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1 Introduction

A conventional on-shell formulation of N = 2 supergravity in five dimensions was initially

given in [1, 2] and the U(1) gauged case was first described in [3]. In [4–7] on-shell methods

were used to treat the case of this supergravity coupled to vector multiplets. Hypermultiplet

couplings and gaugings were considered in [8–10] and tensor multiplet matter in [11, 12]

along with gaugings of isometries of a subgroup of the isometry group of the scalar mani-

fold. The theory can also be obtained from compactification of M-theory on a Calabi-Yau

threefold CY3 [13, 14]. The resulting Lagrangian depends on topological data of the com-

pactification manifold, namely the Calabi-Yau intersection numbers.

This formulation of supergravity doesn’t include the N-S two-form Bµν and dilaton

explicitly and in order to investigate effective descriptions of string theory it became im-

portant to include the dilaton and antisymmetric fields, so off-shell formulations [15–20]

were explored to facilitate the construction of matter coupled supergravities, although these

theories lack a manifest σ-model structure for the scalars before eliminating the auxiliary

fields [21]. In [22], Nishino and Rajpoot proposed an alternative on-shell formulation of

N = 2 d = 5 supergravity starting from a supergravity multiplet with a larger field content

which contains the N-S antisymmetric field Bµν and a dilaton σ. This multiplet’s vielbein

eµ
m, gravitini ψµ

i and graviphoton Aµ coincide with the conventional fields and in addition

to the two-form and dilaton, there is a dilatino χi, giving rise to 12+12 on-shell degrees of

freedom. Vector and hypermultiplets [23] have been coupled to this supergravity theory,

with a structure of the couplings similar to that of N = 1 d = 9 supergravity [24]. A

priori, both formulations are rather similar if one dualizes the antisymmetric tensor Bµν

into a vector field Bµ. However, after coupling to vector multiplets, the resulting σ-model

structure is different. In fact, it was shown in [25] that the dilaton-Weyl multiplet can be

obtained by coupling the standard multiplet to an improved vector multiplet.
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The matter couplings of N = 2 d=5 supergravity were studied extensively in [26] from

a superspace perspective, and further work using the superconformal formulation [25, 27]

allowed the construction of superconformal multiplets and their corresponding actions [19,

20, 25, 27, 28], leading to quite general d = 5 matter couplings in the superconformal

formulation [29]. The resulting theories preserve eight supersymmetries1 [30] and can be

studied at depth with the tools of special geometry [31–34], the condition for which arises

in the off-shell theory as a constraint coming from a scalar Lagrange multiplier auxiliary

field of the standard-Weyl multiplet. The advantage of the off-shell formulation is that we

may find higher derivative densities, which are important from a string theory perspective,

without changing the supersymmetry transformations, and therefore inducing corrections

to our original action, an iterative process that may never terminate. The higher derivative

densities that are supersymmetric completions of the square of the Ricci scalar and the

square of the Weyl tensor have been produced in the background of the standard-Weyl

superconformal gravitational multiplet in [35, 36].

In [25] dilaton-Weyl multiplets were introduced including the two form, the dilaton

and the dilatino, whilst in [27] dilaton-Weyl multiplets incorporating more than one vector

multiplet were introduced. In [37–42] an off-shell superspace formulation of the super-

conformal theory has been developed, which should lead to the most general couplings,

and indeed the dilaton-Weyl multiplet was considered in these works. We find it useful

to add to the literature an explicit derivation of the N-R supergravity from the off-shell

formulation by means of gauge fixing and field redefinitions, complimenting the work done

in [27]. We shall discuss in detail the vector multiplet couplings of this theory. We shall

also discuss simple generalizations of two of the higher derivative densities [35, 36] found

in the literature.

This paper is organized as follows. In section 2 we discuss the derivation of the mini-

mal N-R supergravity and in section 3 we couple to Abelian vector multiplets and relegate

to appendix B the explicit constant field redefinitions needed to arrive at the conventions

of [22, 23]. In section 4 we generalize the known higher derivative densities to the extended

dilaton-Weyl multiplets that we describe in appendix A, in which we make use of a compo-

sition of a vector multiplet in terms of a linear multiplet [43] that we give in appendix C.

We conclude in section 5.

Acknowledgments
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3130541. The author would like to thank Linda Uruchurtu, Jorge Belloŕın and Hitoshi

Nishino for useful correspondence and discussions, and Per Sundell and Rodrigo Olea for
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1We use the terminology N = 2 due to the fact we use symplectic Majorana spinors, which are an SU(2)

doublet of complex spinors obeying the symplectic Majorana condition, ψi = ǫij(ψj)c where c denotes

charge conjugation. In the literature sometimes the notation N = 1 is used in the case that the theory is

presented in terms of Dirac spinors. Of course these two descriptions both have 8 real components of the

supercharges.
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2 Pure N-R supergravity from the off-shell superconformal formalism

In this section we give the details of the construction of the N-R supergravity [22, 23]

from the off-shell formalism based on the superconformal dilaton-Weyl multiplet described

in [43]. We also describe an alternative procedure put forward in [27]. To couple the theory

of [43] to vector multiplets one may use the results of [36], however following the procedure

of [27] we will be led to introduce a larger generalized dilaton-Weyl multiplet, which includes

an arbitrary number of vector multiplets. It is instructive to consider the case of the pure

N-R supergravity first, and then the coupling to vector multiplets separately.

The pure N-R supergravity can be constructed straightforwardly using exactly the

results of [43], whose conventions we will follow, which are described in detail in [25].

However we shall construct it in a slightly different way that was suggested in [27], as

we will emphasize below. The two derivative theory is constructed by combining a vector

multiplet action and a compensating linear multiplet action, obtained in the background of

a Weyl multiplet. We suppress the spinor indices in bilinears using the NW-SE convention

and we raise and lower the SU(2) indices using the totally antisymmetric tensor ǫij where

ǫ12 = ǫ12 = 1, e.g. ψ̄µψν = ψ̄i
µψiν = ψ̄i

µψ
j
νǫji. We will frequently use the notation that for

two p-forms α, β, we define α · β = αµ1···µpβ
µ1···µp , and α2 = α · α.

There are two types of Weyl multiplet, the so called standard-Weyl multiplet and the

dilaton-Weyl multiplet. The standard-Weyl multiplet consists of the vielbien emµ , gravitino

ψi
µ, an auxiliary two form Tmn, an auxiliary scalar D, an auxiliary fermion χi, an auxiliary

SU(2) triplet of vectors V ij
µ with V ij

µ = V ji
µ and a gauge field for local dilatations, bµ.

These transform under supersymmetry with parameter ǫi and special supersymmetry with

parameter ηi as

δemµ =
1

2
ǭγmψµ ,

δψi
µ =

(

∇µ +
1

2
bµ

)

ǫi − V ij
µ ǫj + iγmnT

mnγµǫ
i − iγµη

i ,

δV ij
µ = −3i

2
ǭ(iφj)

µ
+ 4ǭ(iγµχ

j) + iǭ(iγmnT
mnψj)

µ +
3i

2
η̄(iψj)

µ ,

δTmn =
i

2
ǭγmnχ− 3i

32
ǭR̂mn(Q) ,

δχi =
1

4
Dǫi − 1

64
γmnR̂

ij

mn(V )ǫj +
i

8
γmnγpDpTmnǫ

i

− i

8
γmDnTmnǫ

i − 1

4
γmnpqTmnTpqǫ

i +
1

6
T 2ǫi +

1

4
γmnT

mnηi ,

δD = ǭγmDmχ− 5i

3
ǭγmnT

mnχ− iη̄χ ,

δbµ =
i

2
ǭφ

µ
− 2ǭγµχ+

i

2
η̄ψµ , (2.1)

where the the spin covariant derivative is defined by

∇µǫ
i =

(

∂µ +
1

4
ωµ

mnγmn

)

ǫi , (2.2)
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and we have underlined the composite fields apart from the spin connection. Explicit

expressions for the composite fields are

ωmn
µ = 2eν[m∂[µe

n]
ν] − eν[men]σeµp∂νe

p
σ + 2e[mµ bn] − 1

2
ψ̄[nγm]ψµ − 1

4
ψ̄nγµψ

m ,

φi
µ
=
i

3
γmR̂′i

µm(Q)− i

24
γµγ

mnR̂′i
mn(Q) ,

R̂′i
µν(Q) = 2∇[µψ

i
ν] + b[µψ

i
ν] − 2V ij

[µψν]j + 2iγmnT
mnγ[µψ

i
ν] ,

R̂
i

µν(Q) = R̂′i
µν(Q)− 2iγ[µφ

i

ν]
,

R̂
ij

µν(V ) = 2∂[µV
ij

ν] − 2V
k(i
[µ V

j)
ν]k − 3iφ̄

(i

[µ
ψ
j)
ν] − 8ψ̄

(i
[µγν]χ

j) − iψ̄
(i
[µ(γ · T )ψj)

ν] ,

R′(M)µν
mn

= 2∂[µων]
mn + 2ω[µ

mpων]p
n + iψ̄[µγ

mnψν] + iψ̄[µγ
[m(γ · T )γn]ψν]

+ ψ̄[µγ
[mRν]

n](Q) +
1

2
ψ̄[µγν]R

mn(Q)− 8ψ̄[µeν]
[mγn]χ+ iφ̄

[µ
γmnψν] ,

fm
m

= − 1

16
R , R = R′(M)µν

µν
, (2.3)

where the relevant superconformal derivatives are given by

Dµχ
i =

(

∇µ − 3

2
bµ

)

χi − V ij
µ χj −

1

4
Dψi

µ +
1

64
γmnR̂ij

mn(V )ψµj −
i

8
γmnγp(DpTmn)ψ

i
µ

+
i

8
γm(DnTmn)ψ

i
µ +

1

4
γmnpqTmnTpqψ

i
µ − 1

6
T 2ψi

µ − 1

4
γmnT

mnφi
µ
, (2.4)

and

DµTmn = (∇µ − bµ)Tmn − i

2
ψ̄µγmnχ+

3i

32
ψ̄µR̂mn(Q) . (2.5)

The superconformal linear multiplet is formed from an SU(2) triplet Lij = Lji, a

constrained vector Em, a scalar N and a fermion ϕi which transform, in the background

of the standard-Weyl multiplet, as

δLij = iǭ(iϕj) ,

δϕi = − i

2
γmDmL

ijǫj −
i

2
γmEmǫ

i +
N

2
ǫi − γmnT

mnLijǫj + 3Lijηj ,

δEm = − i

2
ǭγmnDnϕ− 2ǭγnϕTnm − 2η̄γmϕ ,

δN =
1

2
ǭγmDmϕ+

3i

2
ǭγmnT

mnϕ+ 4iǭiχiLij +
3i

2
η̄ϕ , (2.6)

where

DµL
ij = (∂µ − 3bµ)L

ij + 2V
(i
µ k

Lj)k − iψ̄(i
µϕ

j) ,

Dµϕ
i =

(

∇µ − 7

2
bµ

)

ϕi − V ij
µ ϕj −

i

2
γmDmL

ijψµj +
i

2
γmEmψ

i
µ − N

2
ψi
µ

+ γmnT
mnLijψµj − 3Lijφµj ,

DµEm = (∇µ − 4bµ)Em +
i

2
ψ̄µγmnDnϕ+ 2ψ̄µγ

nϕTnm + 2φ̄
µ
γmϕ . (2.7)
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The constraint on the vector Em, which reads DmEm = 0 can be solved by the intro-

duction of a three form Eµνρ such that

Em = − 1

12
emµ e

−1ǫµνρσλDνEρσλ , (2.8)

and it is useful to define the two form Eµνρ = eǫµνρσλE
σλ, so that we have Em = emµ DνE

µν .

