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1 Introduction

A conventional on-shell formulation of A' = 2 supergravity in five dimensions was initially
given in [1, 2] and the U(1) gauged case was first described in [3]. In [4-7] on-shell methods
were used to treat the case of this supergravity coupled to vector multiplets. Hypermultiplet
couplings and gaugings were considered in [8-10] and tensor multiplet matter in [11, 12]
along with gaugings of isometries of a subgroup of the isometry group of the scalar mani-
fold. The theory can also be obtained from compactification of M-theory on a Calabi-Yau
threefold CY3 [13, 14]. The resulting Lagrangian depends on topological data of the com-
pactification manifold, namely the Calabi-Yau intersection numbers.

This formulation of supergravity doesn’t include the N-S two-form B, and dilaton
explicitly and in order to investigate effective descriptions of string theory it became im-
portant to include the dilaton and antisymmetric fields, so off-shell formulations [15-20]
were explored to facilitate the construction of matter coupled supergravities, although these
theories lack a manifest o-model structure for the scalars before eliminating the auxiliary
fields [21]. In [22], Nishino and Rajpoot proposed an alternative on-shell formulation of
N = 2 d = 5 supergravity starting from a supergravity multiplet with a larger field content
which contains the N-§S antisymmetric field B, and a dilaton o. This multiplet’s vielbein
e, gravitini wui and graviphoton A,, coincide with the conventional fields and in addition
to the two-form and dilaton, there is a dilatino x', giving rise to 12 + 12 on-shell degrees of
freedom. Vector and hypermultiplets [23] have been coupled to this supergravity theory,
with a structure of the couplings similar to that of N' = 1 d = 9 supergravity [24]. A
priori, both formulations are rather similar if one dualizes the antisymmetric tensor By,
into a vector field B,,. However, after coupling to vector multiplets, the resulting o-model
structure is different. In fact, it was shown in [25] that the dilaton-Weyl multiplet can be
obtained by coupling the standard multiplet to an improved vector multiplet.



The matter couplings of N’ = 2 d=5 supergravity were studied extensively in [26] from
a superspace perspective, and further work using the superconformal formulation [25, 27]
allowed the construction of superconformal multiplets and their corresponding actions [19,
20, 25, 27, 28], leading to quite general d = 5 matter couplings in the superconformal
formulation [29]. The resulting theories preserve eight supersymmetries! [30] and can be
studied at depth with the tools of special geometry [31-34], the condition for which arises
in the off-shell theory as a constraint coming from a scalar Lagrange multiplier auxiliary
field of the standard-Weyl multiplet. The advantage of the off-shell formulation is that we
may find higher derivative densities, which are important from a string theory perspective,
without changing the supersymmetry transformations, and therefore inducing corrections
to our original action, an iterative process that may never terminate. The higher derivative
densities that are supersymmetric completions of the square of the Ricci scalar and the
square of the Weyl tensor have been produced in the background of the standard-Weyl
superconformal gravitational multiplet in [35, 36].

In [25] dilaton-Weyl multiplets were introduced including the two form, the dilaton
and the dilatino, whilst in [27] dilaton-Weyl multiplets incorporating more than one vector
multiplet were introduced. In [37-42] an off-shell superspace formulation of the super-
conformal theory has been developed, which should lead to the most general couplings,
and indeed the dilaton-Weyl multiplet was considered in these works. We find it useful
to add to the literature an explicit derivation of the N-R supergravity from the off-shell
formulation by means of gauge fixing and field redefinitions, complimenting the work done
n [27]. We shall discuss in detail the vector multiplet couplings of this theory. We shall
also discuss simple generalizations of two of the higher derivative densities [35, 36] found
in the literature.

This paper is organized as follows. In section 2 we discuss the derivation of the mini-
mal N-R supergravity and in section 3 we couple to Abelian vector multiplets and relegate
to appendix B the explicit constant field redefinitions needed to arrive at the conventions
of [22, 23]. In section 4 we generalize the known higher derivative densities to the extended
dilaton-Weyl multiplets that we describe in appendix A, in which we make use of a compo-
sition of a vector multiplet in terms of a linear multiplet [43] that we give in appendix C.
We conclude in section 5.
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We use the terminology N = 2 due to the fact we use symplectic Majorana spinors, which are an SU(2)
doublet of complex spinors obeying the symplectic Majorana condition, @' = €Y (1/Jj)° where ¢ denotes
charge conjugation. In the literature sometimes the notation A/ = 1 is used in the case that the theory is
presented in terms of Dirac spinors. Of course these two descriptions both have 8 real components of the
supercharges.



2 Pure N-R supergravity from the off-shell superconformal formalism

In this section we give the details of the construction of the N-R supergravity [22, 23]
from the off-shell formalism based on the superconformal dilaton-Weyl multiplet described
in [43]. We also describe an alternative procedure put forward in [27]. To couple the theory
of [43] to vector multiplets one may use the results of [36], however following the procedure
of [27] we will be led to introduce a larger generalized dilaton-Weyl multiplet, which includes
an arbitrary number of vector multiplets. It is instructive to consider the case of the pure
N-R supergravity first, and then the coupling to vector multiplets separately.

The pure N-R supergravity can be constructed straightforwardly using exactly the
results of [43], whose conventions we will follow, which are described in detail in [25].
However we shall construct it in a slightly different way that was suggested in [27], as
we will emphasize below. The two derivative theory is constructed by combining a vector
multiplet action and a compensating linear multiplet action, obtained in the background of
a Weyl multiplet. We suppress the spinor indices in bilinears using the NW-SE convention
and we raise and lower the SU(2) indices using the totally antisymmetric tensor €;; where
12 =€2 =1, eg. 1/7N1/Jl, = &Lwiy = &Lzﬂl’;eji. We will frequently use the notation that for
two p-forms a, 3, we define a.- 8 = a;...p, f#17H7, and a’=a-a.

