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SUMMARY

The p53 tumor suppressor is a key mediator of cellu-
lar responses to various stresses. Here, we show
that under conditions of basal physiologic and cell-
culture stress, p53 inhibits expression of the CD44
cell-surface molecule via binding to a noncanonical
p53-binding sequence in the CD44 promoter. This in-
teraction enables an untransformed cell to respond
to stress-induced, p53-dependent cytostatic and
apoptotic signals that would otherwise be blocked
by the actions of CD44. In the absence of p53 func-
tion, the resulting derepressed CD44 expression is
essential for the growth and tumor-initiating ability
of highly tumorigenic mammary epithelial cells. In
both tumorigenic and nontumorigenic cells, CD44’s
expression is positively regulated by p63, a pa-
ralogue of p53. Our data indicate that CD44 is a key
tumor-promoting agent in transformed tumor cells
lacking p53 function. They also suggest that the de-
repression of CD44 resulting from inactivation of
p53 can potentially aid the survival of immortalized,
premalignant cells.

INTRODUCTION

CD44 is a transmembrane cell-surface protein (Aruffo et al.,

1990) that is synthesized in multiple isoforms because of alterna-

tive splicing of its pre-mRNA. Although it lacks its own signaling

domain, it has recently been shown to be essential for the hom-

ing and stem cell properties of leukemic stem cells (Jin et al.,

2006; Krause et al., 2006). CD44 has also been found to support
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anchorage-independent growth in vitro and tumor growth and

metastasis in experimental models of solid cancers (Barbour

et al., 2003; Weber et al., 2002; Yu et al., 1997), whereas it in-

hibited tumor growth in yet other models (Gao et al., 1997;

Schmits et al., 1997). The precise role played by CD44 in tumor-

igenesis has thus remained unclear.

The tumor-promoting functions of CD44 have been attributed

to its association with and costimulation of signaling by a number

of growth factor receptors, such as epidermal growth factor re-

ceptor-2 (Her2), epidermal growth factor receptor-1 (Her1), and

hepatocyte growth factor receptor (Met) (Ponta et al., 2003). In

the case of breast cancer pathogenesis, for example, the most

prominent of these receptors is Her2, which is overexpressed

in 20%–30% of these tumors and is responsible for releasing mi-

togenic and trophic signals into breast cancer cells (Yarden,

2001). These and other observations have suggested that

CD44 confers a decided growth advantage on certain types of

cancer cells. Moreover, the CD44 cell-surface antigen serves

as a useful marker for detecting and enriching for several types

of tumor-initiating cells (Al-Hajj et al., 2003; Dou et al., 2007;

Hurt et al., 2008; Wright et al., 2008; Yang et al., 2008), which

is consistent with its tumor-promoting capabilities cited above.

We hypothesized that signals regulating CD44 expression are

essential for understanding the role of this protein in tumorigen-

esis. In studying this issue, we noted that immunohistochemical

analyses of clinical samples of hepatocellular and renal carcino-

mas had demonstrated that CD44 protein is expressed at high

levels together with elevated levels of p53 (Endo and Terada,

2000; Zolota et al., 2002). Since the expression of p53 protein

in tumor samples indicates the presence of a mutant, functionally

inactive p53 protein (Iggo et al., 1990; Sjogren et al., 1996), this

suggested that CD44 might be repressed by wild-type p53.

In response to strong cellular stresses, such as DNA damage

or oncogenic signals, the wild-type form of p53 regulates
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expression of a large cohort of genes that effect cell-cycle arrest,

senescence, and apoptosis (Levine, 1997; Levine et al., 2006).

Recent findings have uncovered additional roles of the p53 pro-

tein that is expressed under basal physiologic and cell-culture

stress conditions, notably regulation of mitochondrial respiration

(Bensaad et al., 2006; Matoba et al., 2006), autophagy (Crighton

et al., 2006), protection of the genome from reactive oxygen spe-

cies (Sablina et al., 2005), and inhibition of the self-renewal ca-

pacity of neuronal stem cells (Meletis et al., 2006; Piltti et al.,

2006). Under normal in vivo conditions, specifically in primary

mouse mammary epithelial cells, p53 regulates the expression

of �40 transcripts, pointing to its potentially important physio-

logic role in the absence of any unusual cell-physiologic stresses

(Aldaz et al., 2002).

The p53 paralogue, p63, has been recently shown to positively

regulate CD44 mRNA expression in microarray-based gene ex-

pression analyses of the MCF10A immortalized nontumorigenic

breast epithelial cell line. This study demonstrated that ectopic

expression of p63 leads to the upregulation of CD44 expression,

whereas shRNA directed against p63 mRNA leads to loss of

CD44 expression (Carroll et al., 2006). However, this work did

not indicate whether p63, which is essential for the normal devel-

opment of epithelial tissues (Mills et al., 1999; Yang et al., 1999),

is also able to positively regulate CD44 expression at the protein

level and in tumorigenic cells. These various observations pro-

voked us to examine the mechanisms regulating the abundance

of CD44 in cells and the functional consequences of its expres-

sion at various levels in such cells.

RESULTS

Repression of CD44 Expression by p53
To address the regulation and apparently important role of

CD44 in mammary epithelial cell physiology and tumorigenesis,

we chose to analyze its function in a novel type of early-

passage, human mammary epithelial cells (BPECs) that were

recently isolated and propagated in this laboratory (Ince et al.,

2007). The experimentally transformed derivatives of these

cells, termed BPLER cells, were created by the introduction of

genes encoding the hTERT telomerase subunit, the SV40 large

and small T antigens, and the H-Ras V12 oncoprotein (Hahn

et al., 1999; Ince et al., 2007). These BPLER cells yield tumor

xenografts that closely resemble, at the histopathological level,

invasive ductal adenocarcinomas, the most common type of

human breast cancer. In addition, injection of as few as 10–

100 of these transformed cells suffices to induce tumors in im-

munocompromised mouse hosts, even in the absence of prior

enrichment of tumor-initiating cells (Ince et al., 2007). This tu-

mor-initiating efficiency is comparable to that of CD44high/

CD24low cells that have been isolated directly from populations

of human breast cancer cells (Al-Hajj et al., 2003). This experi-

mental model of human breast pathogenesis allowed us to

study the function and expression of p53 and CD44 in both pri-

mary BPEC cells and in the derived, experimentally transformed

BPLER cells.