The vector multiplet is formed from an SU(2) triplet of scalars Y ij, the gauge field Aµ,

a gaugino λi and a scalar ρ. These transform under the supersymmetries in the background

of the standard-Weyl multiplet as

δAµ = − i

2
ρǭψµ +

1

2
ǭγµλ ,

δY ij = −1

2
ǭ(iγmDmλ

j) +
i

2
ǭ(i(γ · T )λj) − 4iρǭ(iχj) +

i

2
η̄(iλj) ,

δλi = −1

4
γmnF̂

mnǫi − i

2
γm(Dmρ)ǫ

i + ργmnT
mnǫi − Y ijǫj + ρηi ,

δρ =
i

2
ǭλ , (2.9)

where

Dµρ = (∂µ − bµ)ρ−
i

2
ψ̄µλ ,

Dµλ
i =

(

∇µ − 3

2
bµ

)

λi − V ij
µ λj +

1

4
γmnF̂

mnψi
µ +

i

2
γm(Dmρ)ψ

i
µ

+ Y ijψµj − ργmnT
mnψi

µ − ρφi
µ
,

F̂µν = Fµν − ψ̄[µγν]λ+
i

2
ρψ̄[µψν] , (2.10)

and where F = dA.

A superconformally invariant density formula constructed from a vector multiplet and

a linear multiplet is given by

e−1LV L = Y ijLij + iλ̄ϕ− 1

2
ψ̄i
mγ

mλjLij + CmP
m

+ ρ

(

N +
1

2
ψ̄mγ

mϕ+
i

4
ψ̄i
mγ

mnψj
nLij

)

, (2.11)

where Pm is the bosonic part of the supercovariant Em

Pm = Em +
i

2
ψ̄nγ

nmϕ+
1

4
ψ̄i
nγ

mnpψj
pLij . (2.12)

In order to describe vector-vector couplings one can compose the linear multiplet ap-

pearing in the above action from a vector multiplet and to describe linear-linear couplings

one can compose the vector multiplet appearing in the action from a linear multiplet. The

composition of the vector multiplet from the linear multiplet is given in detail in [36, 43]

and we list the bosonic parts in appendix C.1. As noted in [27], where only the scalar
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composition was given, this embedding leads to fairly long expressions when including the

fermions. We will be interested in the bosonic part of the resulting action which reads

e−1LL = L−1Lij�L
ij − LijDµLk(iDµLj)mL

kmL−3 −N2L−1

− PµP
µL−1 +

8

3
LT 2 + 4DL− 1

2
L−3PµνLl

k∂µL
kp∂νLpl

+ 2Pµν∂µ

(

L−1Pν + V ij
ν LijL

−1
)

, (2.13)

where L2 = LijL
ij, Pµν is the bosonic part of Eµν and

Lij�L
ij = Lij (∂

m − 4bm + ωn
nm)DmL

ij + 2LijV
i
n kDnLjk

+ 6L2fm
m
− iLijψ̄

miDmϕ
j − 6L2ψ̄mγmχ

− Lijϕ̄
iγmnT

mnγpψj
p + Lijϕ̄

iγmφj
m
. (2.14)

The composition of the linear multiplet in terms of a single vector multiplet is well

known [20, 25, 27], which we take from (A.1) of [36],2 and reads

Lij(V) = 2ρYij −
i

2
λ̄iλj ,

ϕi(V) = iργmDmλi + 2ργmnT
mnλi − 8ρ2χi −

1

4
γmnF̂mnλi +

i

2
γm(Dmρ)λi − Yijλ

j ,

Em(V) = Dn

(

−ρF̂mn + 8ρ2Tmn − i

4
λ̄γmnλ

)

− 1

8
ǫmnpqrF̂npF̂qr ,

N(V) = ρ�ρ+
1

2
(Dmρ)(Dmρ)− 1

4
F̂mnF̂

mn + Y ijYij + 8ρF̂mnT
mn

− 4ρ2
(

D +
26

3
T 2

)

− 1

2
λ̄γmDmλ+ iλ̄γmnT

mnλ+ 16iρχ̄λ . (2.15)

With this at hand we can now write down an action by taking the Lagrangian LL−3LV,

where LV can be formed in two ways: by taking another copy of the same vector multiplet

V = (ρ,Aµ, λ
i, Y ij), or by considering a second vector multiplet. Let us first consider using

the same vector multiplet that we have embedded in the linear multiplet as done in [43].

We obtain for the bosonic part of the vector multiplet density

e−1LV = −1

4
ρF 2 +

1

3
ρ2�ρ+

ρ

6
(Dρ)2 + ρY ijYij

− 4

3
ρ3
(

D +
26

3
T 2

)

+ 4ρ2FµνT
µν − e−1

24
ǫµνρσλAµFνρFσλ , (2.16)

where

�ρ = (∇m − 2bm)Dmρ−
i

2
ψ̄mDmλ− 2ρψ̄mγ

mχ

+
1

2
ψ̄mγ

mγnpT
npλ+

1

2
φ̄
m
γmλ+ 2ρfm

m
.

2We have corrected a typo of a missing factor of ρ in the last term of the first line of the expression for

N(V) and a missing factor of i in the penultimate term in the expression for ϕi(V).
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It turns out that the equations of motion for the vector multiplet fields imply3

Tmn =
ρ−2

8

(

ρF̂mn +
1

6
ǫmnpqrĤpqr +

i

4
λ̄γmnλ

)

,

χi =
i

8
ρ−1γmDmλ

i +
i

16
ρ−2γm(Dmρ)λ

i − ρ−2

32
γmnF̂

mnλi

+
ρ−1

4
γmnT

mnλi +
iρ−1

32
λjλ̄

iλj ,

D =
ρ−1

4
�ρ+

ρ−2

8
(Dρ)2 − ρ−2

16
F̂ 2 − ρ−2

8
λ̄γmDmλ− ρ−4

64
λ̄iλjλ̄iλj − 4iρ−1λχ

+

(

2ρ−1F̂mn − 26

3
Tmn +

iρ−2

4
λ̄γmnλ

)

Tmn ,

Y ij =
i

4
ρ−1λ̄iλj , (2.17)

where

Ĥµνρ = Hµνρ −
3

4
ρ2ψ̄[µγνψρ] −

3i

2
ρψ̄[µγνρ]λ ,

Hµνρ = 3∂[µBνρ] +
3

2
A[µFνρ] , (2.18)

and for H to be gauge invariant we need that B transforms under gauge transformations as

δBµν = 2∂[µΛν] −
1

2
ΛFµν . (2.19)

Now we note that the equation of motion for D is given by

L = ρ3 . (2.20)

This must be implemented as a constraint if one is to use the above solutions of the

equations of motion in the action, and obtain an equivalent theory. However the gauge

fixing performed in [36, 43] demands that L be constant,

Lij = ± 1√
2
δij bµ = 0 λ = 0 . (2.21)

So the action given in [43] should be supplemented by the contraint arising from the

equations of motion of the standard Weyl fields we have eliminated. This is compatible,

for example, with the ρ equation of motion however when we come to consider higher

derivative theories the form of this contraint will change.4 Alternatively one could impose

the gauge fixing conditions Lij = ± L′√
2
δij where L

′ is a non-constant scalar field, and the

normalization is chosen such that L2 = LijL
ij = L′2, however in such a case the local

SU(2) symmetry of the superconformal gravity will only have been fixed down to local

U(1). Furthermore the necessary compensating special supersymmetry transformation to

maintain this gauge will become dependant on dL. This may be an interesting theory, but

it is somewhat different from the ungauged N-R supergravity we wish to construct here,

and we hope to return to this in future work.

3For the details see [43] where the relevant fermionic terms in the action are given.
4We shall discuss how we can avoid this in the remainder of this section, which is particularly useful

when considering higher derivative theories.
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Following [43] we then find the action and supersymmetry transformations given below

in (2.25), (2.29) under the gauge fixings given in (2.27). We can also obtain this theory in

a different way which was suggested in [27], which will be useful to generalise the coupling

to vector multiplets and higher derivative theories in the next sections. We introduce an

additional vector multiplet V♭ = (ρ♭, A♭
µ, λ

♭i, Y ♭ij). Combining this with a linear multiplet

composed of a vector multiplet that we shall denote VD = (σ,Cµ, ψ
i, Y ij) in the density

formula (2.11) we obtain a suitable Lagrangian density which we denote LV′ , and we will

take the Lagrangian to be

L = LL + LV′ . (2.22)

Examining the equations of motion for the vector multiplet V♭ = (ρ♭, A♭
µ, λ

♭i, Y ♭ij)

directly in the action formula (2.11), since the composite linear multiplet does not now

depend on these fields, we see that the fields V♭ act as Lagrange multipliers, whose equa-

tions of motion set the fields of the composite linear multiplet to zero5 and one obtains

expressions for the standard-Weyl multiplet matter fields in terms of VD,

Tmn =
σ−2

8

(

σĜmn +
1

6
ǫmnpqrĤpqr +

i

4
ψ̄γmnψ

)

,

χi =
i

8
σ−1γmDmψ

i +
i

16
σ−2γm(Dmσ)ψ

i − σ−2

32
γmnĜ

mnψi

+
σ−1

4
γmnT

mnψi +
σ−2

8
Y ijψj ,

D =
1

4σ
�̂σ +

1

8σ2
(Dσ)2 − 1

16σ2
Ĝ2 +

1

2
fm
m

+

(

2σ−1Ĝmn − 26

3
Tmn +

iσ−2

4
ψ̄γmnψ

)

Tmn +
1

2
ψ̄mγ

mγnpT
npψ

+
1

2
φ̄
m
γmψ − σ−2

8
ψ̄γmDmψ − σ−4

64
ψ̄iψjψ̄iψj − 4iσ−1ψχ ,

Y ij =
i

4
σ−1ψ̄iψj , (2.23)

where

Ĝµν = Gµν − ψ̄[µγν]ψ +
i

2
σψ̄[µψν] ,

Ĥµνρ = Hµνρ −
3

4
σ2ψ̄[µγνψρ] −

3i

2
σψ̄[µγνρ]ψ ,

Hµνρ = 3∂[µBνρ] +
3

2
C[µGνρ] ,

�̂σ = (∇m − 2bm)Dmσ − i

2
ψ̄mDmψ − 2σψ̄mγ

mχ , (2.24)

and G = dC. The equation of motion for D now implies L = σ2ρ♭, so the gauge fixing

conditions (2.21) can be implemented, as the constraint arising from the D equation of

motion can be solved in terms of ρ♭ which is a Lagrange multiplier and the other fields

of V♭ can be similarly used to solve the Tmn, χ
i equations of motion. As above we use

5Note that this also clearly satisfies the constraint DmEm = 0.
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the expressions (2.23) to define a new gravitational multiplet, and will take them to be

identities, so that the term involving the Lagrange multipliers can be neglected in the

action, since the composite linear multiplet is now identically vanishing. In particular we

can always solve the contraints coming from the standard weyl fields we have eliminated

using the Lagrange multipliers.