There are two types of Weyl multiplet, the so called standard-Weyl multiplet and the
dilaton-Weyl multiplet. The standard-Weyl multiplet consists of the vielbien €)', gravitino
¥y, an auxiliary two form Ty, an auxiliary scalar D, an auxiliary fermion x', an auxiliary
SU(2) triplet of vectors V;j with V,P = V,fi and a gauge field for local dilatations, b,,.
These transform under supersymmetry with parameter ! and special supersymmetry with
parameter ni as
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and we have underlined the composite fields apart from the spin connection. Explicit
expressions for the composite fields are
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where the relevant superconformal derivatives are given by
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and . 3
i - T - =
DuTmn = (VM - bu)Tmn - iw;f}/mnx + ﬁqumn(Q) . (25)
The superconformal linear multiplet is formed from an SU(2) triplet LY = i a

constrained vector E,,, a scalar N and a fermion ¢! which transform, in the background
of the standard-Weyl multiplet, as

5LY = jelip) |

do' = —ifymDmL”ej - ?ym m€ + =€ = YT LVe5 + 3LV,

2
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where
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. 7 . . i . i . N .
Dup' = <vu - 2bu> ¢ = V2o — §7mDmLu¢uj + §7m my = Ewlli
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i _ _
DyE,, = (V, —4b,)Ep, + igblﬂmni)”@ + 29,y " e Tm + QQH'ymgo. (2.7)



The constraint on the vector E™, which reads D™ FE,, = 0 can be solved by the intro-
duction of a three form E,,, such that

Em = —ﬁeL”e_le“”p‘”\D,,Epg)\, (2.8)

and it is useful to define the two form E,,,, = eewpa,\EU’\, so that we have E™ = e]'D, E*”.

The vector multiplet is formed from an SU(2) triplet of scalars YV, the gauge field A,
a gaugino A' and a scalar p. These transform under the supersymmetries in the background
of the standard-Weyl multiplet as

0A, = —%pEzbu + %g’ﬂﬂ\’
§YH = —%E(ivamAj) + %g% TN — 4ipelind) 4 %ﬁ(i)\j) ,
SN = —i’ymnﬁ’m"ei — %fym(Dmp)ei + pYmn T — Yijej + pnt,
5p = %a, (2.9)
where
Dup = (O — bu)p — %’7/7’/1)‘7
DN = (vu — zbu> A VN + iymnﬁm”zp,ﬂ + %’Ym(Dmp)zﬂL
+ Y05 = P T, — P,
Fuw = Fuy — YA + %plﬁ[u%} : (2.10)

and where F' = dA.
A superconformally invariant density formula constructed from a vector multiplet and
a linear multiplet is given by

y _ 1. .
671[,VL = Y”Lij + 1A — 5 m"}/m)\‘]Lij + C P™
1- - .
+p <N 5 ¥my Mo + 4¢in’ym”¢%Lij> , (2.11)

where P™ is the bosonic part of the supercovariant E"
- 1 -, .
P =F™ 4+ iwnﬁ/nm@ + Zw;{ym"pnglzij . (2.12)

In order to describe vector-vector couplings one can compose the linear multiplet ap-
pearing in the above action from a vector multiplet and to describe linear-linear couplings
one can compose the vector multiplet appearing in the action from a linear multiplet. The
composition of the vector multiplet from the linear multiplet is given in detail in [36, 43]
and we list the bosonic parts in appendix C.1. As noted in [27], where only the scalar



composition was given, this embedding leads to fairly long expressions when including the
fermions. We will be interested in the bosonic part of the resulting action which reads
e 'Ly = L' LyOLY — LVD, Ly D" Ljyu L™ L% — NL™!
8 1
~ P,PML7 4 gLT2 +4DL — §L_3P“”LL6#Lkp0,,Lpl
+ 2Py, (L_lPl, + VVijLijL_1> , (2.13)
where L? = LijLij, PH is the bosonic part of E* and
LyOLV = Ly (9™ — 4b™ + w,"™) Dy, LY + 2LV} D" L%
+ 6L [T — i L™ D — 6L i x
— Lig@ Ymn T "9} + L@y ™9 . (2.14)

The composition of the linear multiplet in terms of a single vector multiplet is well
known [20, 25, 27], which we take from (A.1) of [36],2 and reads

i_
Lyi(V) = 2pY55 — 5 Ay,
. 1, - i .
2i(V) = ipy" DinAi + 20%mnT™" N — 8p%xi — 17 Emni + 57" (Pmp) i = YA
. _ 1 .
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With this at hand we can now write down an action by taking the Lagrangian £ —3Lv,

where Ly can be formed in two ways: by taking another copy of the same vector multiplet

V = (p, AL, AL Yij), or by considering a second vector multiplet. Let us first consider using

the same vector multiplet that we have embedded in the linear multiplet as done in [43].
We obtain for the bosonic part of the vector multiplet density

1 1 ..
e 'Ly = = pFt+ 2pDp + g(l?p)2 + pY VY
4 26 -1
- §p3 (D + 3T2> + 4/?2FWTW - %EuprAAqung)\ 5 (216)

where
Op = (V" =20")Dy,p — %qﬂmDm)\ — 2p1§m7mx

1- 1-
g ¥mY " A+ 50" mA + 2017

%We have corrected a typo of a missing factor of p in the last term of the first line of the expression for
N (V) and a missing factor of 7 in the penultimate term in the expression for ¢'(V).



It turns out that the equations of motion for the vector multiplet fields imply?

=) ) 1 ) ;o

—2

;b . T _ . . .
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. 3, 3i
Hywp = Hywp — 17 Pl Vvp) — 5,0@0[“%,;])\,

3
Hywp = 30, Byp) + §A[qup] ; (2.18)
and for H to be gauge invariant we need that B transforms under gauge transformations as
1
0By = 20, A, — iAFW. (2.19)

Now we note that the equation of motion for D is given by
L=p. (2.20)

This must be implemented as a constraint if one is to use the above solutions of the
equations of motion in the action, and obtain an equivalent theory. However the gauge
fixing performed in [36, 43] demands that L be constant,

1
Lij=+—=08 b,=0 A=0. (2.21)

V2

So the action given in [43] should be supplemented by the contraint arising from the
equations of motion of the standard Weyl fields we have eliminated. This is compatible,
for example, with the p equation of motion however when we come to consider higher
derivative theories the form of this contraint will change.* Alternatively one could impose
the gauge fixing conditions Lj; = i%éij where L' is a non-constant scalar field, and the

normalization is chosen such that L? = LijLij =L 2, however in such a case the local
SU(2) symmetry of the superconformal gravity will only have been fixed down to local
U(1). Furthermore the necessary compensating special supersymmetry transformation to
maintain this gauge will become dependant on dL. This may be an interesting theory, but
it is somewhat different from the ungauged N-R supergravity we wish to construct here,
and we hope to return to this in future work.

3For the details see [43] where the relevant fermionic terms in the action are given.
4We shall discuss how we can avoid this in the remainder of this section, which is particularly useful
when considering higher derivative theories.