Prompted by the clinical evidence cited above (Endo and Ter-

ada, 2000; Zolota et al., 2002), we undertook to confirm that p53

mutant status is in fact associated with elevated CD44 expres-
sion in a series of breast cancer specimens whose p53 mutant

status and gene expression profiles were known (Miller et al.,

2005). Since not all p53 mutations are equally detrimental to

p53 function, we chose to further sort these tumor specimens

according to the expression of a p53-induced gene, p21Waf1. Al-

though CD44 is positively and negatively regulated by a number

of distinct signals (Ponta et al., 2003), we were surprised that p53

mutant/p21-low-expression patterns in human tumors were, on

their own, able to predict high CD44 expression, doing so in

a statistically significant manner (Figure S1 available online).

This correlation suggested that p53 could act as a negative

regulator of CD44 expression in spontaneously arising human

tumors.

We therefore undertook to investigate whether p53 indeed

functions to repress CD44 expression in untransformed human

mammary epithelial cells. Because the BPEC cells mentioned

above have a limited life span in culture, they were initially im-

mortalized by introduction of a vector expressing the catalytic

subunit of human telomerase (hTERT), yielding BPEC-T cells.

To visualize the CD44 protein expression at the single-cell level,

we immunostained subconfluent monolayer cultures of these

BPEC-T cells. Curiously, the CD44 expression in control

BPEC-T cells was found to be elevated in the outer perimeters

of BPEC-T cell clusters, with a gradual decrease toward the

center of each cluster (Figure 1A).

In order to explore the possible connection of this behavior

with p53 function, we infected populations of BPEC-T cells

with a lentiviral construct encoding an shRNA that causes degra-

dation of p53 mRNA or, alternatively, with a retroviral construct

encoding the human papillomavirus E6 oncoprotein, which is

known to trigger degradation of the p53 protein. The expression

gradient described above was absent in cells expressing the

p53-shRNA construct or in cells in which the E6 oncoprotein

was deployed to degrade p53 (Figure 1A). In both cases, these

cells exhibited elevated levels of CD44 protein nearly uniformly,

regardless of the cells’ positions within a cluster (Figure 1A). This

suggested that the uneven expression of CD44 by control BPEC-

T cells was a reflection of p53 function. Control experiments in

BPEC-T cells treated with a genotoxic agent—doxorubicin—in-

dicated that the p53 gene and protein expressed in all cellular lo-

cations within these clusters were equally capable of responding

to genotoxic stress (Figure S2).

These findings suggested heterogeneous activation of p53

protein expression within the cell clusters of BPEC-T cells grow-

ing in monolayer culture. To test this possibility, we performed

double immunofluorescent staining for both p53 and CD44.

As anticipated, the control BPEC-T cells revealed largely mutu-

ally exclusive localizations of the two proteins (Figure 1B), con-

sistent with the notion of p53-dependent repression of CD44.

Further analysis of protein expression in these cells with immu-

noblotting revealed that CD44 expression was significantly

increased in the confluent cells in which p53 expression had

been suppressed by either the shRNA construct or E6 oncopro-

tein (Figure 1C). At present, the nature of the contextual signals

causing differential activation of p53 expression within the

BPEC-T cell clusters is obscure. Nonetheless, these results pro-

vided an initial indication that high CD44 expression is a signature

of relatively low p53 activity.
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To determine whether p53 regulates CD44 expression at the

transcriptional or posttranscriptional level, we measured total

CD44 mRNA expression by semiquantitative RT-PCR using

primers to the CD44 sequences common to all CD44 mRNA iso-

forms. As shown in Figure 1D, the mRNA levels for CD44 paral-

leled the results from the protein expression analyses—i.e.,

CD44 mRNAs were upregulated 4- to 5-fold and CD44 protein

4-fold in BPEC-T cells in which p53 function had been largely

abolished. Hence, CD44 expression was suppressed by p53

largely through effects on CD44 mRNA levels.

We also examined how the levels of p53 expression were cor-

related with those of CD44 in a living tissue. To do so, we under-

took immunohistochemical analyses of the mammary glands of

10-week-old wild-type and p53�/� isogenic mice. These analy-

ses demonstrated significantly higher CD44 protein expression

in the mammary glands of p53�/� mice than in those of wild-

Figure 1. CD44 Expression in BPEC-T Cells

and Mammary Fat Pad Is Dependent on p53

(A) Immunofluorescent detection of CD44 and nu-

clei (DAPI) in BPEC-T cells stably infected with the

control shRNA against firefly luciferase (shLuc),

p53 shRNA (shP53), E6 oncoprotein-, or GFP-

expressing constructs in subconfluent cultures.

(B) Immunofluorescent analysis of CD44 and p53

protein coexpression in BPEC-T cells.

(C and D) Western blotting analysis of total CD44

protein (C) and semiquantitative RT-PCR analysis

of total CD44 mRNA expression (D) in confluent

BPEC-T cells with normal and inhibited p53 ex-

pression. The cDNAs were PCR amplified from

3.3 and 1.1 ng of cDNA.

(E) Immunohistochemical analysis of CD44 ex-

pression in mammary fat pads. The epithelial and

nonepithelial compartments of mammary glands

from p53�/� or p53+/+ Balb/c mice were immuno-

stained for the epitope present in all known CD44

isoforms by the IM7 antibody and counterstained

with hematoxylin.

type animals. The difference in CD44 sig-

nal was most prominent in the basal

epithelial cells, but was also apparent

in occasional luminal epithelial cells

(Figure 1E).

To exclude the possibility that the ob-

served repression was a consequence

of genomic instability in these p53�/�

mice, we took advantage of a recently

published conditional mouse model, in

which p53 expression is restored in oth-

erwise p53 null tissues of mice by admin-

istration of tamoxifen to activate the Cre

recombinase (Ventura et al., 2007).