Note that in this case the contribution to the superconformal action from the vec-

tor multiplets is completely contained in the expressions for the previously independent

standard-Weyl multiplet matter fields, which are now composite. If we take the most gen-

eral contribution from the vector multiplet VD that still allows for the V♭ vector multiplet

to be a Lagrange multiplier, i.e. we add the Lagrangian density LVD
formed from the three

copies of VD we find, using the expressions (2.23), that LVD
= 0. Indeed this must be

the case as there are no terms in the Lagrangian density (2.11) that do not involve the

composite linear multiplet, which, as we have seen above, vanishes.

Let us now summarize the details of the dilaton-Weyl multiplet, which is made up of

the vielbien emµ , gravitino ψi
µ, graviphoton gauge field Cµ, a two-form gauge field Bµν , the

dilaton σ, the dilatino ψi and an auxiliary SU(2) triplet of vectors V ij
µ with V ij

µ = V ji
µ and a

gauge field for local dilatations bµ. These transform under supersymmetry with parameter

ǫi and special supersymmetry with parameter ηi as

δemµ =
1

2
ǭγmψµ ,

δψi
µ =

(

∇µ +
1

2
bµ

)

ǫi − V ij
µ ǫj + iγmnT

mnγµǫ
i − iγµη

i ,

δV ij
µ = −3i

2
ǭ(iφj)

µ
+ 4ǭ(iγµχ

j) + iǭ(iγmnT
mnψj)

µ +
3i

2
η̄(iψj)

µ ,

δCµ = − i

2
σǭψµ +

1

2
ǭγµψ ,

δBµν =
1

2
σ2ǭγ[µψν] +

i

2
σǭγµνψ + C[µδ(ǫ)Cν] ,

δψi = −1

4
γmnĜ

mnǫi − i

2
γm(Dmσ)ǫ

i + σγmnT
mnǫi − i

4
σ−1ǫjψ̄

iψj + σηi ,

δσ =
i

2
ǭψ ,

δbµ =
i

2
ǭφ

µ
− 2ǭγµχ+

i

2
η̄ψµ , (2.25)

where we have underlined composite fields the expressions for which are listed in (2.3) but

now additionally Tmn,D and χi are given by their expressions in (2.23). The supercovariant

field strength Ĥ defined in (2.24) obeys the generalized Bianchi identity

D[µĤνρσ] =
3

4
Ĝ[µνĜρσ] , (2.26)

where G = dC.

Armed with the superconformal theory we now wish to gauge fix down to the N-R

supergravity. First we choose

bµ = 0 , Lij =
L√
2
δij , ϕi = 0 . (2.27)
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The first condition breaks local dilatational invariance and fixes the form of the necessary

compensating special conformal boosts, the second breaks local SU(2) down to U(1)R,

where L is constant, and the third fixes special supersymmetry. Choosing the value of L

is a choice of dilatation. In order to maintain this gauge we must set

ηk =
1

3
(γ · T )ǫk − i

2
(γmEm)δikǫ

i , (2.28)

where in order to avoid confusion we point out that Em is the vector of the compensating

linear multiplet, not the composite one.

Under these gauge fixing conditions we obtain for the bosonic part of the action6

e−1L−1LL = −1

2
R+

1

4
σ−2G2 +

1

6
σ−4H2 +

3

2
σ−2(dσ)2

− V ′ij
µV

′µ
ij −N2 + L−2PµP

µ +
√
2L−2PµVµ , (2.29)

where we have decomposed V ij
µ into its traceful and traceless parts [43]

V ij
µ = V ′ij +

1

2
δijVµ , V ′ijδij = 0 , (2.30)

and Pµ denotes the bosonic part of Eµ. Finally we set L = 1. The action (2.29) is

invariant under the supersymmetry transformations (2.25), with the special supersymmetry

parameter ηi replaced by its expression (2.28). To arrive at the on-shell formulation we

may next eliminate auxiliary fields Pµ, N and V ij
µ by their equations of motion which imply

these fields vanish, and the supersymmetry transformations become:7

δemµ =
1

2
ǭγmψµ ,

δψi
µ = ∇µǫ

i + iTmn

(

γmnγµ − 1

3
γµγmn

)

ǫi ,

δCµ = − i

2
σǭψµ +

1

2
ǭγµψ ,

δBµν =
1

2
σ2ǭγ[µψν] +

i

2
σǭγµνψ + C[µδ(ǫ)Cν] ,

δψi = −1

4
γmnG

mnǫi − i

2
γm(∂mσ)ǫ

i +
4

3
σγmnT

mnǫi ,

δσ =
i

2
ǭψ . (2.31)

We must now perform some field and parameter redefinitions to bring the supersymmetry

transformations to a same form as those in [22, 23]. We will take

ǫi = −
√
2ǫ′i , ψi

µ = −
√
2ψ′i

µ , σ = eσ
′

, ψi = −
√
2√
3
eσ

′

χ′i , Cµ =
√
2A′

µ , (2.32)

noting that the definition of the three form field strength has therefore changed to

G′
µνρ = H ′

µνρ = 3∂[µBνρ] + 3A′
[µF

′
νρ] , (2.33)

6We have written the action in this way to emphasize the fact that the relative signs of the terms

appearing are not dependent on the gauge fixing choice L = ±1. Rather this choice only gives an overall

sign to this contribution to the action.
7Note that due to the equation of motion for Pµ the special supersymmetry parameter now reads

ηi = 1

3
γmnT

mnǫi if we ignore terms quadratic in the fermionic fields.
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where F ′ = dA′ =
√
2G, and so from (2.26) the Bianchi identity for G now reads

∂[µG
′
νρσ] =

3

2
F ′

[µνF
′
ρσ] . (2.34)

Dropping the primes we find the following supersymmetry transformations

δeµ
m = ǭγmψµ ,

δσ =
i√
3
ǭχ ,

δψµ
i = ∇µǫ

i +
i

6
√
2
e−σ

(

γµ
ρσ − 4δµ

ργσ
)

ǫiFρσ +
1

18
e−2σ

(

γµ
ρστ − 3

2
δµ

ργστ
)

ǫiGρστ ,

δAµ = − i√
2
eσ ǭψµ +

1√
6
eσ ǭγµχ ,

δBµν = e2σ ǭγ[µψν] +
i√
3
e2σ ǭγµνχ+ 2A[µ|δA|ν] ,

δχi = − 1

2
√
6
e−σγµνǫiFµν +

i

6
√
3
e−2σγµνρǫiGµνρ −

√
3i

2
γµǫi∂µσ ,

under which the Lagrangian with bosonic part

−e−1 1

2
LL =

1

4
R− 3

4
(dσ)2 − 1

4
e−2σG2 − 1

12
e−4σH2 ,

is invariant. Taking account of the different curvature conventions between [22, 23] and [25,

36, 43] by changing the sign of the Ricci scalar, we have thus arrived at the pure N-R

formulation N = 2, d = 5 supergravity. The fermionic terms up to quadratic level are

given in [22, 23] and may also be cross checked using the results of [43].

3 Coupling to Abelian vector multiplets

The superconformal vector multiplets, labelled by capital Latin indices I, J,K, . . . are each

formed from an SU(2) triplet field Y ij, the gauge field Aµ, a gaugino λi and a scalar ρ.

These transform under the supersymmetries as

δAI
µ = − i

2
ρI ǭψµ +

1

2
ǭγµλ

I ,

δY Iij = −1

2
ǭ(iγmDmλ

Ij) +
i

2
ǭ(iγmnT

|mn|λj)I − 4iρI ǭ(iχj) +
i

2
η̄(iλj)I ,

δλiI = −1

4
γmnF̂

Imnǫi − i

2
γmDmρ

Iǫi + ρIγmnT
mnǫi − Y Iijǫj + ρIηi ,

δρI =
i

2
ǭλI , (3.1)

where

Dµρ
I = (∂µ − bµ)ρ

I − i

2
ψ̄µλ

I ,

Dµλ
Ii =

(

∇µ − 3

2
bµ

)

λIi − V ij
µ λ

I
j +

1

4
γmnF̂

Imnψi
µ +

i

2
γm
(

Dmρ
I
)

ψi
µ

+ Y Iijψµj − ρIγmnT
mnψi

µ − ρIφi
µ
,

F̂ I
µν = F I

µν − ψ̄[µγν]λ
I +

i

2
ρI ψ̄[µψν] , (3.2)

and where F I = dAI .
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These are embedded into a linear multiplet

L(V)ij = aIJ

(

2ρIY J
ij − i

2
λ̄Ii λ

J
j

)

,

ϕi(V) = aIJ

(

iρIγmDmλ
J
i + 2ρIγmnT

mnλJi − 8ρIρJχi

−1

4
γmnF̂ I

mnλ
J
i +

i

2
γm
(

Dmρ
I
)

λJi − Y I
ijλ

Jj

)

,

Em(V) = aIJ

(

Dn

(

−ρI F̂ Jmn + 8ρIρJTmn − i

4
λ̄IγmnλJ

)

− 1

8
ǫmnpqrF I

npF
J
qr

)

,

N(V) = aIJ

(

ρI�ρJ +
1

2

(

Dmρ
I
) (

DmρJ
)

− 1

4
F̂ I
mnF̂

Jmn + Y IijY J
ij + 8ρI F̂ J

mnT
mn

−4ρIρJ
(

D +
26

3
T 2

)

− 1

2
λ̄IγmDmλ

J + iλ̄IγmnT
mnλJ + 16iρI χ̄λJ

)

, (3.3)

where aIJ is a symmetric constant matrix. We then compose a density from these with the

Lagrange multiplier vector multiplet, V♭, and solve the equations of motion of the fields

of V♭ in terms of the standard-Weyl fields, i.e we get the equations L(V) = 0, Ea(V) =

0, ϕi(V) = 0 and N(V) = 0. Similarly to the above we can implement the D equation as a

constraint by defining a new extended dilaton-Weyl multiplet containing the vector fields

and solving the constraints for the Lagrange multipliers.