Following [43] we then find the action and supersymmetry transformations given below
in (2.25), (2.29) under the gauge fixings given in (2.27). We can also obtain this theory in
a different way which was suggested in [27], which will be useful to generalise the coupling
to vector multiplets and higher derivative theories in the next sections. We introduce an
additional vector multiplet V, = (p”, AZ, M1 Y1) Combining this with a linear multiplet
composed of a vector multiplet that we shall denote Vp = (o, Cu,zpi,Yij) in the density
formula (2.11) we obtain a suitable Lagrangian density which we denote Ly, and we will
take the Lagrangian to be

L=L;+ Ly . (2.22)

Examining the equations of motion for the vector multiplet V|, = (pb,AZ,)\bi,Ybij)
directly in the action formula (2.11), since the composite linear multiplet does not now
depend on these fields, we see that the fields V), act as Lagrange multipliers, whose equa-
tions of motion set the fields of the composite linear multiplet to zero® and one obtains
expressions for the standard-Weyl multiplet matter fields in terms of Vp,

o2 . 1 - i -
=7 (d}mn T www) ,
-2

' 0727m(DmU)wi - L’Ymnémnwi

Xl = 70’717mtpmw1 + T

8 6 32
-1 2
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T4 7 + 802( o) 1602 + 2im
1A 26 ic™? N np
+ (207 Gon — ?Imn + Tw’)/mnw T + iwm’)/ ’anI P
Lom oo ot o . 1
+ 5? Ym® — ?%W Dy — Hﬂ’ Py — dio™ Py,
Y8 = Jo iy, (2.23)

where
G = G — Y + %mﬁw% ;
Hypp = Hyp — zazi[u%%] - %WZ[MVWW’
Hywp = 30,,B,,) + gC[MGVp} ,

Qo = (V™ = 26™)D,,0 — %zﬁmme —20PmY"X s (2.24)

and G = dC. The equation of motion for D now implies L = 02p, so the gauge fixing
conditions (2.21) can be implemented, as the constraint arising from the D equation of
motion can be solved in terms of p” which is a Lagrange multiplier and the other fields
of V,, can be similarly used to solve the Tj,,, x! equations of motion. As above we use

5Note that this also clearly satisfies the constraint D™ E,, = 0.



the expressions (2.23) to define a new gravitational multiplet, and will take them to be
identities, so that the term involving the Lagrange multipliers can be neglected in the
action, since the composite linear multiplet is now identically vanishing. In particular we
can always solve the contraints coming from the standard weyl fields we have eliminated
using the Lagrange multipliers.

Note that in this case the contribution to the superconformal action from the vec-
tor multiplets is completely contained in the expressions for the previously independent
standard-Weyl multiplet matter fields, which are now composite. If we take the most gen-
eral contribution from the vector multiplet V p that still allows for the V, vector multiplet
to be a Lagrange multiplier, i.e. we add the Lagrangian density Lv,, formed from the three
copies of Vp we find, using the expressions (2.23), that Ly, = 0. Indeed this must be
the case as there are no terms in the Lagrangian density (2.11) that do not involve the
composite linear multiplet, which, as we have seen above, vanishes.

Let us now summarize the details of the dilaton-Weyl multiplet, which is made up of
the vielbien e}}', gravitino w;, graviphoton gauge field C,, a two-form gauge field B,,, the
dilaton o, the dilatino ¢! and an auxiliary SU(2) triplet of vectors V,jj with V,jj = V,;ii and a
gauge field for local dilatations b,,. These transform under supersymmetry with parameter
€' and special supersymmetry with parameter n' as

1_
56:7 = §€’Ym¢u7
. 1 ) iy . )
0 = <Vu +3 bu) € = Vg + iymn T e — i’
I N CUT) SO P mng) § 3t
5VN = —56 ?]M + 4e YuX + i€ Y % +577 w# )
1 1
(SCH = —50'@,[)# + §€7u¢7
1 5. T
6B, = 50257[#1@4 + 5067111/1/} + Cd(e)Cy
. 1 R . ) . . ) .. .
St = _ZymnGm”e‘ — %fym(Dmo)e‘ + 0V L™ e — %U_IEJ‘WW +on',
do = %Ew,
1 _ 7
6b’u = 56?;“ — QE’YMX + 5771,Z)p, 5 (225)

where we have underlined composite fields the expressions for which are listed in (2.3) but
now additionally 7", .. ,D and Ki are given by their expressions in (2.23). The supercovariant

field strength H defined in (2.24) obeys the generalized Bianchi identity
. 3.
DipHypo) = 5 G Cpe (2.26)
where G = dC.

Armed with the superconformal theory we now wish to gauge fix down to the N-R
supergravity. First we choose

by=0, Ly=-—=6, ¢ =0. (2.27)



The first condition breaks local dilatational invariance and fixes the form of the necessary
compensating special conformal boosts, the second breaks local SU(2) down to U(1)g,
where L is constant, and the third fixes special supersymmetry. Choosing the value of L
is a choice of dilatation. In order to maintain this gauge we must set

1 .

7 .
M = g(v Tex — i(VmEm)f%kﬁ’ , (2.28)

where in order to avoid confusion we point out that E,, is the vector of the compensating
linear multiplet, not the composite one.
Under these gauge fixing conditions we obtain for the bosonic part of the action®
1 1 1 3
6_1L_1£L = —iR -+ 10'_2G2 =+ 60'_4H2 + 50'_2(610')2
— VIV — N+ L7*B,P* + V2L *P"V, (2.29)

where we have decomposed VMij into its traceful and traceless parts [43]
. i' 1 s i-
Vi = V'Y 4 55”% , V5 =0, (2.30)

and P* denotes the bosonic part of E¥. Finally we set L = 1. The action (2.29) is
invariant under the supersymmetry transformations (2.25), with the special supersymmetry
parameter 7' replaced by its expression (2.28). To arrive at the on-shell formulation we
may next eliminate auxiliary fields P*, N and Vpi,j by their equations of motion which imply

these fields vanish, and the supersymmetry transformations become:”
1_
(56?] = ievmw#,
. . 1 .
57!{; = vuel +m" <’7mn7u - 37u7mn> €,
i 1_
0C, = —-oe, + ey,
2 2
1 5 i
0B, = 50'26’}/[H’¢V] + 506%“/1# + Cld(e)Cy,

. 1 o .4 .
oYt = —nymnGmnel — %'ym(ﬁma)el + gafymnzmnel,

5o = %az) . (2.31)

We must now perform some field and parameter redefinitions to bring the supersymmetry
transformations to a same form as those in [22, 23]. We will take

i /i i /i o i \/§ o' i /

e = —v2¢", w“:—\/i@b“, o=¢e, ¢:—%6 X, CM:\@A#, (2.32)

noting that the definition of the three form field strength has therefore changed to
Guvp = H' yp = 301, Byy) + 3AI[MF/VP} ) (2.33)

SWe have written the action in this way to emphasize the fact that the relative signs of the terms
appearing are not dependent on the gauge fixing choice L = £1. Rather this choice only gives an overall
sign to this contribution to the action.

