proteasome activity in

keratinocyte cultures. We have found that a fatty acid-rich ex-

tract from the algae Phaeodactylum tricornutum was able to

stimulate the proteasome peptidase activities both in vitro

and in cultured keratinocytes and to reduce the level of oxidized

proteins after UV irradiation [60]. Therefore, treatment with

such a proteasome stimulating agent may represent not only

an efficient strategy for an increased protection against oxida-

tive stress but also for developing anti-ageing strategies. Inter-

estingly, Chondrogianni et al. have recently found that stable

overexpression of either b1 or b5 in SV40T/WI 38 fibroblasts

and HL 60 resulted in an increased ability of these cells to cope

with different oxidative stress through increased rates of prote-

olysis and decreased oxidized protein content [61]. Moreover,

normal IMR 90 fibroblasts transfected by the b5 proteasome

subunit exhibited an increased lifespan as demonstrated by an

extension of their the replicative potential of 4–5 population

doublings [61].

The peptide methionine sulfoxide reductases system has also

been implicated in increased longevity and resistance to oxida-

tive stress. Using knockout mice and transgenic Drosophila

respectively, Stadtman and Hoshi laboratories [62,63] have ad-

dressed the role of MsrA in lifespan regulation related to the

antioxidant properties of the enzyme. In transgenic Drosophila,

overexpression of MsrA extended the mean lifespan by up to

70% and the flies exhibited higher resistance to paraquat-

induced oxidative stress [63]. In contrast, mice lacking the

msrA gene were more sensitive to oxidative stress, showed

an accumulation of oxidized proteins and had a 40% shorter

lifespan [62]. We have reported that both MsrA and MsrB

(Cbs-1) are upregulated in WI 38 fibroblasts when challenged

with low concentration of hydrogen peroxide, hence suggesting

an important role of the methionine sulfoxide reductase system

in cellular stress defense [53]. In PC 12 neuronal cells, overex-

pression of MsrA was found to exert a protective effect against

oxidative injury by reducing the level of reactive oxygen species

after hypoxia/reoxygenation [64]. The same behaviour was ob-

served in MsrA overexpressing human lens epithelial cells

when exposed with hydrogen peroxide while MsrA gene silenc-

ing was associated with an increased sensitivity to oxidative

stress [65]. Such a protective role against oxidative stress was

also observed for MsrB in human lens cells since the silencing

of one or all MsrB genes was accompanied with increased oxi-

dative stress-induced cell death [66]. We have recently shown

that overexpression of MsrA in SV40T/WI 38 fibroblasts led

to an increased protection against cell death induced by hydro-

gen peroxide mediated oxidative stress and found that this in-

creased protection was resulting from a decreased level of

intracellular reactive oxygen species and an almost total pro-

tection against formation of protein oxidative damage [67].
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For the Lon mitochondrial protease, as already stated above,

treatment with anti sense oligonucleotides in WI-38 human lung

fibroblasts resulted in decreased Lon protease content and activ-

ity while causing an accumulation of oxidatively modified acon-

itase [7]. Moreover, using transgenic mice under-expressing

mitochondrial superoxide dismutase as a model of oxidatively

challenged animals, Bota et al. reported a decreased Lon prote-

ase protein level and this Lon deficiency was associated with in-

creased levels of oxidized proteins [51]. More recently, Bota et al.

have also shown that down regulation of the human Lon prote-

ase results in the impairment of mitochondrial structure and

function and causes cell death, with the majority of cells under-

going caspase 3 activation and apoptosis within four days [68].

Electron microscopy performed on Lon-deficient cells revealed

aberrant mitochondrial morphology and the presence electron

dense inclusion bodies in the mitochondrial matrix thought to

be caused by aggregated proteins. Although to our knowledge,

the effects of overexpression of the Lon protease in mammalian

cells have not yet been documented, an activation of the ATP-

stimulated mitochondrial protease has been recently reported

following cardiac ischemia–reperfusion [69], suggesting an

important role of the Lon protease in the removal of oxidized

proteins and mitochondrial protein homeostasis.
5. Concluding remarks

Protein maintenance and especially oxidized protein degra-

dation and repair systems appears to play a critical role in cell

survival and homeostasis, as demonstrated by the impact of

improved protein degradation and repair on longevity and/or

resistance to oxidative stress. Conversely, decreased protein

degradation and repair has been associated to an increased

susceptibility to oxidative stress. On the other hand, as illus-

trated by the now well-established impairment of proteasome

function with age and by more recent data on the age-related

decline of other protein degradation and repair systems such

as the mitochondrial Lon protease and the repair enzymes

methionine sulfoxide reductases, protein maintenance failure

represents a characteristic feature of cellular ageing that partic-

ipates to the age-related intracellular build-up of oxidized and

aggregated proteins. Understanding the implication and the

complex interactions of these systems in cellular protein and

redox homeostasis represents an obligatory step as to whether

they can be used as valuable handle for slowing down ageing.

Importantly, deciphering the molecular mechanisms that con-

tribute to the age-related impairment of protein maintenance

systems is likely to provide valuable information that ulti-

mately may lead to the development of anti-ageing strategies

aimed at promoting healthy ageing.
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