Note we can diagonalize aIJ using a constant GL(n,R) transformation, which is just

a constant linear field redefinition of the vector multiplets. Furthermore we can set the

diagonal entries to be ±1.8 We shall take a Lorentzian signature, ηIJ = diag(−1, 1, . . . , 1),

so that we arrive at the N-R formulation, which is presumably needed to ensure the absence

of ghosts.9

Defining A = ηIJρ
IρJ , AI = ηIJρ

J and solving the equations of motion for the La-

grange multiplier vector multiplet we obtain

ATmn = −1

8

(

1

6
ǫmnpqrĤpqr −AI F̂

Imn − ηIJ
i

4
λ̄IγmnλJ

)

,

Aχi = ηIJ

(

i

8
ρIγmDmλ

Ji +
i

16
γm
(

Dmρ
I
)

λJi

− 1

32
γmnF̂

ImnλJi +
1

4
ρIγmnT

mnλJi − 1

8
Y I

ijλ
Jj

)

,

AD = −26

3
AT 2 + ηIJ

(

1

4
ρI�ρJ +

1

8

(

DρI
) (

DρJ
)

− 1

16
F̂ I
mnF̂

Jmn − 1

8
λ̄IγmDmλ

J

+
1

4
Y I

ijY
Jij − 4iρIλJχ+

(

2ρI F̂ J
mn +

i

4
λ̄Iγmnλ

J

)

Tmn

)

,

AIY
ijI =

i

4
ηIJ λ̄

IiλJj , (3.4)

8We shall assume for the time being that det a 6= 0, however it is clear that as we may still diagonalize

aIJ the vector multiplet directions for which aIJ has zero eigenvalues will not contribute to this action.
9Note that we have not analysed fully whether there is any way to avoid the introduction of ghosts in

different signatures for the matrix aIJ , but we expect that the Lorentzian signature is necessary.
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where

�ρI = (∇m − 2bm)Dmρ
I − i

2
ψ̄mDmλI − 2ρI ψ̄mγ

mχ+
1

2
ψ̄mγ

mγnpT
npλI

+
1

2
φ̄
m
γmλ

I + 2f
m

mρI . (3.5)

We will interpret the last equation in (3.4) as a definition for Y 0
ij in terms of the fields

of the dilaton-Weyl multiplet and the remaining vector multiplets, which is why we have

underlined Y I
ij in the above expressions. We have introduced the three form H

Hµνρ = 3∂[µBνρ] −
3

2
ηIJA

I
[µF

J
νρ] ,

Ĥµνρ = Hµνρ +
3

4
Aψ̄[µγνψρ] +

3i

2
AI ψ̄[µγνρ]λ

I , (3.6)

with modified Bianchi identity

∇[mĤnpq] = −3

4
ηIJ F̂

I
[mnF̂

J
pq] , (3.7)

in order to solve the composite linear multiplet vector equation, Em = 0. The two form

gauge field Bµν transforms under supersymmetry as

δBµν = −1

2
Aǭγ[µψν] −

i

2
AI ǭγµνλ

I − ηIJA
I
[µδA

J
ν] , (3.8)

and the gauge invariance of H implies a suitable gauge transformation of B is

δBµν = 2∂[µΛν] +
1

2
ηIJΛ

IF J
µν . (3.9)

We summarize the general dilaton-Weyl multiplets we have constructed following [27], in

which this enlarged algebra was shown to close off-shell, in the conventions of [36, 43] in

appendix A.

Inserting these expressions into (2.13) and performing the gauge fixing (2.21), and

setting L = 1 we obtain for the bosonic part of the off-shell Lagrangian10

e−1LL = −1

2
R− V ′ij

µV
′µ
ij −N2 + PµP

µ +
√
2PµVµ

− 1

4
A−1aIJF

I · F J +
1

2
A−2AIAJF

I · F J +A−1ηIJY
IijY J

ij

− 1

2
A−1aIJ

(

dρI
)

·
(

dρJ
)

+A−2AIAJ

(

dρI
)

·
(

dρJ
)

− 1

6
A−2H2 , (3.10)

where we have yet to implement the identity involving Y Iij coming from the last equation

in (3.4) in this Lagrangian.

Next we make a non-constant redefinition of the scalar fields

σ′ =
1

2
ln(−A) , ρ′i = (−A)−

1

2 ρi , (3.11)

10Note that the only terms that will change with respect to the Lagrangian of the pure case are those

involving D and T.
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so inverting this we get

A = −e2σ′

, ρi = eσ
′

ρ′i =⇒ ρ0 = eσ
′

√

1 + δijρ′
iρ′j := eσ

′

L0 . (3.12)

Note that as A is just a quadratic polynomial of the fields ρI it is continuous. We shall

assume it never vanishes, otherwise our definitions for the standard-Weyl multiplet fields we

have eliminated become singular. Thus we shall take the case A < 0 in what follows, and

the positive case could be treated identically changing the sign of A in the transformation,

although this appears to change the signature of the scalar manifold and would therefore

introduce ghosts. Note that this transformation is a well defined coordinate transformation

for the subspace A < 0. Similarly we transform the gauginos such that

λ0i = eσ
′

L0λ′0i + eσ
′ (

L0
)−1

ρ′iδijλ
′ji , λii = eσ

′

(

λ′ii + ρ′iλ′0i
)

, (3.13)

and the inverse of this transformation is

λ′0i = −A−1AIλ
Ii ,

λ′ii =
1√
−A

(

λii + ρiA−1AIλ
Ii
)

. (3.14)

We leave all other fields fixed. Note that after this transformation the condition on the

auxiliary fields Y Iij from (3.4) becomes

Y 0ij = (L0)−1δijρ
′iY jij . (3.15)

So dropping the primes, the bosonic part of the resulting off-shell Lagrangian is

e−1LL = −1

2
R− V ′ij

µV
′µ
ij −N2 + PµP

µ +
√
2PµVµ

+
1

4
e−2σ (ηIJ + 2LILJ)F

I · F J + e−2σηIJL
I
αL

J
βδ

α
i δ

β
j Y

iijY j
ij

+
3

2
(dσ) · (dσ) + 1

2
ηIJL

I
αL

J
βδ

α
i δ

β
j

(

dρi
)

·
(

dρj
)

+
1

6
e−4σH2 , (3.16)

where we have defined

LI =
(

L0, ρi
)

, L0
α =

(

L0
)−1

δαiρ
i , Li

α = δiα , (3.17)

and

LI =
(

L0,−δijρj
)

, Lα
0 = −

(

L0
)

δαi ρ
i , Lα

i = δαi + δijδ
α
k ρ

jρk , (3.18)

and where L0 is defined by (3.12). One may check that after introducing indices A = (0, a)

which are raised and lowered with the metric ηAB = diag(−,+, · · · ,+) and identifying11

LI
0 = LI and L0

I = LI we have

LI
AL

A
J := LILJ + LI

aL
a
J = δIJ , LA

I L
I
B = δAB , (3.19)

11Note that with this definition ηIJL
ILJ = −LIL

I = −1.
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independently of the frame, as long as the vielbein are invertible. Of course we also need

these vielbein in order to define the fermions locally on the scalar manifold. Explicitly the

vielbein V a
α is

V a
α = δaα − 1

L0(L0 + 1)
δai δαjρ

iρj , (3.20)

with inverse

V α
a = δαa +

1

(L0 + 1)
δαi δajρ

iρj . (3.21)

We note that this means that the transformations (3.13), (3.14) may be written

λIi = eσ
′

(

LIλ′0i + LI
αδ

α
i λ

′ii
)

= eσ
′

LI
Aλ

′Ai
, λ′Ai

=
1√
−AL

A
I λ

I , (3.22)

where we defined λ′A = δAJ λ
′J and that the condition (3.15) implies

Y Iij = LI
aV

a
α δ

α
i Y

iij . (3.23)

To maintain our gauge fixing recall the special supersymmetry parameter must be set to

ηk =
1

3
(γ · T )ǫk − i

2
(γmPm)δikǫ

i + . . . , (3.24)

where . . . signifies terms higher order in the fermions. The supersymmetry transformations

become

δemµ =
1

2
ǭγmψµ ,

δψi
µ = ∇µǫ

i − V ij
µ ǫj + i

(

γmnγµ − 1

3
γµγmn

)

Tmnǫi − 1

2
γµγmP

mǫijδjkǫ
k ,

δV ij
µ = −3i

2
ǭ(iφj)

µ
+ 4ǭ(iγµχ

j) + iǭ(iγmnT
mnψj)

µ +
3i

2
η̄(iψj)

µ ,

δAI
µ = − i

2
eσLI ǭψµ +

1

2
eσ ǭγµL

Iλ0 +
1

2
eσ ǭγµL

I
aλ

a ,

δBµν =
1

2
e2σ ǭγ[µψν] +

i

2
e2σ ǭγµνχ− ηIJA

I
[µδ(ǫ)A

J
ν] ,

δY iij = −1

2
ǭ(iγmDm

(

eσLi
Aλ

j)A
)

+
i

2
eσLi

Aǭ
(iγmnT

|mn|λj)A − 4iρiǭ(iχj) +
i

2
eσLi

Aη̄
(iλj)A ,

δλi0 = −1

4
e−σLIF

Imnγmnǫ
i − i

2
γm(∂mσ)ǫ

i +
4

3
γmnT

mnǫi ,

δλia = −1

4
e−σLa

IF
Imnγmnǫ

i − i

2
γmV a

α (∂mϕ
α)ǫi − e−σV a

α δ
α
i Y

iijǫj ,

δσ =
i

2
ǭλ0 ,

δρi =
i

2
ǭδiαV

α
a λ

a , (3.25)

where we have underlined composite fields, explicit expressions for which are given in (A.4),

(A.5), (3.24).