"Note that due to the equation of motion for P* the special supersymmetry parameter now reads

n' = %W’mnTm"ei if we ignore terms quadratic in the fermionic fields.

,10,



where F' = dA’ = v/2G, and so from (2.26) the Bianchi identity for G now reads

3
/ / /
8[MG vpo] = §F [,uVF po] - (2.34)
Dropping the primes we find the following supersymmetry transformations
L
5o = —

—€ ,
\/§X

. . ; . 1 3 .
0t = Ve + 76\156_0 (’yup” — 45#'07”) €Fue + Ee_% ('yﬂp‘” — 5(5#”7”)616’,,07 ,
i 1
0A, = ———=e’e), + —=¢¢€ ,
1% \/§ wu \/6 /Y,U«X
_ { _
(5B/“, = 6206’7[#1/}’/] + ﬁ@QUE’y/WX + 2A[M|6A|V] s
. . ; . 3.
ox' = ——2\[6 TN E R, + 76\2/56_2‘77“”%167’“1,,) — \ngy“elaﬂa,
under which the Lagrangian with bosonic part
1 1 1
e ﬁL = fR - f(da) 46_20G2 - Ee_MHQ,

is invariant. Taking account of the different curvature conventions between [22, 23] and [25,
36, 43] by changing the sign of the Ricci scalar, we have thus arrived at the pure N-R
formulation N' = 2, d = 5 supergravity. The fermionic terms up to quadratic level are
given in [22, 23] and may also be cross checked using the results of [43].

3 Coupling to Abelian vector multiplets

The superconformal vector multiplets, labelled by capital Latin indices I, J, K, ... are each
formed from an SU(2) triplet field Y, the gauge field A,, a gaugino A and a scalar p.
These transform under the supersymmetries as

5AIIL = —7,0 67/Ju 1e’yu)\ )
sy i — _%g(lfympm)\h) + %g(ifymnT\mnl)\j)f _ 4@',016(in) + %ﬁ(i)\j)f7
ST — _i,ymnﬁvlmnei B %’Vmpmplei + p YT — Y + plygt
5pl = %af , (3.1)
where .
Dyp’ = (9 = bu)p" — %%A]?
i’ymnﬁ fmnyt + %vm (Dmp") ¥},
+ ¥ My~ pfvmnTWL —0'e,.
Fiy = Fly = 0 + 50" (3.2)

and where F! = dA”.

Ii Ii ijy/
DA = <vu - 2bu> A vIA
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These are embedded into a linear multiplet

7 -

ei(V)=ayy (ipI’ymDm)q] + 2p1'ymnTm”)\§] — 8pIpJXi

1 mn J im I J Iy Jj
17 F, /\'+§’Y (Dmp))\i_yij)\J ;

mn’’'1

R - 1
Em(V) =ayy (Dn <_pIFJmn + 8pIpJTmn _ 4)\I,ymn)\J> _ 8€mnpqu7{pFé{~> ’

1 1. - N .
NV) = (p 007 + 5 (Dup") (D"p”) = J Ep B/ + YUY 4 8p0 E 10

—4p"p” <D + 236T2> — %/\_I’ymDm)\J + Ny TN + 16z'pf><x’> . (3.3)
where ay; is a symmetric constant matrix. We then compose a density from these with the
Lagrange multiplier vector multiplet, V), and solve the equations of motion of the fields
of V, in terms of the standard-Weyl fields, i.e we get the equations L(V) = 0, E*(V) =
0,0 (V) =0 and N(V) = 0. Similarly to the above we can implement the D equation as a
constraint by defining a new extended dilaton-Weyl multiplet containing the vector fields
and solving the constraints for the Lagrange multipliers.

Note we can diagonalize ar; using a constant GL(n,R) transformation, which is just
a constant linear field redefinition of the vector multiplets. Furthermore we can set the
diagonal entries to be £1.8 We shall take a Lorentzian signature, n;; = diag(—1,1,...,1),
so that we arrive at the N-R formulation, which is presumably needed to ensure the absence
of ghosts.”

Defining A = nrsp'p’, Ar = nrsp’ and solving the equations of motion for the La-
grange multiplier vector multiplet we obtain

1/1 - . —
Azmn — _é <66mnpqupqr . AIFImn o nIJ;iAI,ymn)\J> ’

m(DmpI) )\Ji

i U I m Ji G
= - D\ —
Ax' =1 <8p V" DA+ 127

1 - ;1 | .
_E,YmnFImn)\Jl + ZPI’YmnImnAJl _ 8Y{i/\JJ> ’

26 1 1 1 ~; - 1.
AD = _§A12 + 01y <4pIDpJ +3 (Dp") (Dp”) - 1f(),zfggnthm — ngDmAJ

1 y ) .
TG — dip" X x <2pIFn‘in + iAfvmnAJ> Tm“> :

Ayl — iﬁuyi)\‘]j ; (3.4)

8We shall assume for the time being that deta # 0, however it is clear that as we may still diagonalize
ary the vector multiplet directions for which ar; has zero eigenvalues will not contribute to this action.

9Note that we have not analysed fully whether there is any way to avoid the introduction of ghosts in
different signatures for the matrix ary, but we expect that the Lorentzian signature is necessary.
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where
7 - — 1-
DpI — (vm _ Qbm)DmpI _ §mem)\I o 2/)[1%7’”5 + Ewm,ym,ynpznp)\l
1-
+ 50"\ 20"l (35)

We will interpret the last equation in (3.4) as a definition for Xioj in terms of the fields
of the dilaton-Weyl multiplet and the remaining vector multiplets, which is why we have
underlined YIJI in the above expressions. We have introduced the three form H

3
Hm’p = 38[NBVP] — inIJAf,uFl;fp] y
~ 3 - 3, -
Huup = Hm/p + Z-AQ;Z)[N%/@Z};J] + EAI¢[u7up]AI ) (36)
with modified Bianchi identity
A 3 ar pJ
v[mklnpq] = _ZUIJF[manq] s (37)

in order to solve the composite linear multiplet vector equation, E™ = 0. The two form
gauge field B, transforms under supersymmetry as

1 T
6B, = _5,4@[#%] — 5,41%”# - mJA[IuéAZ{] , (3.8)
and the gauge invariance of H implies a suitable gauge transformation of B is
1
0By = 20y, M) + Gnis A F, (3.9)

We summarize the general dilaton-Weyl multiplets we have constructed following [27], in
which this enlarged algebra was shown to close off-shell, in the conventions of [36, 43| in
appendix A.