When p53 expression was restored in

the tissues of adult mice (with 50%–

80% efficiency in mammary epithelial

cells), we observed downregulation of

CD44 protein levels specifically in the

mammary epithelium of these mice but

not in the mammary epithelium of mice treated only with oil vehi-

cle (Figure S3). As before, these observations indicated that the

expression of p53 varied inversely with that of CD44. Moreover,

they indicated that p53 antagonism of CD44 expression can

operate in normal tissues, where p53 is expressed at low levels

and in the apparent absence of any unusual cell-physiologic

stresses.

Mechanism of CD44 Repression by p53
In order to explore the possibly direct influence of p53 on the pro-

moter of the CD44 gene, a 2 kb DNA segment located upstream

of its transcription initiation site was introduced into a luciferase

reporter vector. Since p53 can regulate transcription either

directly by binding to a promoter sequence or indirectly via pro-

tein-protein interactions (Ho and Benchimol, 2003), we distin-

guished between these alternative mechanisms by using two
64 Cell 134, 62–73, July 11, 2008 ª2008 Elsevier Inc.



p53 mutants that are defective in DNA binding. As shown

in Figure 2A, in contrast to their wild-type counterpart, which

strongly repressed the activity of the CD44 promoter reporter

construct, both p53 mutants failed to do so. Hence, the actions

of p53 on the CD44 gene promoter appeared to require the intact

DNA-binding activity of p53.

Figure 2. Mechanism of p53-Mediated Repression of CD44

(A) Repression of CD44 promoter activity with p53 in the human osteosarcoma

cell line SAOS-2 lacking endogenous p53 expression. Human CD44 promoter

(CD44P, 0–2021 bp upstream of translation-initiation codon) was fused to

a firefly luciferase gene in pGL3 vector. The CD44P construct was cotrans-

fected with CMV-vector-based constructs bearing either normal or specific-

DNA-binding-defective p53 genes into the SAOS-2 cells. The cells were lysed

30 hr after transfection and analyzed for luciferase activity (mean ± SD, n = 4).

(B) The consensus sequence of p53-mediated transcriptional regulation (up-

per sequence), a potential noncanonical p53-binding site in the CD44 pro-

moter, 239–263 bp upstream from the first transcription-initiation site (lower

sequence), and the introduced point mutations (in red, lower sequence)

used to inactivate the potential p53-binding site.

(C) Promoter reporter assay with normal CD44 promoter or mutated CD44P-

M1 constructs in SAOS-2 cells cotransfected with or without the p53 expres-

sion vector (mean ± SD, n = 4). The basal activity of promotorless construct

was subtracted from the presented values of CD44 promoter activity.

(D) Gel-shift analysis of p53 protein interaction with CD44P-derived, 32P-

labeled oligonucleotides with normal or mutated p53-binding site.

(E) Competition analysis of p53 protein interaction between labeled CD44P-

derived oligonucleotide and nonlabeled oligonucleotides bearing either normal

or mutated p53-binding site sequence.
It remained unclear, however, whether the observed repres-

sion was mediated by direct binding of p53 to the CD44 pro-

moter. To address this issue, we attempted to identify a p53-

response element in this promoter. Indeed, sequence analyses

revealed a region within the CD44 promoter that exhibits strong

sequence similarity to the noncanonical p53-binding site found

in the MDR1 gene (Figure 2B) (Johnson et al., 2001), which is

known to contain four p53-binding elements. The canonical

p53-binding site implicated in activation of transcription by p53

is comprised of two copies of the sequence PuPuPuC(A/T) ar-

ranged head to head and separated by 0–13 nucleotides, as is

seen, for example, in the promoter of the p21Waf1 gene. The non-

canonical p53-binding site in the MDR1 gene consists of four

p53-binding sites that are oriented in an alternating head-to-

tail arrangement (Johnson et al., 2001). Accordingly, we created

a mutant CD44 reporter construct bearing three point mutations

in two of the four putative p53-response elements (Figure 2B). As

shown in Figure 2C, the resulting mutant CD44 promoter was no

longer repressed by ectopic expression of p53 in otherwise p53

null SAOS-2 osteosarcoma cells. In addition, in the absence of

ectopically expressed p53, the basal activity of the mutant pro-

moter was about 20% lower than that of the wild-type promoter,

suggesting the presence of some type of transcription-promot-

ing site within the p53-response elements (Figure 2C).

To prove that the CD44 reporter construct was also suscepti-

ble to p53-dependent repression when chromosomally inte-

grated, we introduced constructs encoding the wild-type CD44

promoter, the mutant CD44 promoter, or a promoterless re-

porter, each driving a luciferase gene, into lentiviral vectors

and used these to infect the BPEC-T cells with normal or exper-

imentally suppressed p53 levels. The promoter activities of the

resulting chromosomally integrated constructs closely paralleled

those obtained from transient transfections of SAOS-2 cells (Fig-

ures 2A and 2C) and suggested that the above-described nonca-

nonical p53-binding site is involved in repression of CD44

promoter activity in the presence of the basal p53 expression

in BPEC-T cells (Figure S4). These results agreed with deletion

analyses of the CD44 promoter performed in parallel (Figure S5).

In order to confirm the direct physical interaction of p53 with se-

quences in the CD44 promoter,weextended thesestudies byper-

forming gel-shift analyses and chromatin immunoprecipitation.

Using DNA oligonucleotides mimicking the potential p53-binding

site, we demonstrated direct binding of p53 protein to the CD44

promoter sequence, as indicated by the retardation of electropho-

retic migration in the presence of added purified p53 (Figure 2D).

To analyze the specificity of this binding, we performed a compe-

tition assay with either an unlabeled wild-type oligonucleotide or

an oligonucleotide containing the base substitutionspreviously in-

troduced into the promoter in the promoter-reporter assays

described above. As shown in Figure 2E, the wild-type oligonucle-

otide was more efficient in displacing the labeled oligonucleotide

from the complex with p53 protein than was the mutated one.