The action (3.16) with supersymmetry transformations (3.25) is an off-shell version of

the N-R supergravity presented in [22, 23] which was first described in [27].12

12We add to that work here by describing fully the scalar manifold, identifying the dilaton from regularity

of the supersymmetry transformations and giving an explicit map to the conventions of [22, 23].
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Next we relabel the scalars ϕα = ρiδαi , and introducing the associated (n − 1)-

dimensional Riemannian metric gαβ we find

gαβ = δαβ − 1

(L0)2
δαδδβγϕ

δϕγ , (3.26)

with inverse

gαβ = δαβ + ϕαϕβ , (3.27)

with L0 =
√

1 + δαβϕαϕβ . Next considering the tensor

LIJ = −LILJ + Lα
I L

β
Jgαβ = ηABL

A
I L

B
J = −LILI + La

IL
b
Jδab (3.28)

we see that

LIJ = ηIJ = diag(−,+, · · · ,+). (3.29)

We find that in our frame

LI =
(

L0, δiαϕ
α
)

, L0
a = δaαϕ

α , Li
a = δia +

1

(L0 + 1)
δaαδ

i
βϕ

αϕβ ,

LI =
(

L0,−δiαϕα
)

, La
0 = −δaαϕα , La

i = δai +
1

(L0 + 1)
δaαδ

i
βϕ

αϕβ . (3.30)

Now using the Cartan equation

dV a +Aa
bV

b = 0 , (3.31)

we may read off the connection 1-form Aa
b and verify the differential identities

LA
I∂αLI

B =
1

2
Aα

ab(Hab)A
B + Vα

a(Ka)A
B , (3.32)

where

(Hab)c
d = δacδb

d − δbcδa
d (Ka)0b =

1

ξ
δab , (3.33)

and with our current conventions we find ξ = −1. Following [22, 23] we then find

DαLI = ∂αLI =
1

ξ
LI

aVαa , DαLI
a =

1

ξ
LIVα

a . (3.34)

Moreover, given that

LIJL
J = −LI , LIJLa

J = LIa , (3.35)

we can evaluate the commutator

[Dα, Dβ]LI
a = − 1

ξ2

(

Vα
aVβ

b − Vβ
aVα

b
)

LIb , (3.36)

so we can read off the curvature tensor of Hn which is

Rαβ
ab = − 1

ξ2

(

Vα
aVβ

b − Vβ
aVα

b
)

, (3.37)

and the Ricci scalar is negative and given by R = −n(n− 1)/ξ2.
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In particular we have the coset algebra for the coset generators Ka and SO(n) gener-

ators Hab,
[

Hab, Hcd

]

= δbcHad − δacHbd + δadHbc − δbdHac ,
[

Hab,Kc

]

= δbcKa − δacKb , [Ka,Kb] =
1

ξ2
Hab . (3.38)

So the scalar manifold is simply the coset space SO(1,n)/SO(n).

Note that the conditions (3.19) are identities and not constraints, which is somewhat

different to the case of vector multiplets in the background of the standard-Weyl multi-

plet, where the scalar field D acts as a Lagrange multiplier to implement the very special

geometry constraint in two derivative theories.13 Here though the constraint coming from

the D equation of motion is avoided by moving to the dilaton-Weyl multiplet and solving

for the Lagrange multipliers which no longer occur in the action.

Integrating out V ij
µ , Vµ, Pµ, N and Y iij the action for the linear multiplet becomes

−e−1LL = +
1

2
R− 1

4
e−2σ(LILJ + La

ILJa)F
I · F J − 1

6
e−4σH2

− 3

2
(dσ)2 − 1

2
gαβ(dϕ

α) · (dϕβ) , (3.39)

and the supersymmetry variations are now

δemµ =
1

2
ǭγmψµ ,

δψi
µ = ∇µǫ

i + iγν1ν2T
ν1ν2γµǫ

i − i

3
γµγν1ν2T

ν1ν2ǫi ,

δAI
µ = − i

2
eσLI ǭψµ +

1

2
eσLI ǭγµχ+

1

2
eσ ǭγµL

I
aλ

a ,

δBµν =
1

2
e2σ ǭγ[µψν] +

i

2
e2σ ǭγµνχ− ηIJA

I
[µδ(ǫ)A

J
ν] ,

δχi = − 1

12
γmne

−σLIF
Imnǫi − i

2
γµ(dσ)µǫ

i +
i

18
e−2σHmnpγmnpǫ

i ,

δλia = −1

4
e−σLa

IF
Imnγmnǫ

i − i

2
γmV a

α (∂mϕ
α)ǫi ,

δσ =
i

2
ǭχ ,

δϕα =
i

2
ǭV α

a λ
a . (3.40)

Note that there are still some differences between this formulation and the N-R super-

gravity presented in [22, 23], in particular here the parameter ξ = −1, whereas in [22, 23]

ξ = − 1√
2
. However the differences are merely due to conventions, and the explicit (con-

stant) field redefinition is given in appendix B. We find it useful to keep these conventions,

as we will be interested in adding high derivative terms which are simple generalizations

of those presented in [36].

13One can see that we do have one field that can act in this way, which is the scalar field of the compen-

sating linear multiplet. It is possible that the scalar manifolds for physical tensor multiplet scalars in the

background of the dilaton-Weyl gravitational multiplet will be similar to those of the vector multiplets in

the background of the standard-Weyl multiplet.
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Note that the on-shell theory with action (3.39) is invariant under the scaling symmetry

σ → σ + c Bµν → e2cBµν AI
µ → ecAI

µ Gµνρ → e2cGµνρ , (3.41)

and the off-shell theory (3.16) with supersymmetry transformations (3.25) maintains this

symmetry if we also scale

Y Iij → ecY Iij . (3.42)

Before we turn to higher derivative terms we wish to consider whether the vector

multiplet coupling of this theory can be generalized from that presented in [22, 23]. To this

end we may also add the most general vector multiplet coupling that is compatible with

the Lagrange multiplier vector multiplet continuing to function as such. This reads

e−1LV = CIJK

(

−1

4
ρIF J · FK +

1

3
ρIρJ�ρK +

1

6
ρI
(

DρJ
)

·
(

DρK
)

+ ρIY JijY K
ij

−4

3
ρIρJρK

(

D +
26

3
T 2

)

+ 4ρIρJFK
µνT

µν − e−1

24
ǫµνρσλAI

µF
J
νρF

K
σλ

)

, (3.43)

which is completely independent of the Lagrange multiplier vector multiplet.

There are two special cases where the density (3.43) vanishes LV = 0, where either

CIJK = 0 or less trivially when CIJK = d(IaJK). To see that the density vanishes in the

later the case note that it is formed from the combination of the vanishing composite linear

multiplet and another set of vector multiplets, and each term in the density contains an

element of the linear composite multiplet. One can also verify this by direct computation of

course. Another way to see this is by considering the original cubic prepotential involving

the Lagrange multiplier vector multiplet, ρ♭A. Indeed making a field redefinition of the

Lagrange multiplier vector multiplet of the form

ρ♭ = ρ′♭ + dIρ
I (3.44)

will not change the theory and simply generates the vanishing term considered above.

For general CIJK we define

C = CIJKρ
IρJρK , CI = CIJKρ

JρK , CIJ = CIJKρ
K , (3.45)

and the density (3.43) becomes

e−1LV = −1

4

(

CIJ − C
3
A−1aIJ − 2A−1AICJ +

4C
3
A−2AIAJ

)

F I · F J

+

(

CIJ − C
3
A−1aIJ

)

Y IijY J
ij −

1

24
CIJKǫ

mnpqrAI
mF

J
npF

K
qr

− 1

2

(

CIJ − 2A−1AICJ − C
3
A−1aIJ +

4C
3
A−2AIAJ

)

(

dρI
)

·
(

dρJ
)

− 1

12

(

A−1CI −
2C
3
A−2AI

)

ǫmnpqrF I
mnHpqr . (3.46)

Note however that this density contains terms not present in the original formulation,

and as such this represents a generalization of the vector multiplet couplings, and further-

more the dilatonic couplings break the symmetry (3.41). Also note that the two Ricci
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scalar contributions to this density coming from the superconformal d’Alembertion have

cancelled. Applying the transformations (3.11), (3.14) we obtain

e−1LV = +eσ

(

C̃IJ +
C̃
3
ηIJ

)

(

LI
αL

J
βδ

α
i δ

β
j

)

Y iijY j
ij +

1

12

(

C̃I −
2C̃
3
LI

)

ǫmnpqrF I
mnHpqr

− 1

4
eσ

(

C̃IJ +
C̃
3
ηIJ − 2LI C̃J +

4C̃
3
LILJ

)

F I · F J − 1

24
CIJKǫ

mnpqrAI
mF

J
npF

K
qr

− 1

2
e3σ

(

C̃IJ +
C̃
3
ηIJ

)

LI
αL

J
βδ

α
i δ

β
j

(

dρi
)

·
(

dρj
)

. (3.47)

The explicit Chern-Simons term and the term involving both the 2- and 3-form field

strengths F I and H do not occur in the N-R formulation. If we demand their absence

we find the condition

CIJK =
(

2C̃L(I − 3C̃(I
)

ηJK) , (3.48)

which implies

C̃IJ = −C̃
3
ηIJ + 2LI C̃J − 4C̃

3
LILJ , (3.49)

but this implies that the entire density vanishes and we are left with the N-R supergravity

coming from the linear multiplet density only. Note that the Chern-Simons term clearly

breaks the symmetry (3.41). Demanding (3.48) is the only way to restore it, apart from the

exceptional case when we have only one vector multiplet in which case (3.48) is automatic,

but the density in that case again vanishes as discussed in the previous section.

Now we turn to the case in which det a = 0. In this case we can still diagonalize

the rank r tensor aIJ with a constant GL(r,R) transformation. Putting a tilde on the

indices in (3.43) and then splitting indices into Ĩ =
(

I, Î
)

with I = (0, · · · , r − 1) and

Î = (r, · · ·n). We will refer to the r I directions as internal vector multiplets as they occur

in the gravitational multiplet, and the remaining Î directions as external vector multiplets.