Inserting these expressions into (2.13) and performing the gauge fixing (2.21), and
setting L = 1 we obtain for the bosonic part of the off-shell Lagrangian'?

1

¢ Ly =R~ VAV N2 4 P PY 4 V2P,
1 1 .
— AT A PP 4 CATAAGFT BT A, YIY
1 _ 1,
— 34 Yary (dp') - (dp”) + A2 AL Ay (dp') - (dp”) — A ‘g, (3.10)

where we have yet to implement the identity involving Y4 coming from the last equation
in (3.4) in this Lagrangian.
Next we make a non-constant redefinition of the scalar fields

o = %111(—,4), J= (—A) (3.11)

ONote that the only terms that will change with respect to the Lagrangian of the pure case are those
involving D and T.
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so inverting this we get

A=—e* Pl = e"/p’i = = e"l\/ 1+ (5ijp’ip’j =e” LV, (3.12)

Note that as A is just a quadratic polynomial of the fields p! it is continuous. We shall
assume it never vanishes, otherwise our definitions for the standard-Weyl multiplet fields we
have eliminated become singular. Thus we shall take the case A < 0 in what follows, and
the positive case could be treated identically changing the sign of A in the transformation,
although this appears to change the signature of the scalar manifold and would therefore
introduce ghosts. Note that this transformation is a well defined coordinate transformation
for the subspace A < 0. Similarly we transform the gauginos such that

/\Oi _ ea’LO)\/Oi 4 eg/ (LO)—l Pli(sz‘j)\/ji7 )\ii _ ea’ <)\/ii + p/i)\/Oi) 7 (3.13)
and the inverse of this transformation is
)\IOi _ _AflAIAIi

N — N4 AL AT (3.14)

1
= (
We leave all other fields fixed. Note that after this transformation the condition on the
auxiliary fields Y74 from (3.4) becomes

YO = (L0150 Y4 (3.15)

So dropping the primes, the bosonic part of the resulting off-shell Lagrangian is

—

e 'Ly =R~ VAV - N? 4 P PR V2P,
1
+ e =20 (nry 4+ 2L;L)) F' - F 4+ e 2,1, Lééa&BY“JYJ
3 1 o
+5(do) - (do) + 2n,JL1Lgaa55 (dp?) - (dp?) + Ze 7 H?, (3.16)

where we have defined

LT =(1°%p), L0 =(L% '6up',  Li=4d", (3.17)
and
L= (L% =6i07) , 6 =—(L%opp", LY =67 + 056007 0" (3.18)

and where LY is defined by (3.12). One may check that after introducing indices A = (0, a)
which are raised and lowered with the metric nap = diag(—, +,--- ,+) and identifying!!
LI LT and L(I] = L we have

LAt =L'Ly+Lire =6L, L4 =64, (3.19)

"'Note that with this definition n;yL' L7 = —L;L' = —1.
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independently of the frame, as long as the vielbein are invertible. Of course we also need
these vielbein in order to define the fermions locally on the scalar manifold. Explicitly the
vielbein VJ is

1 o
Vo =0g — m@qfsajﬂzpj ) (3.20)
with inverse 1
We note that this means that the transformations (3.13), (3.14) may be written

1
V-A

where we defined N = SN 7 and that the condition (3.15) implies

A= e (LN 4 LEgex™) = e AN A = (3.22)

Y = plyaseyii, (3.23)
To maintain our gauge fixing recall the special supersymmetry parameter must be set to
1 7 .

e =507 Dew — 5 (V" Pm)ice’ +.., (3.24)
where . .. signifies terms higher order in the fermions. The supersymmetry transformations
become

1_
de, = §efymwu,
5 i _ i Vl_] . 1 mn i 1 pm 1_]5 k
% = Ve — w6 T Ymn Y — §'7u'7mn 4 € — §7u7m €70jkE

. 3i oo o 30

oV, = —56(1?:3 + 46(1’)/MX‘]) + Ze(‘ymnlm"d)f} + Eﬂ(ll/)ﬂ ;
1 1 1

5A£ = —ieULIab# + §eg€%L1)\0 + §e”€'y#L£)\“,

15, (D
0B, = 56206’)/[‘“’(pl,} + 562 Y X — n[]A[Iué(E)Al{] ,

6V = — ey Dy, (7 L) + %e"LQE(‘fymnI‘m”U\J)A — 4ipieliyd) 4 %e"Lf@(‘)\J)A ,

1

. 1 . .4 .
5)\10 _ _7670L1F1mn’)/mn61 _ 7,}/m(amo_)61 + 7,ymnzmn€1 ,

4 2 3
BN = =2 T LIFT™ el — SV (O™ — e V08 Heg
i
b0 = e\’
2 )
G
b’ = SELVIN, (3.25)

where we have underlined composite fields, explicit expressions for which are given in (A.4),
(A.5), (3.24).

The action (3.16) with supersymmetry transformations (3.25) is an off-shell version of
the N-R supergravity presented in [22, 23] which was first described in [27].12

12We add to that work here by describing fully the scalar manifold, identifying the dilaton from regularity
of the supersymmetry transformations and giving an explicit map to the conventions of [22, 23].
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Next we relabel the scalars ¢* = pi6¢, and introducing the associated (n — 1)-

dimensional Riemannian metric g,g we find
1 5
Gap = 5aﬁ - W(Saéé,@’y@ 2
with inverse
g™ =07 4 o7
with L? = /1 + 6,39%¢P. Next considering the tensor
_ arB _ ArB _ arb
Lyj=—LiL;+ L7L}gap =napL7L; = —LiL;+ LTLj}0q
we see that
Ly =mn1y = diag(—, +, -+, +).
We find that in our frame
1

LT = (L%00%),  La=0duap®,  Lo=04+ 75 7y0aa0pe"e”
1 .
LI: (LO,— iagpa)a ng_ég Oé’ Lg:53+m(sg(szﬁwa¢ﬁ

Now using the Cartan equation
dVe® + A% VP =0,
we may read off the connection 1-form A%, and verify the differential identities

1
Lalo, L8 = 5Aa‘“’(laramB + Vo (K,) A",

where
d d d 1
(o) = et~ 0usa® (ulgy = o
and with our current conventions we find £ = —1. Following [22, 23] we then find

1 1
DaLI = 6aLI = ELIaVaaa DaL]a = EL]Vaa .