In order to determine whether the interaction between CD44

promoter and p53 protein also occurs in vivo, we undertook

chromatin immunoprecipitation of chromatin complexes con-

taining p53 and analyzed them for the presence of a p53-

response site in CD44 promoter. As shown in Figure S6, we

were able to detect physical association of p53 with the CD44
Cell 134, 62–73, July 11, 2008 ª2008 Elsevier Inc. 65



promoter sequence in BPEC-T cells. These results provide evi-

dence that p53 represses CD44 transcription via direct interac-

tion with a specific site within the CD44 promoter located at po-

sition �239 to �263 bp relative to the transcription start site of

the human CD44 gene (Shtivelman and Bishop, 1991).

CD44 Interferes with p53 Function in Immortalized
Nontumorigenic Cells
Having found that p53 functions as a repressor of CD44 expres-

sion, we attempted to discover the cell-physiologic rationale of

this repression. CD44 is known to act predominantly in

a growth-promoting and antiapoptotic fashion (Ponta et al.,

2003).Because the tumor-suppressing function ofp53 relies on in-

hibition of these processes, we hypothesized that p53 downregu-

lates CD44 expression in order to prevent CD44 from compromis-

ing its growth-inhibitory and proapoptotic functions.

Figure 3. Effect of CD44 Expression on

p53-Dependent Proliferation and Apoptosis

in BPEC-T Cells

(A) BPEC-T cells stably infected with retroviral vec-

tors expressing the standard form of CD44

(CD44s), control GFP, or lentiviral vectors express-

ing an shRNA directed against p53 (shp53) or con-

trol shRNA (shLuc) were analyzed for expression

levels of p53 and CD44 by western blotting. The

CD44 with higher Mw than CD44s is either a prod-

uct of differential posttranslational modification of

CD44s or an alternatively spliced variant form of

endogenous CD44, whose expression is upregu-

lated by ectopic expression of CD44s.

(B) Cell growth (mean ± SD, n = 3) of BPEC-T cells

variants in the presence or absence of EGF ana-

lyzed after 72 hr. The horizontal line represents

initial number of cells. Numbers on top of the col-

umns represent relativenumbers of cells in percent.

(C and D) Apoptosis (mean ± SD, n = 3) of cells

exposed to doxorubicin in the presence of EGF

(0.6 ng/ml), analyzed by TUNEL assay after 24 hr.

At the biochemical level, CD44 is known

to stimulate EGF-induced signaling (Bour-

guignon et al., 1997; Ponta et al., 2003).

We therefore asked whether CD44 could

facilitate EGF signaling in the BPEC-T cells

used in our experiments and, if so, whether

such signaling influenced these cells’ re-

sponses to p53-directed inhibition of cell

proliferation and induction of apoptosis.

To address these questions, we analyzed

p53 function in theBPEC-Tcellsexpressing

normal levels of p53 (shLuc/GFP), in BPEC-

T cells overexpressing the ‘‘standard’’ form

of CD44 (which does not contain variable

exons [shLuc/CD44s]), and in BPEC-T cells

expressing an shRNA directed against p53

(shp53/GFP; Figure 3A). The first of these

cells served as controls, since they were

forced to express GFP and an shRNA

directed against luciferase.

We exposed these various BPEC-T populations to chemically

defined serum- and growth-factor-free media with or without

added EGF. In the absence of added EGF, these three cell popu-

lations (shLuc/GFP, shLuc/CD44s, and shp53/GFP) were largely

quiescent. The presence of added EGF stimulated proliferation of

shp53 cells (5.9-fold relative to the control) and shLuc/CD44s

cells (6.1-fold relative to the control) but not the control shLuc/

GFP cells expressing basal p53 levels. Hence, the basal levels

of p53 present in the control cells sufficed to inhibit EGF-stimu-

lated proliferation. Moreover, the ectopic constitutive expression

of the standard form of CD44 in cells with basal levels of p53 in-

creased their EGF-stimulated proliferation rate to a level compa-

rable to that of cells in which p53 expression had been knocked

down: This similarity in proliferation rate correlated with compara-

ble expression levels of CD44 protein between these two cell lines

(Figure 3A). We concluded that any growth-inhibitory effects that
66 Cell 134, 62–73, July 11, 2008 ª2008 Elsevier Inc.



p53 imposed on EGF-stimulated cell proliferation could be re-

versed by ectopic CD44s expression (Figure 3B).

To analyze effects of CD44 on p53-dependent apoptosis, we

challenged the various BPEC-T derivatives with the genotoxic

drug doxorubicin. Many of the cells expressing wild-type p53 re-

sponded to genotoxic stress by entering into apoptosis (19.5%

apoptotic, Figures 3C and 3D), whereas cells expressing the

p53 shRNA construct were largely protected from this fate

(2.3% apoptotic). Moreover, cell populations with wild-type p53

plus ectopically expressed CD44s were significantly more resis-

tant to doxorubicin-induced apoptosis (3.9% apoptotic) than

were cells expressing only endogenous levels of CD44. Lastly,

in doxorubicin-treated BPEC-T cell clusters growing in mono-

layer culture, the apoptotic cells were recruited from those that

expressed low levels of CD44 and high levels of p53 and were

localized to the interior of each cluster; this provided further

support for the notion that cells with high p53 expression are

more susceptible to apoptosis (Figure S7). We note that the

Figure 4. Effect of Inhibition of CD44 Ex-

pression on Proliferation, Apoptosis, and

EGF-Dependent Signaling in BPEC-T Cells

with Inhibited p53 Levels

(A) Western blotting analysis of CD44 and p53 in

cytokine-starved cells cultured in the presence or

absence or EGF for 24 hr.

(B) Cell growth (mean ± SD n = 3) of BPEC-T cells

stably infected with lentiviral constructs expressing

shRNA against CD44 or p53 was analyzed after

72 hr incubation in the presence or absence of EGF.