As the contribution to the density formed from the Lagrange multiplier vector multiplet

and the composite linear multiplet (3.3) vanishes for the external vector multiplets, we only

have the contribution to the density (3.43). Substituting the expressions for the composite

standard-Weyl multiplet fields this reads

e−1LV = −1

4

(

CIJ − C
3
A−1aIJ − 2A−1AICJ +

4C
3
A−2AIAJ

)

F I · F J

− 1

4
CÎ ĴF Î · F Ĵ − 1

4

(

2CIĴ − 2A−1AICĴ
)

F I · F Ĵ

+

(

CIJ − C
3
A−1aIJ

)

Y IijY J
ij + 2CIĴY IijY Ĵ

ij + CÎ ĴY ÎijY Ĵ
ij

− 1

2

(

CIJ − 2A−1AICJ − C
3
A−1aIJ +

4C
3
A−2AIAJ

)

(

dρI
)

·
(

dρJ
)

− 1

2

(

2CIĴ − 2A−1AICĴ
) (

dρI
)

·
(

dρĴ
)

− 1

2
CÎ Ĵ

(

dρÎ
)

·
(

dρĴ
)

− 1

12

(

A−1CI −
2C
3
A−2AI

)

ǫmnpqrF I
mnHpqr −

1

12
A−1CÎǫmnpqrF Î

mnHpqr

− 1

24
CĨ J̃K̃ǫ

mnpqrAĨ
mF

J̃
npF

K̃
qr , (3.50)
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where

C = CĨ J̃K̃ρ
ĨρJ̃ρK̃ , CĨ = CĨ J̃K̃ρ

J̃ρK̃ , CĨ J̃ = CĨ J̃K̃ρ
K̃ . (3.51)

As discussed above the explicit Chern-Simons term breaks the symmetry (3.41), so if we

wish to maintain it extended to the external vector multiplets we need that the last two

lines of the above density cancel up to a surface term. In this case we immediately obtain

CÎ ĴK̂ = CÎ ĴK = 0, CIJK = 3A−1C(IηJK)−2CA−2A(IηJK), CÎJK =A−1CÎηJK , (3.52)

but again we find that in this case the density vanishes as these imply that

CIJ =
C
3
A−1ηIJ + 2A−1AICJ − 4C

3
A−2AIAJ . (3.53)

Again the vanishing of the denisty in this case can be seen from a redefinition of the

Lagrange multiplier of the form

ρ♭ = ρ′♭ + dĨρ
Ĩ , (3.54)

which generates the terms

CIJK = d(IaJK) CÎJK =
1

3
dÎaJK (3.55)

which are equivalent to (3.52) for some constants dĨ . The density (3.50) is the most general

vector multiplet coupling we can add, and we have shown that it generically breaks the

symmetry (3.41). Indeed the original prepotential ρ♭A+ C exhibits the symmetry

ρ♭ → e−2c , ρI → ecρI , ρÎ → ecρÎ , (3.56)

only in the case C = 0, up to the terms (3.55) which can be generated by the redefinition

of the Lagrange multiplier.

If however we require only that the internal vector multiplets have the symmetry (3.41)

whilst the external vector multiplets are inert under this transformation, it is clear that

we may add couplings between external vector multiplets Î whilst preserving (3.41), i.e

we take CIJK = 3A−1C(IηJK) − 2CA−2A(IηJK) and CÎJK = A−1CÎηJK but now we allow

CÎ ĴK̂ to be arbitrary,14 so that we maintain the symmetry

σ → σ + c AI
µ → ecAI

µ Bµν → e2cBµν AÎ
µ → AÎ

µ . (3.57)

The density in this case reads

e−1LV =−1

4
CÎ ĴF Î ·F Ĵ+CÎ ĴY ÎijY Ĵ

ij −
1

2
CÎ Ĵ
(

dρÎ
)

·
(

dρĴ
)

− 1

24
CÎ ĴK̂ǫ

mnpqrAÎ
mF

Ĵ
npF

K̂
qr . (3.58)

Note that we must therefore not transform the external scalars with our coordinate trans-

formation (3.11), so the supersymmetry transformations of the external vector multiplets

14We cannot have CIĴK̂ different from zero and maintain the symmetry as the corresponding Chern

Simons term explicitly breaks it and there is no candidate cancellation term coming from the ∗(F∧H) terms.
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are given by (3.1). If we allow for different scaling behaviour of the external multiplets, we

may construct densities which respect the symmetry

σ → σ + c AI
µ → ecAI

µ Bµν → e2cBµν AÎ
µ → e−kcAÎ

µ , (3.59)

by transforming the external scalars such that

ρ′Î = ekσρÎ , (3.60)

and the gauginos by

λ′Î = kekσλ0 + ekσλÎ (3.61)

in the following cases. We have discussed the case k = 0 above, which corresponds to

allowing us to take CÎ ĴK̂ non-zero. It is clear we can never take CIJK different from its

expression above. In the case k = 1
2 we may take CIĴK̂ 6= 0 but then we need CÎ ĴK̂ = 0

and CIJK̂ must be equal to its expression above. Finally in the case k = 1 we may allow

CÎJK to differ from its expression above, but need CÎ ĴK̂ = CÎ ĴK = 0. This can also be

seen easily by inspection of the original cubic prepotential.

The case of one internal multiplet is exceptional as we shall now discuss. Recall that

the vector density formed from the internal vector multiplet vanishes identically. Indeed

it is also the case that a density formed from two internal multiplets and arbitrarily many

external multiplets must vanish. This means that we may take arbitrary C000, C00Î , however

terms involving these quantities will not appear in the action, and will therefore not break

the symmetry (3.41). Indeed we may read off the most general contribution to the density

from (3.50).

e−1LV =

− 1

4

(

e−σD + e−2σĈ
)

(

F 0
)2

+
1

2

(

ĈÎ Ĵ + e−σDÎ Ĵ

)

F Î · F Ĵ +
1

2

(

DÎ + e−σĈÎ
)

F 0 · F Î

− 1

2

(

Ĉ + eσD
)

(dσ)2 +
(

ĈÎ + eσDÎ

)

(dσ) ·
(

dρÎ
)

− 1

2

(

ĈÎ Ĵ + eσDÎ Ĵ

)(

dρÎ
)

·
(

dρĴ
)

− 1

12

(

e−2σD − e−3σ 2

3
Ĉ
)

ǫmnpqrF 0
mnHpqr +

1

12

(

e−2σCÎ + 2e−σDÎ

)

ǫmnpqrF Î
mnHpqr

− 1

24
CÎ ĴK̂ǫ

mnpqrAÎ
mF

Ĵ
npF

K̂
qr − 1

8
DÎ Ĵǫ

mnpqrA0
mF

Î
npF

Ĵ
qr +

(

ĈÎ Ĵ + eσDÎ Ĵ

)

Y ÎijY Ĵ
ij , (3.62)

where we defined

Ĉ = CÎ ĴK̂ρ
ÎρĴρK̂ , ĈÎ = CÎ ĴK̂ρ

ĴρK̂ , ĈÎ Ĵ = CÎ ĴK̂ρ
K̂ , (3.63)

and

D = C0Î Ĵρ
ÎρĴ , DÎ = C0Î Ĵρ

Ĵ , DÎ Ĵ = C0Î Ĵ . (3.64)

Similarly to the above cases we may preserve the symmetry (3.57) only if DÎĴ = 0, but

the theory exhibits a symmetry of the form (3.59) after a suitable scalar and gaugino

redefinition when taking only one of DÎ Ĵ or CÎ ĴK̂ non-vanishing.
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To summarize if we demand that the symmetry (3.41) is extended to the external

vector multiplets we may only add vector multiplet couplings of the form

CIJK = 3A−1C(IηJK) − 2CA−2A(IηJK) , CÎJK = A−1CÎηJK , (3.65)

with all other components zero, but the density (3.50) vanishes, and the scalar manifold

is simply SO(1, 1) × SO(1, n)/SO(n). On the other hand if we demand that the external

vector multiplets are inert under this transformation (3.57), then we must take the ex-

pressions (3.65) with CÎ ĴK = 0, but with arbitrary CÎ ĴK̂ and (3.58) is the corresponding

density which allows for the preservation of the symmetry (3.41). The scalar manifold is

then a product of SO(1, 1) × SO(1, n)/SO(n) ×M, with M some m = n − r dimensional

manifold, which seems only to be restricted by demanding the absence of ghosts in the

theory. Also an explicit Chern-Simons term appears. On the other hand, if we relax the

assumption that our theory should preserve the symmetry (3.41) then we may add the gen-

eral vector multiplet couplings and obtain the density (3.50). In this case the entire scalar

manifold is dependent on the form of CĨ J̃K̃ . In particular a Lagrange multiplier forcing

a restriction of the scalar manifold, for example the very special geometry condition, is

absent. If we view the theory as being defined by the CĨ J̃K̃ from compactification then the

symmetry (3.41) or even (3.59) is generically broken.

4 Higher derivative densities

In this section we shall describe how to simply generalize the known Ricci squared [36]

and Weyl squared [35] invariants to an arbitrary number of internal and external vector

multiplets. In [43] an off-shell superconformal Riemann squared invariant was derived in

the r = 1 dilaton-Weyl multiplet that we used here to construct the pure N-R supergravity,

but we leave the generalization of the Riemann squared invariant for future work.15

4.1 Ricci squared invariant

In [36] a Ricci squared invariant coupled to vector multiplets in the r=1 dilaton-Weyl

multiplet was constructed in a particular basis of the superconformal fields. This basis is

equivalent to a reversible gauge fixing of the theory by breaking the SU(2) down to U(1),

and breaking the local dilatonic symmetry and special supersymmetry. We shall give the

details of the construction without going to this basis, by using the construction of the

Ricci squared invariant in the standard-Weyl multiplet, which was also given in [36]. The

essential observation is that the Ricci scalar appears in the composite expression for the

field Y ij in terms of a linear multiplet, and that this is not cancelled by the contribution

coming from the expression for D when moving to the general dilaton-Weyl multiplet.

Thus in the standard-Weyl multiplet we may form the Ricci squared invariant by consid-

ering a composite linear multiplet, which is formed from two copies of a composite vector

15Deriving this invariant is equivalent to deriving the Riemann squared invariant in the standard-Weyl

multiplet, which has yet to be given in components, but was recently analysed in superspace in [44].
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multiplet, each of which is formed from our compensating linear multiplet. Schematically

the density is

e−1L = VĨ · L
(

V#,V#
)

(4.1)

where V# = V(L0). Clearly as the density (3.43) was formed from composing the linear

multiplet from two sets of vector multiplets, we may construct a density from (3.43) by

setting CĨ## = eĨ , where the vector multiplet V# is composite and is formed from our

compensating linear multiplet. After the gauge fixing (2.27) and setting L = 1, the bosonic

parts of the vector multiplet composed of our compensating linear multiplet, which we

obtain from gauge fixing (C.1), are simply

ρ# = 2N ,

Y ij
# =

1√
2
δij
(

−3

8
R−N2 − P 2 +

8

3
T 2 + 4D − V ′kl

a V
′a
kl

)

+ 2P aV ′ij
a +

√
2∇aV ′(i

amδ
j)m,

F#
µν = 4∂[µPν] + 2

√
2∂[µVν] , (4.2)

where we have split V ij into its traceful and traceless parts as in (2.30).