Moreover, given that
LiyL? =—Lyp, LijLy” =Ly,

we can evaluate the commutator

1
(Do, DalLLs" = —5 <vaavﬁb _ Vﬁ“va”) L,
so we can read off the curvature tensor of H™ which is
1
Raﬂab = —5*2 (VaaV[gb — VgaVab) )

and the Ricci scalar is negative and given by R = —n(n — 1) /£2.

,16,

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)



In particular we have the coset algebra for the coset generators K, and SO(n) gener-
ators H,p,

[Haba Hcd] = O0peHyd — dacHpa + daaHpe — dpaHac
1

| Hap, Ke| = 00oKa = 8ackSs [Kas Ko = g5 Har- (3.38)

So the scalar manifold is simply the coset space SO(1,n)/SO(n).

Note that the conditions (3.19) are identities and not constraints, which is somewhat
different to the case of vector multiplets in the background of the standard-Weyl multi-
plet, where the scalar field D acts as a Lagrange multiplier to implement the very special
geometry constraint in two derivative theories.'® Here though the constraint coming from
the D equation of motion is avoided by moving to the dilaton-Weyl multiplet and solving
for the Lagrange multipliers which no longer occur in the action.

Integrating out V,fj, Vi, Py, N and Y the action for the linear multiplet becomes

1 1 1
—e Ly = +5R - Z6—2"(LILJ + LL ) F! - F/ — 66—401{2

3 1
= 5(do)* = Sgap(dp™) - (di”) , (3.39)
and the supersymmetry variations are now
1_
de,l = §G’Ym¢u;
i i . .1 .
&l}L = v,uel + 27V1VQI 11’2’7#61 — §7M7V1VZIV1V2€I ,

GAL = —5eTLIe, + e Ly + peTen i),

1 1
5Buu = 7620?7[;1,17&1/] + 5820"?7;“/)( - nIJA[I,ué(e)Ai] )

2
5 i_ 1 7O'L Imn i ? I d i i 720'Hmnp i
X = _E’Ymne F € — 5’7 ( U)ue +T86 Ymnp€
. 1 . .
Saie — —ZB_UL%FImn'YmnEI _ %’Ymvo?(am@a)fl ’
i
0o = —¢€
o= 5,
S = %gva%“ . (3.40)
Note that there are still some differences between this formulation and the N-R super-
gravity presented in [22, 23|, in particular here the parameter { = —1, whereas in [22, 23]
&= —%. However the differences are merely due to conventions, and the explicit (con-

stant) field redefinition is given in appendix B. We find it useful to keep these conventions,
as we will be interested in adding high derivative terms which are simple generalizations
of those presented in [36].

130ne can see that we do have one field that can act in this way, which is the scalar field of the compen-
sating linear multiplet. It is possible that the scalar manifolds for physical tensor multiplet scalars in the
background of the dilaton-Weyl gravitational multiplet will be similar to those of the vector multiplets in
the background of the standard-Weyl multiplet.
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Note that the on-shell theory with action (3.39) is invariant under the scaling symmetry
oc—o+ec B, — eQCBW AlIL — eCAL Grvp — eZCGWp, (3.41)

and the off-shell theory (3.16) with supersymmetry transformations (3.25) maintains this
symmetry if we also scale
Y ey Tl (3.42)
Before we turn to higher derivative terms we wish to consider whether the vector
multiplet coupling of this theory can be generalized from that presented in [22, 23]. To this
end we may also add the most general vector multiplet coupling that is compatible with
the Lagrange multiplier vector multiplet continuing to function as such. This reads

_ 1 1 1 .
e 'Ly =Crk <—4PIFJ FE + gP[PJDPK + gpl (Dp”) - (Dp™) + p'Y VY3

-1
—gpl o7 <D + 236T2> +4pl g FE T — ;leﬂ”PUAAﬁF,{ng> , (3.43)
which is completely independent of the Lagrange multiplier vector multiplet.

There are two special cases where the density (3.43) vanishes £y = 0, where either
Crix = 0 or less trivially when Cr x = d( 10]K)- To see that the density vanishes in the
later the case note that it is formed from the combination of the vanishing composite linear
multiplet and another set of vector multiplets, and each term in the density contains an
element of the linear composite multiplet. One can also verify this by direct computation of
course. Another way to see this is by considering the original cubic prepotential involving
the Lagrange multiplier vector multiplet, p’A. Indeed making a field redefinition of the
Lagrange multiplier vector multiplet of the form

b
P =p" +dp (3.44)

will not change the theory and simply generates the vanishing term considered above.
For general C7 i we define

C=Crxp'p’p™, Cr=Crixp’p™, Cry = Crixp", (3.45)

and the density (3.43) becomes

1 C 4C
e 'Ly = 1 <CIJ - gA_laIJ —2A7TACy + 3./4_2./4[./4]) FL.F/

m= np- qr

C " 1
+ (CIJ — 3A_1au> XI‘JXé - ﬂCIJKEmnquAI F/ i

1 C 4C
-3 (C]J — QA_IA[CJ — §A_ICL[J + 3./4_2./41./4]) (dpl) . (dp‘])
1 2
- ( Aler - §A2AI> UL N & (3.46)

Note however that this density contains terms not present in the original formulation,
and as such this represents a generalization of the vector multiplet couplings, and further-
more the dilatonic couplings break the symmetry (3.41). Also note that the two Ricci
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scalar contributions to this density coming from the superconformal d’Alembertion have
cancelled. Applying the transformations (3.11), (3.14) we obtain

- C e 1 /(. 20
e 1Ly = +e” (CIJ + 377[J> (LéLé5?5}5) VY + i (CI - 3L1> €U Hpgr

1 - C . 4C [T | P
— et Znrg — 2L Ly | PR - mnpar g1 pJ

1€ <C1J+ 511 1Cy + 5 L1 J) 24CIJK€ mAptar
- 1 30 | A g I Jéaéﬁ i\ j

¢ | Cra+ gy | Lo L) (dp") - (dp’) . (3.47)

The explicit Chern-Simons term and the term involving both the 2- and 3-form field
strengths F! and H do not occur in the N-R formulation. If we demand their absence
we find the condition

Cryx = (2CL(; — 3C(1)nyx) (3.48)

which implies

. C . 4C
Crj = _§7UJ+2L[CJ—?L1LJ, (3.49)

but this implies that the entire density vanishes and we are left with the N-R supergravity
coming from the linear multiplet density only. Note that the Chern-Simons term clearly
breaks the symmetry (3.41). Demanding (3.48) is the only way to restore it, apart from the
exceptional case when we have only one vector multiplet in which case (3.48) is automatic,
but the density in that case again vanishes as discussed in the previous section.