(C and D) Apoptosis (mean ± SD, n = 3) of BPEC-T

cells exposed to doxorubicin in the presence

of 1.2 ng/ml EGF, analyzed by TUNEL assay after

24 hr.

inhibition of apoptosis by CD44 was

paralleled by increased signaling by the

antiapoptotic PI3-kinase pathway in

both shLuc/CD44s and shp53/GFP cells,

as evidenced by higher levels of phos-

pho-Akt (Figure S8). In sum, these prolif-

eration and apoptotic assays provided

a clear functional rationale of the p53-

CD44 interaction: p53 must repress

CD44 expression in order to reduce the

antiapoptotic and mitogenic effects of

CD44.

CD44 Is an Effector of Growth-
Supporting and Antiapoptotic
Effects of Low p53 Expression
The experiments described above pro-

vided evidence that CD44 can counteract

p53 functions. However, it was unclear

whether the various responses to down-

regulated p53 expression could be attrib-

uted solely to the actions of the dere-

pressed CD44 observed in, for example,

the shp53/GFP BPEC-T cells (Figure 3).

To address this issue, we inhibited CD44 expression in shp53

BPEC-T cells by an shRNA construct that was designed to tar-

get the expression of all known CD44 isoforms (Ponta et al.,

2003). As a consequence, these shp53/shCD44-2 cells grew

more slowly (93% decrease) and had a more than 4-fold higher

apoptotic index than their shp53 counterparts (Figure 4). In this

respect, they resembled control cells with normal p53 levels and

p53-repressed CD44 expression. Hence, the antiapoptotic

effects deriving from suppression of p53 synthesis largely dis-

appeared if CD44 expression was also blocked. This indicates

that CD44 is a key effector of antiapoptotic and mitogenic

signals of shp53 cells. We also note that the shp53/shCD44-2

cells were more apoptotic than the cells with normal p53

expression, suggesting that the antiapoptotic functions of

CD44 extend beyond its ability to antagonize the proapoptotic

function of p53.

On the other hand, suppression of CD44 expression in cells

with normal p53 expression did not sensitize them to
Cell 134, 62–73, July 11, 2008 ª2008 Elsevier Inc. 67



doxorubicin-induced apoptosis to the same extent as it sensi-

tized the shp53 cells (Figure S9).

The Role of Standard Part of CD44 in CD44
Protein Functions
CD44 has multiple isoforms arising from alternative splicing of its

mRNA (Ponta et al., 2003). However, in the experiments de-

scribed here, the CD44 standard form (CD44s), whose se-

quences are present in all known CD44 isoforms, was found to

suffice to inhibit p53-dependent apoptosis and proliferation. To

address whether or not a CD44 isoform encoded by mRNAs

containing additional variable exons is also able to inhibit p53-

dependent functions more or less effectively than CD44s, we

transiently transfected the SAOS-2 cells with vectors expressing

either the CD44s or CD44VE isoforms together with apoptosis-

inducing amounts of p53 (Figures S10A and S10B). The mRNA

encoding CD44VE isoform contains eight out of the ten variable

CD44 exons (v3–v10). We found that both CD44s and CD44VE

isoforms inhibited p53-dependent apoptosis to approximately

the same extent (Figure S10C), indicating that inclusion of se-

quences encoded by the variable exons v3–v10 does not sub-

stantially influence the antiapoptotic activity of CD44.

CD44 Function and Expression in Tumorigenic BPLER
Cells with Inactivated p53
The interactions described above shed light on the role of CD44

expression in untransformed BPEC-T cells possessing wild-type

p53 function. We wondered whether CD44 could also exert

similar functions in the transformed, tumorigenic derivatives of

BPEC-T cells, termed BPLER cells, in which p53 is inactivated

through sequestration by the SV40 large T antigen. To analyze

CD44 function in this tumor xenograft model, we first infected

BPLER cells with lentiviral constructs expressing shRNAs di-

rected against the mRNA encoding the standard form of CD44,

or as control, against the firefly luciferase gene. As indicated in

Figure 5A, introduction of CD44-specific shRNAs decreased

CD44 protein expression by more than 95%.

BPLER cells expressing these CD44 shRNAs formed fewer tu-

mors, and those that did appear were quite small (50 mg or less);

this contrasted with the size of large tumors (average weight 220

mg) formed by the BPLER cells in which CD44 expression had

not been suppressed by the shRNA vector (Figures 5B and

5C). Significantly, immunoblotting analysis of those few tumors

that did emerge from cells infected with CD44-specific shRNA

constructs demonstrated that these tumors arose from the

minority of BPLER cells whose CD44 expression failed to be

suppressed by the shRNA (Figure 5D).

When analyzing tumor-initiating ability, another feature of tu-

mor cells, we found that it was substantially reduced in cells

with suppressed CD44 expression (56%–100% decrease, de-

pending on the numbers of implanted cells and on the particular

CD44 shRNA, Figure 5E) compared to their control counterparts.

This indicated that, in addition to serving as a useful marker for

breast tumor-initiating cells, CD44 positively regulates the func-

tions of these cells (Figure 5E). These results reinforced yet other

observations with an in vitro surrogate assay for tumorigenicity—

the soft agar colony-forming assay—which also demonstrated

that BPLER cells deprived of CD44 expression, unlike their con-
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trol counterparts, failed to form anchorage-independent colo-

nies (Figures 5F and 5G). Our results, taken together with those

of others (Weber et al., 2002; Yu et al., 1997), demonstrate that

by fostering tumorigenic growth in the absence of functional

p53, CD44’s functions extend beyond antagonizing the proa-

poptotic and antiproliferative actions of p53.

CD44 Is an Effector of Enhanced Tumor Growth
in Tumor Cells with Low p53 Expression
The experiments described above provided evidence that CD44

contributes importantly to the tumor-initiating ability and tumor

growth of BPLER cells with suppressed p53 function. However,

it was unclear whether the suppression of p53 expression in can-

cer cells exhibiting wild-type, normal p53 expression would per-

mit increased CD44 expression and, if so, whether the resulting

elevating CD44 levels were important to any increases in tumor

growth observed after p53 suppression.