We obtain the density

e−1LR2 =

E
(

3

8
R− 4

(

D +
26

3
T 2

)

+ 32T 2 +N2 + P 2 + V ′2
)2

− 16EN2

(

D +
26

3
T 2

)

+ 2E
(√

2P aV ′ij
a +∇aV ′ij

a

)(√
2P aV ′

aij +∇aV ′
aij

)

+ 16EN
(√

2dV + 2dP
)

· T

− 1

2
E(dV )2 −

√
2E(dV ) · (dP )− E(dP )2 − 2E(dN)2 − 4NeĨ

(

dρĨ
)

· (dN)

−
√
2eĨN

(

F Ĩ · dV
)

− 2eĨN
(

F Ĩ · dP
)

+ 16eĨN
2
(

F Ĩ · T
)

− 1

3
EN2R

− 2
√
2eĨY

Ĩijδij

(

3

8
RN − 4DN − 8

3
NT 2 +N3 +NP 2 +NV ′2

)

− eĨǫ
µνρστAĨ

µ∂νVρ∂σVτ − 2
√
2eĨǫ

µνρστAĨ
µ∂νPρ∂σVτ − 2eĨǫ

µνρστAĨ
µ∂νPρ∂σPτ

+ 8eĨY
Ĩ
ijV

′ij
aNP

a − 4
√
2eĨY

Ĩ
ijN∇aV ′m(i

a δ
j)
m , (4.3)

where E = eĨρ
Ĩ . Substituting the expressions for the composite standard-Weyl fields

from (3.4) we obtain a supersymmetric Ricci squared invariant coupled to internal and

external vector multiplets, whose leading term is 1
4ER2. If we apply the map (3.11) to the

internal multiplets we may add this to the two derivative actions derived in the previous

section and the leading term becomes eIe
σLIR2+eÎρ

ÎR2, so the symmetry (3.57) is main-

tained only in the case that we couple exclusively to external multiplets, i.e. eI = 0. If we

take the point of view that this correction is perturbative, and since at leading order the

fields V ij
µ , Y Ĩij, N, P vanish the relevant contribution is

LR2 = E
(

3

8
R− 4

(

D +
26

3
T 2

)

+ 32T 2

)2

+ · · · . (4.4)
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4.2 Weyl squared invariant

In [35] a supersymmetric invariant including a Weyl tensor squared term was constructed

in the standard-Weyl multiplet and coupled to Abelian vector multiplets. This is given

in the conventions we use in [36], which we will repeat below. We will consider the same

construction as before, namely that we have a Lagrange multiplier vector multiplet coupled

only to the other vectors in such a way as to implement the vanishing of the composite linear

multiplet, providing expressions for the standard-Weyl fields D,Tµν and χi. In particular

we will not couple the Lagrange multiplier vector multiplet to the higher derivative terms,

and so do not induce higher derivative expressions in the definitions of these fields. The

contribution to the bosonic action of the Weyl-squared term is given in [36] and reads

e−1LC2+ 1

6
R2 =

βĨ

(

1

8
ρĨCµνρσCµνρσ +

64

3
ρĨD2 +

1024

9
ρĨT 2D − 32

3
DTµνF

µν Ĩ

− 16

3
ρĨCµνρσT

µν T ρσ + 2CµνρσT
µνF ρσ Ĩ +

1

16
ǫµνρσλAĨ

µCνρτδCσλ
τδ

− 1

12
ǫµνρσλAĨ

µVνρ
ijVσλ ij +

16

3
Y Ĩ
ijVµν

ijTµν − 1

3
ρĨVµν

ijV µν
ij

+
64

3
ρĨ∇νTµρ∇µT νρ − 128

3
ρĨTµν∇ν∇ρT

µρ − 256

9
ρĨRνρTµνT

µ
ρ

+
32

9
ρĨRT 2 − 64

3
ρĨ∇µT νρ∇µT νρ + 1024ρĨ TµνT

νρT ρσT
σµ − 2816

27
ρĨ
(

T 2
)2

− 64

9
TµνF

µν ĨT 2 − 256

3
TµρT

ρλT νλF
µν Ĩ − 32

3
ǫµνρσλT

ρτ∇τT
σλFµν Ĩ

− 16ǫµνρσλT
ρ
τ∇σT λτFµν Ĩ − 128

3
ρĨǫµνρσλT

µνT ρσ∇τT
λτ

)

, (4.5)

where βĨ are constants, V ij
µν = 2∂[µV

ij

ν] −2V ik
[µ Vν]k

j and Cµνρσ is the Weyl tensor. Note that

the D2 term contains a factor of the Ricci scalar squared, which is why we have labelled

the invariant C2 + 1
6R

2. This fact is what allows one to combine it with the Riemann

squared invariant to form the Gauss-Bonnet combination [45] in the r = 1 dilaton-Weyl

multiplet, which is the only case that at present the Riemann squared invariant is known.

Inserting the expressions for the composite fields T , D and Y 0ij given in (A.5) we obtain

a supersymmetric invariant for arbitrary numbers of internal and external multiplets. We

may then make the transformations (3.11), (3.13) in order to identify the dilaton. We note

that the symmetry (3.57) is broken unless we couple exclusively to external multiplets, i.e.

βI = 0 and that only the third line of this invariant may be neglected in a perturbative

treatment, due to the vanishing of the fields V ij
µ and Y Ĩij at the two derivative level.

5 Conclusions

In this work we described in detail the construction of the N = 2 d = 5 supergravity of

Nishino and Rajpoot [22, 23] from the superconformal formulation [19, 20, 25, 27]. The

construction of the minimal N-R model proceeded straightforwardly. In the case of the

N-R model coupled to vector multiplets we paid particular attention to the identification

of the dilaton amongst the scalars, and the resulting scalar manifolds. We found that in
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order for the supersymmetry transformations to be non-singular we must require that the

homogeneous quadratic A = aIJρ
IρJ must never vanish. Making the coordinate transfor-

mation (3.11) we then found it easy to identify the scalar manifold in the case that the only

contribution from the vector multiplet coupling came from a quadratic coupling between

them which in turn is coupled to a Lagrange multiplier vector multiplet, which gave rise

to the original N-R formulation. It is well know that the general (two derivative) vector

multiplet coupling is defined by a symmetric tensor CIJK which can be viewed as the triple

intersection of a Calabi-Yau manifold in the compactification of M-theory [13]. From this

point of view, the coupling that results in the N-R formulation is schematically

CIJKVI · L
(

VJ ,VK
)

= V♭ · L
(

aIJV
IVJ

)

(5.1)

where aIJ has Lorentzian signature and may be diagonalized so that in the new basis

a′IJ = ηIJ = diag(−1, 1 · · · , 1) . (5.2)

As a shorthand for this we will use the notation

C♭IJ = aIJ (5.3)

indicating that only this component is non-zero. This can be plugged into the vector

multiplet density (3.43), and we found that the scalar manifold is SO(1, 1)×SO(1, n)/SO(n)

as described in [22, 23].

We generalized the vector multiplet matter coupling available in the literature, but

this came at the price of breaking the global scaling symmetry of the action that is present

in the N-R formulation. We always consider densities that preserve the function of V♭ as

Lagrange multipliers. In particular first we took

C♭IJ = aIJ , C ′
IJK , (5.4)

non-zero and derived the density (3.47). This generically breaks the shift symmetry (3.41),

and only respects it when the C ′
IJK contribution to the density vanishes, the conditions for

which are given in (3.48). We called the vector multiplets VI in the above internal vector

multiplets, as they appear in the gravitational multiplet. We can extend the coupling to

external vector multiplets which do not appear in the gravitational multiplet by considering

C♭IJ = aIJ , C ′
Ĩ J̃K̃ , (5.5)

where Ĩ =
(

I, Î
)

and in particular does not include the ♭ direction. The form of the

coefficients (5.4) arises from a compactification of the low energy limit of M-theory on a

Calabi-Yau which is a K3 fibration [14] where it is assumed that the rank of a is maximal.

Taking (5.5) results in the most general vector multiplet coupling that allows for the V♭ to

function as a Lagrange multiplier, and we gave the density in (3.50). Not surprisingly this

density generically breaks the symmetry (3.41), but we found that if we allow the external

vector multiplets to be inert under these transformations we could preserve the symme-

try (3.57) in the particular case that we take the vector density (3.58), so that the scalar

manifold is now a product SO(1, 1)×SO(1, n)/SO(n)×M. We then turned to higher deriva-

tive corrections and generalized the known Ricci squared and Weyl squared densities to

include more than one internal multiplet. Again these break the symmetry (3.41), but if we

take them to be coupled to only external multiplets we may maintain the symmetry (3.57).
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It would be interesting to explicitly consider the appropriate compactifications of the

heterotic theory on suitable five manifolds and to understand better the relation of that

theory to the off-shell theory presented here, and the duality to M-theory on a Calabi-

Yau 3-fold. In [14] such a computation was carried out using the very special geometry

condition C = CĨ J̃K̃ρ
ĨρJ̃ρK̃ = 1 to produce a Lagangian for the effective heterotic theory

by removing one of the scalars from the action in the case of two internal vector multiplets,

which is equivalent to fixing the Lagrange multiplier scalar ρ♭ using the D equation of

motion in the off-shell formulation, at least at the two derivative level. In the heterotic

superstring picture the presence of the additional vector couplings CIJK were related to

1-loop corrections, whilst the original N-R formulation is the tree level contribution. In the

off-shell formulation in the standard-Weyl multiplet the very special geometry condition

arises at the two derivative level by integrating out a Lagrange multiplier, the standard-

Weyl field D. After the dualization we have no such constraint in the vector multiplet

sector, as it can be solved using the Lagrange multiplier vector multiplet. These two

approaches are equivalent at the two derivative level, but it seems that we ought to include

the higher derivative corrections to the very special geometry constraint, or in our picture

to include couplings between the higher derivative terms and the Lagrange multiplier vector

multiplet, introducing higher derivative terms in the expression for the composite standard-

Weyl fields. For the case of only one internal vector multiplet the heterotic result implies

the absence of a one loop term corresponding to the vanishing vector density of section 2,

which was straightforward to show in our set-up. It would be interesting to see how our

external vector multiplets fit into this picture, and particularly how the higher derivative

corrections in the standard- and dilaton-Weyl multiplets may be related by the heterotic/M-

theory duality.

It would be highly desirable to derive a Riemann squared or Ricci tensor squared

supersymmetric invariant in the standard-Weyl multiplet in order to construct arbitrary

quadratic curvature supergravities. This would be of interest when considering higher order

string theory corrections, but also within the framework of supersymmetric Lovelock theory

or Chern-Simons supergravity [46], although this has been investigated in a rather different

approach to that we have taken here. For generic higher order theories the auxiliary fields

of the off-shell formulation become dynamical, and in order to avoid this one must take

a perturbative approach to integrating out these fields, as done in [35, 47]. In [45] it was

shown that for the supersymmetrization of the Gauss-Bonnet term, in the background of a

dilaton-Weyl multiplet containing only one internal vector multiplet, that the kinetic terms

for the auxiliary fields exactly cancel, meaning that they can be integrated out exactly. It

would be interesting to see if this also happens in the background of the standard-Weyl

multiplet, and to understand the compactifications of string and M-theory to this theory.