Now we turn to the case in which deta = 0. In this case we can still diagonalize
the rank r tensor ay; with a constant GL(r,R) transformation. Putting a tilde on the
indices in (3.43) and then splitting indices into [ = (I,1) with I = (0,---,7 — 1) and
I =(r,---n). We will refer to the r I directions as internal vector multiplets as they occur
in the gravitational multiplet, and the remaining I directions as external vector multiplets.
As the contribution to the density formed from the Lagrange multiplier vector multiplet
and the composite linear multiplet (3.3) vanishes for the external vector multiplets, we only
have the contribution to the density (3.43). Substituting the expressions for the composite
standard-Weyl multiplet fields this reads

1 C 4C
e_lﬁv = 1 (C[J — gA_lCL[J — QA_IA[CJ + 3./4_2./4[./4]) FL.F/

Lo b i - [, i
= 4CigF! FT = 5 (20 — 24T ALC) P F

=

+ <CIJ - 3A1a1J> yhyd o, vy 4 ¢ vy

1 1
-3 <C[J — QA_IA]CJ — gA_la]J + ?)C.A_Q.A]AJ> (dpl) . (d,()‘])
1 ) ! ; j
— 5 (20, = 2471 AC;) (dp") - (do”) = 55 (o) - (dp”)
]' - 2C - mnpqr ]' - mnpqr [
T (A cr - T A 2A;> ML H e — A e FL Hpgy
- in e AL R PE (3.50)
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where

IJ K J K K
C=Cijgppr,  Ci=Cieer™ . Cip=Chjgp - (3.51)
As discussed above the explicit Chern-Simons term breaks the symmetry (3.41), so if we
wish to maintain it extended to the external vector multiplets we need that the last two
lines of the above density cancel up to a surface term. In this case we immediately obtain

Cijg = Cijx =0, Crix =3A7'Cunsxy—2CA 2 Aunyry,  Cjyx =A 'Cinx, (3.52)

but again we find that in this case the density vanishes as these imply that

C 4c
Cry= g.A_lT}IJ +2A71ACH - ?«4_2«41«%- (3.53)

Again the vanishing of the denisty in this case can be seen from a redefinition of the
Lagrange multiplier of the form

P =0 +dpp! (3.54)
which generates the terms

1
C[JK:d(]aJK) CfJK: gdl‘aJK (3.55)
which are equivalent to (3.52) for some constants d;. The density (3.50) is the most general
vector multiplet coupling we can add, and we have shown that it generically breaks the

symmetry (3.41). Indeed the original prepotential p’ A + C exhibits the symmetry

P = e 2, pl — epl ,of — ecpf, (3.56)
only in the case C = 0, up to the terms (3.55) which can be generated by the redefinition
of the Lagrange multiplier.

If however we require only that the internal vector multiplets have the symmetry (3.41)
whilst the external vector multiplets are inert under this transformation, it is clear that
we may add couplings between external vector multiplets I whilst preserving (3.41), i.e
we take Crjx = 3A_1C([77JK) — 2C.A_2A(I77JK) and Cj - = A_ICfnJK but now we allow
C}ji to be arbitrary,' so that we maintain the symmetry

I I 2 I I
oc—o+c A, — €A, By, — €““Byy, A, — AL (3.57)
The density in this case reads

1 ~ ~ N
— s AL T K (3.58)

1 P o1 ; ;
—1 _ I J I J I J
e\ Ly =—1Cpy P F Y ‘JYij—icfj(d,o )-(d,o )—24 [ Il FE.

Note that we must therefore not transform the external scalars with our coordinate trans-
formation (3.11), so the supersymmetry transformations of the external vector multiplets

"We cannot have C,ji different from zero and maintain the symmetry as the corresponding Chern
Simons term explicitly breaks it and there is no candidate cancellation term coming from the *x(FAH) terms.
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are given by (3.1). If we allow for different scaling behaviour of the external multiplets, we
may construct densities which respect the symmetry

ocso+e AL sefAl B, B, AL eheAl (3.59)
by transforming the external scalars such that
Pl = ek"pf, (3.60)

and the gauginos by
AT = ke N0 4 ehopT (3.61)

in the following cases. We have discussed the case & = 0 above, which corresponds to
allowing us to take C; ji non-zero. It is clear we can never take Cryi different from its
expression above. In the case k = % we may take C} ;. # 0 but then we need C;;p =0
and O ;x must be equal to its expression above. Finally in the case k =1 we may allow
C};k to differ from its expression above, but need C;;n = Cjj, = 0. This can also be
seen easily by inspection of the original cubic prepotential.

The case of one internal multiplet is exceptional as we shall now discuss. Recall that
the vector density formed from the internal vector multiplet vanishes identically. Indeed
it is also the case that a density formed from two internal multiplets and arbitrarily many
external multiplets must vanish. This means that we may take arbitrary Cogo, C,j, however
terms involving these quantities will not appear in the action, and will therefore not break
the symmetry (3.41). Indeed we may read off the most general contribution to the density
from (3.50).

1 —0 —20 /4 0\ 2 L/ —0 I J 1 -0 0 I
—Z<e D+ e 27C) (F) +§(ij+e ;) FlF +§(Df+e C;) FO-F
L/, 4 . o " 1/ . . .
5 (C+eD) (o) + (G +eD;) (do) - (dp") = 5 (C15+ 7Dy ) (do") - (dp”)
—20 —02A mnpqr 1 —20 —0o mnpqr 1
—(e D —e7? 3c>e P FopHpgr + 75 (€727C1 + 277D;) €0 Fyy, Hygy

1

. . . 1 . . R A
= 51 Chire™ " A Fyy — S Dy AL Fr Fyp o+ (Cf ;e D; j) vy (3.62)

m>* np—- qr 8 I1J m* np- qr 1)
where we defined
C=Cijpp' oo™, Ci=Cipp’o™,  Cij=Cijgr™, (3.63)
and
IJ Jj
D=Cyjpp”s  Dp=0Cyijps  Dij=0Chpj- (3.64)

Similarly to the above cases we may preserve the symmetry (3.57) only if D;; = 0, but
the theory exhibits a symmetry of the form (3.59) after a suitable scalar and gaugino
redefinition when taking only one of D;; or C; ;; non-vanishing.
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To summarize if we demand that the symmetry (3.41) is extended to the external
vector multiplets we may only add vector multiplet couplings of the form