To address these questions, we examined cells of the A549

human lung adenocarcinoma line, which express wild-type

p53. In particular, we constructed A549 cell populations with ei-

ther suppressed p53 expression (shp53/shLuc) or suppressed

expression of both p53 and CD44 (shp53/shCD44-2 and

shp53/shCD44-3); as controls, we used cells expressing basal

levels of both p53 and CD44 proteins (shLuc). These cells were

first analyzed for their expression of p53 and CD44. As antici-

pated, cells with suppressed p53 expressed higher levels of

CD44 than did the control cells with normal p53 levels. In addi-

tion, both shRNA constructs directed against CD44 were able

to efficiently suppress CD44 protein expression (Figure 6A).

Upon injection into immunocompromised mice, A549 cells

with suppressed p53 gave rise to tumors that were two times

larger than tumors induced by control cells. However, the A549

cells with suppressed p53 and CD44 expression yielded tumors

3- to 4-fold smaller than those induced by cells that had only

suppressed p53 expression (Figure 6B). Taken together with ear-

lier results, these observations indicate that CD44 is an essential

effector of tumor growth caused by suppressed p53 expression

and that CD44 supports tumor growth through both p53-depen-

dent and p53-independent mechanisms.

Regulation of CD44 Expression by Proteins Related
to p53-Induced Signaling
In order to obtain a more detailed view of the possible roles of

other proteins in the p53 pathway that might modulate CD44 ex-

pression, we analyzed the potential involvement of the p21Waf1

protein and the p53 paralogue, p63. For example, p21 has

been reported to mediate certain types of p53-induced tran-

scription regulation (Gottifredi et al., 2001; Taylor et al., 2001).

In fact, knockdown of p21Waf1 expression, achieved by expres-

sion of two independent siRNAs to p21, did not influence CD44

protein levels in BPEC-T cells (Figure S11A), indicating that p21

is not an essential component of the p53-dependent repression

of CD44. Conversely, suppression of CD44 expression in BPEC-

T cells or its ectopic expression in MCF7Ras cells did not

influence the p21 levels in these cells (Figures S11B and S11C).

We also tested whether the p63,a p53 paralogue known tohave

partially overlapping promoter-binding specificities with p53 (Got-

tifredi et al., 2001), is essential for repression of CD44 expression.



As we discovered, shRNA-mediated knockout of p63 expression

did not result in activation but instead in inhibition of CD44 protein

expression in BPEC-T, as well as BPLER and lung adenocarci-

noma A549 cells (Figure 7A and Figures S12A and S12B). Hence,

p63 acts on the CD44 protein in a fashion opposite to that of p53

by stimulating CD44 expression, a finding that was also recently

reported by others (Boldrup et al., 2007; Carroll et al., 2006).

DISCUSSION

Inhibition of cell proliferation and induction of apoptosis and se-

nescence are thought to be the major biological outputs of the

p53 pathway in response to various types of cell-physiologic

stresses (Levine, 1997; Levine et al., 2006). We present evidence

revealing an additional mechanism of p53 action: Under condi-

Figure 5. Tumor Growth of Human Mam-

mary Epithelial BPLER Cells with Normal

and Suppressed CD44 Expression

BPLER cells were infected with a lentiviral vector

expressing an shRNA to firefly luciferase (shLuc)

or to CD44 (shCD44-2 and shCD44-3). The infec-

tion efficiency was more than 95% for all con-

structs (data not shown).

(A) The level of CD44 expression in individual in-

fected cell populations in vitro was analyzed by

western blotting 72 hr after the infection.

(B) Individual lentivirus-infected cells (106 cells per

injection) were injected in nude mice, and tumor

weights (mean ± SEM) were analyzed 4 weeks af-

ter the injection. Tumor incidence per injection is

indicated in parentheses.

(C) Hematoxylin and eosin staining of the resulting

tumors. The scale bar represents 500 mm.

(D) The level of CD44 expression in tumors arising

from individual infected cell populations was ana-

lyzed by western blotting 72 hr after the infection.

(E) Tumor-initiating frequency of individual in-

fected cell populations.

(F and G) Soft agar colony assay of individual len-

tivirus-infected cells. The cells (105 per 6 cm dish)

were plated in culture medium in soft agar and cul-

tured for 4 weeks. The assay was terminated when

colonies of control cells reached 1 mm in diameter,

at which point they were counted (mean ± SEM,

n = 3).

tions of minimal stress in vitro and in

vivo, the basal levels of p53 that are pres-

ent suffice to repress expression of CD44

mRNA. Several types of observations

persuade us that the cultured BPEC cells

studied here are experiencing very low

levels of cell-physiologic stress in the

chemically defined WIT medium. Under

these conditions of tissue culture, the

BPEC cells express minimal levels of

p53 over extended periods of time in

culture, significantly lower than the levels

expressed when human mammary epi-

thelial cells from reduction mammoplasties are propagated in

the MEGM medium that is commonly used for human mammary

epithelial cells (Ince et al., 2007). These low levels of p53 expres-

sion correlate with the ability of BPEC cells to proliferate for at

least 40 doublings in vitro (Ince et al., 2007). This notion that

p53 functions at basal levels in the absence of unusual stress

is further supported by our in vivo observation that CD44 expres-

sion is upregulated in the mammary fat pad of virgin p53�/�mice

(relative to wild-type mice) that have not been exposed to any

stress beyond the stresses that attend normal development.

Taken together, these observations indicate that p53 exerts reg-

ulatory functions that are dissociated from its normal role in pro-

gramming responses to various types of cell-physiologic stress

and that p53 can do so when expressed at the low, basal levels

thatare usually depictedas its inactive, nonsignalingstate. Indeed,
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the recent report of p53’s ability to regulate the neuronal stem cell

pool (Meletis et al., 2006) is in consonance with this thinking.

The observations presented here suggest that high CD44 ex-

pression, by opposing p53 function, can serve as an important

growth-promoting and survival factor in early stages of tumor

progression, when its expression may counteract p53’s tumor-

suppressing functions. Acting in the opposite direction, p53

represses CD44 expression, doing so even when present at basal

levels and in the absence of any apparent cell-physiologic stress.