Interestingly the coefficients of the Chern-Simons terms which along with supersymmetry

specify the vector multiplet couplings completely, at both the two and four derivative level,

have been investigated recently in [48–50] from a 6D and M-theoretic perspective. Whilst

this article was in preparation the interesting article [44] appeared which addresses many

of these issues from a superspace perspective.

We may also straightforwardly add on-shell hypermultiplet couplings to this theory

which is desirable due to the presence of the universal hyper-multiplet in compactifications.
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This was recently discussed in [51] in addition to higher derivative couplings. In the

superconformal tensor calculus it is not known how to put general hypermultiplets off-

shell, however in the superspace formulation this has been discussed in [37–42] and whilst

this article was in preparation the interesting paper [52] also appeared. Since the field N

appears in the linear multiplet sector which, on coupling to additional tensor multiplets,

may provide a factor in the scalar manifold closer to the very special geometry of the

standard formulation it would be interesting to include general linear multiplet couplings.

It would be also be particularly interesting to gauge the models presented here, using

the methods of [43], in particular for applications to four dimensional field theories via

the AdS/CFT correspondence. It should also be possible to extend the internal gauging

procedure of that work from gauging the internal U(1) gauge field of the dilaton-Weyl

multiplet to gauging the full SU(2) R-symmetry using these methods to produce a Weyl

multiplet with an internal Yang-Mills multiplet and find a suitable gauge fixing of the

superconformal fields.

A Generalized dilaton-Weyl superconformal multiplets

A general dilaton-Weyl multiplet16 is made up of the vielbien eaµ, gravitino ψ
i
µ, m gauge

fields AI
µ, a two-form gauge field Bµν , m scalars ρI , m gauginos ψIi, an auxiliary SU(2)

triplet of vectors V ij
µ with V ij

µ = V ji
µ , (m − 1) SU(2) triplets of scalars, Y iij and a gauge

field for local dilatations bµ. Using vector multiplet indices I = (0, i) these transform under

supersymmetry with parameter ǫi and special supersymmetry with parameter ηi as

δeaµ =
1

2
ǭγaψµ ,

δψi
µ =

(

∇µ +
1

2
bµ

)

ǫi − V ij
µ ǫj + iγmnT

mnγµǫ
i − iγµη

i ,

δV ij
µ = −3i

2
ǭ(iφj)

µ
+ 4ǭ(iγµχ

j) + iǭ(iγmnT
mnψj)

µ +
3i

2
η̄(iψj)

µ ,

δbµ =
i

2
ǭφµ − 2ǭγµχ+

i

2
η̄ψµ ,

δAI
µ = − i

2
ρI ǭψµ +

1

2
ǭγµλ

I ,

δBµν = −1

2
Aǭγ[µψν] −

i

2
AI ǭγµνλ

I − ηIJA
I
[µδ(ǫ)A

J
ν] ,

δλIi = −1

4
γmnF̂

Imnǫi − i

2
γa
(

Daρ
I
)

ǫi + ρIγmnT
mnǫi − Y Iijǫj + ρIηi ,

δY iij = −1

2
ǭ(iγmDmλ

j)i +
i

2
ǭ(iγmnT

|mn|λj)i − 4iρiǭ(iχj) +
i

2
η̄(iλj)i ,

δρI =
i

2
ǭλI , (A.1)

where the spin covariant derivative is defined by

∇µǫ
i =

(

∂µ +
1

4
ωµ

mnγmn

)

ǫi , (A.2)

16For m ≥ 1.
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where

ωmn
µ = 2eν[m∂[µe

n]
ν] − eν[men]σeµp∂νe

p
σ + 2e[mµ bn] − 1

2
ψ̄[nγm]ψµ − 1

4
ψ̄nγµψ

m , (A.3)

and we have underlined composite fields, expressions for which are given by

φi
µ
=
i

3
γmR̂′i

µm(Q)− i

24
γµγ

mnR̂′i
mn(Q) ,

R̂′i
µν(Q) = 2∇[µψ

i
ν] + b[µψ

i
ν] − 2V ij

[µψν]j + 2iγmnT
mnγ[µψ

i
ν] ,

R̂
i

µν(Q) = R̂′i
µν(Q)− 2iγ[µφ

i

ν]
, (A.4)

as in the standard-Weyl multiplet but now we also have

Tmn = − 1

8A

(

1

6
ǫmnpqrĤpqr −AI F̂

Imn − ηIJ
i

4
λ̄IγmnλJ

)

,

χi = ηIJA−1

(

i

8
ρIγmDmλ

Ji +
i

16
γm
(

Dmρ
I
)

λJi

− 1

32
γmnF̂

ImnλJi +
1

4
ρIγmnT

mnλJi − 1

8
Y I

ijλ
Jj

)

,

D = −26

3
T 2 + ηIJA−1

(

1

4
ρI�ρJ +

1

8

(

DρI
) (

DρJ
)

− 1

16
F̂ I
mnF̂

Jmn − 1

8
λ̄IγmDmλ

J

+
1

4
Y I

ijY
Jij − 4iρIλJχ+

(

2ρI F̂ J
mn +

i

4
λ̄Iγmnλ

J

)

Tmn

)

,

Y ij0 =
(

ρ0
)−1AiY

iji − i

4
ηIJ

(

ρ0
)−1

λ̄IiλJj , (A.5)

where

A = ηIJρ
IρJ , AI = ηIJρ

J , ηIJ = diag(−,+, · · · ,+) . (A.6)

As discussed at length in the main body of the text the dilaton of the N-R formulation

is to be identitified as σ = 1
2 ln (−A) and we need A 6= 0 for the expressions (A.5) to be

non-singular.

B Explicit field redefinition

Here we give the explicit field redefinitions needed to arrive at the N-R formulation in the

notation of [22, 23]. Starting from the on-shell theory with Lagrangian (3.39), which is

invariant under supersymmetry transformations (3.40) we need to make the following field

redefinitions

ǫi = −
√
2ǫ′i , ψi

µ = −
√
2ψ′i

µ , AI
µ =

√
2A′I

µ , V α
a =

1√
2
V ′α

a ,

χi = −
√
2√
3
χ′i , λai = −

√
2λ′ai , V a

α =
√
2V ′a

α , (B.1)

and redefine

LI
α =

√
2L′I

α , Lα
I =

1√
2
L′α

I . (B.2)
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The definition of the three form field strength, which be now call G, has therefore

changed to

G′
µνρ = 3∂[µBνρ] − 3ηIJA

′I
[µF

′J
νρ] , (B.3)

where F ′I = dA′I =
√
2F I and the metric is rescaled to

g′αβ =
1

2

(

δαβ − 1

(L0)2
δαγδβδϕ

γϕδ

)

=
1

2
gαβ . (B.4)

Note that LI
A and the SO(n) connection 1-form A remains unchanged, however the

parameter ξ has now become ξ = − 1√
2
, due to the appearance of the vielbein in (3.32).

It is not difficult to see that on can further rescale the vielbein V a
α = kV ′a

α, V
a
α = 1

kV
′a
α

leaving LI
A fixed and redefining the scalars ϕ = 1

kϕ
′ whilst leaving all other fields fixed. The

Lagrangian and supersymmetry transformations are invariant under this map, however the

explicit expressions for the LI
A in terms of the scalars will change. This is equivalent to

scaling the spacelike directions in our coordinate transformations (3.11) and (3.13) and so

the choice of the parameter ξ is, in this way, arbitrary. For each fixed value of the dilaton

the physical scalar manifold with metric gαβ is a cone. The full scalar manifold including

the dilaton is clearly the solid cone, and what we have described is a foliation by the dilaton

of the full scalar manifold, whose leaves are hyperboloids of equal constant Ricci curvature.

A different choice of the value of the Ricci scalar is then just an alternative foliation. The

bosonic part of the action is now given by

L = −1

4
R− 1

4
e−2σ(LI

aLJa + LILJ)F
I
µνF

µνJ − 1

12
e−4σG2

− 1

2
gαβ(dϕ

α) · (dϕβ)− 3

4
(dσ)2 (B.5)

and its fermionic completion up the quadratic order in the fermions is given in [22, 23].

The supersymmetry transformations, up to quadratic order in fermions read:

δeµ
m = ǭγmψµ , δσ =

i√
3
ǭχ ,

δψµ
i = Dµǫ

i +
i

6
√
2
e−σ

(

γµ
ρσ − 4δµ

ργσ
)

ǫiLIFρσ
I +

1

18
e−2σ

(

γµ
ρστ − 3

2
δµ

ργστ
)

ǫiGρστ ,

δAµ
I = − i√

2
eσLI ǭψµ +

1√
6
eσLI ǭγµχ+

1√
2
eσ ǭγµλ

aLa
I ,

δBµν = e2σ ǭγ[µψν] +
i√
3
e2σ ǭγµνχ− 2LIJA[µ|

IδQA|ν]
J ,

δχi = − 1

2
√
6
e−σγµνǫiLIFµν

I +
i

6
√
3
e−2σγµνρǫiGµνρ −

√
3i

2
γµǫi∂µσ ,

δϕα =
i√
2
Va

αǭλa , δQλ
ai = − 1

2
√
2
e−σγµνǫiLI

aFµν
I − i√

2
γµǫiVα

a∂µϕ
α . (B.6)
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C Vector multiplet composed of a linear multiplet

One can also construct the elements of vector multiplet in terms of the elements of a linear

multiplet and a Weyl multiplet [36, 43, 45]. Here we just list the bosonic parts

ρ = 2L−1N ,

Yij = L−1
�

CLij −DaLk(iDaLj)mL
kmL−3 −N2LijL

−3 − PµP
µLijL

−3

+
8

3
L−1T 2Lij + 4L−1DLij + 2PµLk(iDµLj)

kL−3,

Fµν = 4D[µ(L
−1Pν]) + 2L−1Rµν

ij(V )Lij − 2L−3Ll
kD[µL

kpDν]Llp . (C.1)

where the bosonic parts of the relevant covariant derivatives, d’Alembertion and the cur-

vatures are given by

DµL
ij = (∇µ − 3bµ)L

ij + 2V
(i

µ k
L
j)k

DµPν = (∇µ − 4bµ)Pν

�
CLij = (∇a − 4ba)DaL

ij + 2V
(i
a kDaL

j)k
+ 6Lijfaa

R(V )ijµν : = V ij
µν = 2∂[µV

ij

ν] − 2V
k(i
[µ V

j)
ν]k (C.2)

and for closure of the algebra the constraint DaPa = 0 is needed, and faa is given in (2.3).
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