When placed in the context of previous reports, the present

observations suggest that p53 and CD44 mayestablish a self-am-

plifying positive feedback loop, in which p53 represses CD44

expression, which results in suppression of growth receptor sig-

naling and a resulting decrease in MDM2 activity, permitting, in

turn, further increases in p53 levels and function (Figure 7B) (Bour-

guignon et al., 1997; Mayo and Donner, 2001; Zhou et al., 2001).

Figure 6. Effect of Suppression of CD44 Expression on Tumor
Growth in A549 Cells with Suppressed p53 Levels

A549 cells were infected with a lentiviral vector expressing an shRNA to firefly

luciferase (shLuc), to p53 (shp53) or to CD44 (shCD44-2 and shCD44-3). The

infection efficiency was more than 95% for all constructs (data not shown).

(A) The level of p53 and CD44 expressions in individual infected cell popula-

tions in vitro was analyzed by Western blotting 72h after the infection.

(B) Individual lentivirus-infected cells (106 cells per injection) were injected in

nude mice and tumor weights (mean ± SEM) were analyzed 4 weeks after

the injection. Tumor incidence per injection is indicated in parentheses.
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A variety of observations indicate that the CD44 molecule is an

important factor for the progression of acute myeloid leukemia (Jin

et al., 2006; Krause et al., 2006), as well as for the growth of both

primary and metastatic tumors (Ahrens et al., 2001; Yu et al.,

1997). We note that the CD44 in the presently described breast

Figure 7. Scheme of p53-CD44-p53 Axis in Untransformed and

Transformed Cells

(A) The p63 protein expression was inhibited by two independent shRNAs in

pLKO1-Puro lentiviral vector in BPEC-T cells. The cells were lysed and ana-

lyzed for p63 and CD44 protein expression by western blotting 1 week after in-

fection with viral shRNA constructs.

(B) The scheme of the function of p53-CD44-p53 axis in immortalized BPEC-T

cells. Unknown signals, dependent on a cell’s position within an epithelial cell

cluster, trigger induction of p53 expression, which leads, in turn, to CD44 re-

pression, slower proliferation, and increased apoptosis in response to a strong

genotoxic stress. Conversely, increased CD44 expression can inhibit p53 sta-

bility by stimulating Her2-dependent activation of MDM2 protein expression

(Mayo and Donner, 2001; Zhou et al., 2001).

(C) The summary of CD44 function in tumor cells. In highly tumorigenic BPLER

cells with SV40 LTg-inactivated p53, CD44 is essential for anchorage-inde-

pendent growth, tumor growth kinetics, and tumor-initiating ability. In A549

cells, suppression of p53 expression accelerates tumor growth, which is de-

pendent on elevated CD44 expression resulting from its derepression occur-

ring in the absence of p53. The expression of CD44 is positively regulated

by p63 in BPEC-T cells, in BPLER cells, and in A549 cells, but the detailed mo-

lecular mechanism of this regulation in not known.



tumor model is indispensable not only for tumor growth but also

for tumor-initiating ability, which correlates with its critical role in

fostering anchorage-independent growth (Figure 7C). Although

CD44 has been considered only as a marker of breast cancer

stem cells, the present observations indicate that it also contrib-

utes in functionally important ways to the maintenance of the

tumor-initiating ability of transformed cells (Al-Hajj et al., 2003).

In a fashion similar to its actions in untransformed breast epi-

thelial cells, p53 operating in lung carcinoma cells suppresses

CD44 protein expression, thereby precluding it from antagoniz-

ing p53 function. Most studies of p53 have suggested that the

loss of p53 function enables cancer cells to escape p53-induced

cytostasis and/or apoptosis that would otherwise be triggered

by the multiple cell-physiologic stresses encountered at various

stages of tumor formation. The present results indicate another

important benefit conferred on cancer cells by p53 loss—an in-

creased resistance to apoptosis and responsiveness to mito-

genic signals resulting from elevated CD44 levels.

In contrast to the ability of p53 to repress CD44 expression, its

paralogue, p63, acts in an opposing fashion to stimulate CD44

expression, as recently reported by others in the context of a hu-

man head-and-neck carcinoma cell line (Boldrup et al., 2007).

We note that suppression of p63 levels resulted in significant

loss of CD44 expression in BPEC-T cells, expressing primarily

the deltaN (DN) isoform of p63, in their tumorigenic BPLER deriv-

atives, and in human lung adenocarcinoma cells (Figure 7A and

Figures S12A–S12C). Hence, p63 stimulation of CD44 expres-

sion operates in multiple cell types and in both normal and trans-

formed cells. The mechanism of this activation by p63 and its

physiologic relevance require further investigation. Nonetheless,

it is already apparent that CD44 protein expression is positively

regulated by a transcription factor that is known to be essential

for normal epithelial development (Mills et al., 1999; Yang

et al., 1999) and for the proliferative potential of epithelial stem

cells (Senoo et al., 2007).

EXPERIMENTAL PROCEDURES

Plasmids and Constructs

The human CD44 promoter (2021 bp fragment upstream of translation initia-

tion site) was PCR amplified from chromosomal DNA of HMLE cells (Elenbaas

et al., 2001) with primers 50-AGCTCCTGAATCCATGCTGT-30 (forward) and 50-

CTTCGCAGACAGCTCACTTG-30 (reverse), reamplified with primers introduc-

ing NheI (50-ACTATGCTAGCCTGAATCCATGCTG-30) or XhoI (50-ATCAACTC

GAGGGTGTCCGGAGCGAA-30 ) restriction sites. The resulting fragment was

cloned into a pGL3 luciferase reporter vector (Promega), and sequence was

verified. The potential p53-binding site was mutated by QuickChange

site-directed mutagenesis kit (Stratagene), introducing the primer 50-

AGTGGGGCTCGGAGGTCCAGCCACCCCGCGACA-30, and the resulting

construct was verified by sequencing. The standard form of CD44 (CD44s)

was subcloned from CDM8 construct into retroviral vector pWZL-blasticidin.

Antibodies

For immunohistochemistry, we used CD44 antibody (Becton Dickinson, IM7).

For immunofluorecent detection, we used phycoerythrin (PE)-conjugated

CD44 antibody (Becton Dickinson, Nr.550989). For western blotting, we

used CD44 antibody MEM-85 (from V.Horejsi) and anti-CD44H antibody

(R&D Systems). For p53 and p21 immunofluorescence and/or western blotting

analyses, we used rabbit anti-p53 antibody (Santa Cruz, FL-393) and mouse

monoclonal antibody to p21 (Santa Cruc, sc-817). For western blotting detec-

tion of anti-Akt and anti-P-Akt, we used antibodies from Cell Signaling.
Cell Culture

HMEC-T cells were cultured in MEGM media with bovine pituitary extract.

BPEC-T and BPLER cells were cultured in chemically defined WIT media

(Ince et al., 2007). The human osteosarcoma cell line SAOS-2 (ATCC no.

HTB85) and lung adenocarcinoma A549 cells were maintained in DME medium

supplemented with 10% fetal calf serum, 100 units/ml penicillin, 100 mg/ml

streptomycin, and 2 mM L-glutamine at 37�C in 5% CO2. For western blotting

analysis of CD44 and p53 expressions, the A549 cells were cultured in WIT

medium. For promoter reporter assays, the SAOS-2 cells were cultured in

WIT or DME medium.

Immunofluorescence

Culturedcells were fixed with100% methanol, blocked with 10%calf serum and

stained sequentially with primary rabbit antibody against either p53 or p21, incu-

bated with secondary antibodies conjugated to Alexa-488, and then incubated

with pan CD44 antibody directly conjugated to phycoerythrin (BD PharMingen).

Semiquantitative RT-PCR

Complementary DNA from BPEC-T cells was synthesized from 1 mg of total

RNA and diluted to 100 ml. The cDNA solution (0.25–0.06 ml) was amplified

with primers to the standard region of CD44 gene (50-CCACGTGGA

GAAAAATGGTC-30 from exon 2 and 50-CATTGGGCAGGTCTGTGAC-30 from

exon 3) and to the control GAPDH gene (50-ACCCAGAAGACTGTGGATGG-

30 and 50-TCTAGACGGCAGGTCAGGTC-30). The amplified products were

resolved by agarose gel electrophoresis.

Promoter Reporter Assay

SAOS-2 cells or HMEC-T cells were plated 12 hr prior to transfection in 48-well

plates (33 104 cells) inculture medium.Cellswere transfectedwithFugene trans-

fection reagent (Roche) with 200 ng of reporter plasmid and/or 10 ng of p53 plas-

mid. Thirty hours after transfection, cell extracts were prepared, and luciferase

activity was determined according to the vendor’s instructions (Promega).

Gel Shift Assay

Gel shift assays were performed with 50 ng of recombinant human p53 (Cal-

biochem) in 20 ml of binding buffer (10 mM HEPES [pH 7.5], 5 mM NaCl2,

0.1 mM EDTA, 1 mM dithiothreitol, and 20% glycerol). When indicated, cold

competitor or antibody was added in the concentrations noted. Reactions were

incubated at room temperature for 20 min prior to the addition of 0.2 ng of

double-stranded oligonucleotides (�6 3 104 cpm) and then incubated for

additional 20 min at room temperature. The antibodies used for supershift as-

says were pAb421 (epitope: aa 371–380) and sc-6243 (Santa Cruz). Reactions

were electrophoresed on a 4% nondenaturing polyacrylamide gel, which was

dried and exposed to film for 16 hr at –80�C.

Soft Agar Assay

A layer of 0.6% agar noble in DME without serum was placed onto 6 cm dishes.

BPLER cells were then seeded in 0.3% top agar containing WIT medium atop

the first layer. Fresh top agar was added after 1.5 weeks, and colonies were

counted after 4 weeks.

Apoptotic Assay

BPEC-T cells, 80% confluent, were incubated 48 hr with the DNA-damaging

agent doxorubicin in cytokine-free M199/F12 (1:1) culture medium supple-

mented with 100 units/ml penicillin, 100 mg/ml streptomycin, 2 mM L-gluta-

mine, and various concentrations of epidermal growth factor (EGF). Cells

were than analyzed by TdT-mediated dUTP nick end-labeling (TUNEL) assay

or by Hoechst-33342 dye.

Proliferation Assay

BPEC-T cells (5 3 104) were plated on 6-well plates in cytokine-free M199/F12

(1:1) culture medium supplemented with 100 units/ml penicillin, 100 mg/ml

streptomycin, 2 mM L-glutamine, and various concentrations of EGF. Cells

were allowed to proliferate for 3 days and counted.
Cell 134, 62–73, July 11, 2008 ª2008 Elsevier Inc. 71



Tumorigenic Assays

Subcutaneous tumorigenicity assays were performed as described (Elenbaas

et al., 2001) with modification. Six- to 8-week-old immunocompromised athy-

mic nude mice (Ncr-Nu, Taconic) were irradiated with 400 rad 4 hr prior to in-

jection. Cells (106) were resuspended in 100 ml of culture medium, mixed with

Matrigel (Becton Dickinson), and injected with a 25 gauge needle into anaes-

thetized mice. Tumor size was measured every 3–4 days. The time of initial tu-

mor formation was defined as the time when the tumor had reached a diameter

of 3 mm. Mice were sacrificed when the tumors grew to 1 cm in diameter or

after 5 weeks of monitoring. Tumors were fixed in 10% formalin and paraffin

embedded for histological examination or minced and lysed in HEPES-buff-

ered saline containing 1% NP-40 detergent and protease inhibitor mix (Roche).

Statistical Analysis

Statistical significance was analyzed by Student’s t test and expressed as

p value.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, Supple-

mental References, and twelve figures and can be found with this article online

at http://www.cell.com/cgi/content/full/134/1/62/DC1/.
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