Crik = 3A—1C(I77JK) - QCA_QA(IUJK) ; Cie=A"Cinsxk, (3.65)

with all other components zero, but the density (3.50) vanishes, and the scalar manifold
is simply SO(1,1) x SO(1,n)/SO(n). On the other hand if we demand that the external
vector multiplets are inert under this transformation (3.57), then we must take the ex-
pressions (3.65) with C};,. = 0, but with arbitrary C;;z and (3.58) is the corresponding
density which allows for the preservation of the symmetry (3.41). The scalar manifold is
then a product of SO(1,1) x SO(1,n)/SO(n) x M, with M some m = n — r dimensional
manifold, which seems only to be restricted by demanding the absence of ghosts in the
theory. Also an explicit Chern-Simons term appears. On the other hand, if we relax the
assumption that our theory should preserve the symmetry (3.41) then we may add the gen-
eral vector multiplet couplings and obtain the density (3.50). In this case the entire scalar
manifold is dependent on the form of Cjjz. In particular a Lagrange multiplier forcing
a restriction of the scalar manifold, for example the very special geometry condition, is
absent. If we view the theory as being defined by the Cj;z from compactification then the
symmetry (3.41) or even (3.59) is generically broken.

4 Higher derivative densities

In this section we shall describe how to simply generalize the known Ricci squared [36]
and Weyl squared [35] invariants to an arbitrary number of internal and external vector
multiplets. In [43] an off-shell superconformal Riemann squared invariant was derived in
the r = 1 dilaton-Weyl multiplet that we used here to construct the pure N-R supergravity,
but we leave the generalization of the Riemann squared invariant for future work.!?

4.1 Ricci squared invariant

In [36] a Ricci squared invariant coupled to vector multiplets in the r=1 dilaton-Weyl
multiplet was constructed in a particular basis of the superconformal fields. This basis is
equivalent to a reversible gauge fixing of the theory by breaking the SU(2) down to U(1),
and breaking the local dilatonic symmetry and special supersymmetry. We shall give the
details of the construction without going to this basis, by using the construction of the
Ricci squared invariant in the standard-Weyl multiplet, which was also given in [36]. The
essential observation is that the Ricci scalar appears in the composite expression for the
field Y'Y in terms of a linear multiplet, and that this is not cancelled by the contribution
coming from the expression for D when moving to the general dilaton-Weyl multiplet.
Thus in the standard-Weyl multiplet we may form the Ricci squared invariant by consid-
ering a composite linear multiplet, which is formed from two copies of a composite vector

Deriving this invariant is equivalent to deriving the Riemann squared invariant in the standard-Weyl
multiplet, which has yet to be given in components, but was recently analysed in superspace in [44].
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multiplet, each of which is formed from our compensating linear multiplet. Schematically
the density is )
e le=v.L (V#, V#) (4.1)

where V# = V(Lg). Clearly as the density (3.43) was formed from composing the linear
multiplet from two sets of vector multiplets, we may construct a density from (3.43) by
setting C e = €f) where the vector multiplet V# is composite and is formed from our
compensating linear multiplet. After the gauge fixing (2.27) and setting L = 1, the bosonic
parts of the vector multiplet composed of our compensating linear multiplet, which we
obtain from gauge fixing (C.1), are simply

p* =2N,

i T 3 3 Kl ra
y _ - oGyl Y o 2 p2 2 R v /
Y#_ﬁ5 ( SR N-—P +3T +4D —-V7, k1>

4 2Pavljij + \/ivavléiméj)m’
Fi, = 40,P, + 2V20,V,, (4.2)

where we have split V¥ into its traceful and traceless parts as in (2.30).
We obtain the density

e L =
£ <ZR —4 (D + 236T2> +320% + N? + P? + V’2>2 — 16EN? <D + 236T2>
+26 (V2P V'3 4 V) (VEPV iy + V*V i) +16EN (V24V +24P) - T
- %5(&/)2 — V2E(dV) - (dP) — £(dP)* — 26(dN)? — 4Ne; (dpf ) - (dN)
~V2e;N (FT-av) = 2¢;N (FT-dP) +16e;N? (F'-T) - %51\723
— 2v/2e;v iy <ZRN —4DN — gz\ff + N3+ NP2+ NV’2>

— e ALD,V,0,V, — 2v/2ee07T AL, P,V — 2e1607T AL, P,0, P,
+8e;YEVINPY — av/2e;v LNy i) | (4.3)

where & = efpl.

Substituting the expressions for the composite standard-Weyl fields
from (3.4) we obtain a supersymmetric Ricci squared invariant coupled to internal and
external vector multiplets, whose leading term is ié’ R?. If we apply the map (3.11) to the
internal multiplets we may add this to the two derivative actions derived in the previous
section and the leading term becomes ee? L' R? + efprQ, so the symmetry (3.57) is main-
tained only in the case that we couple exclusively to external multiplets, i.e. e; = 0. If we
take the point of view that this correction is perturbative, and since at leading order the

fields Vlfj, vl i N, P vanish the relevant contribution is

3 2, 5 )\
Lra=E(SR-4(D+ L") +32L% ) +:--. (4.4)
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4.2 Weyl squared invariant

In [35] a supersymmetric invariant including a Weyl tensor squared term was constructed
in the standard-Weyl multiplet and coupled to Abelian vector multiplets. This is given
in the conventions we use in [36], which we will repeat below. We will consider the same
construction as before, namely that we have a Lagrange multiplier vector multiplet coupled
only to the other vectors in such a way as to implement the vanishing of the composite linear
multiplet, providing expressions for the standard-Weyl fields D, T, and Xi. In particular
we will not couple the Lagrange multiplier vector multiplet to the higher derivative terms,
and so do not induce higher derivative expressions in the definitions of these fields. The
contribution to the bosonic action of the Weyl-squared term is given in [36] and reads

—1 .
(& £02+éR2 =

1 5 64 7 1024 7 32 i
Bf(SPICquUCqua + gpIQ2 + TPIIQQ _ EQIIWFMVI
16 7 i1 i
- ?plcul/pazwj Ipa + 2Cuyp0'I'uprJI + EGMVPU)\A{LCVpT(;CU)\TJ

_ 11—26“”’)‘7)‘A£Vl,pijvg>\ i+ ? gVWiquu _ épivwijvuuij

+ IV, VT - BRI, vy e - 20 TR, T,

+ DR - IV, T 4 1004 T, 0T T~ T8 (1)

B %4 T, P ip2 _ 256 7,177, vl _ 333 € pon TPV, TN 1 T

— 16€poa L7 VILAT T %pi eWpMT“”TPUvTT“) , (4.5)

where 3; are constants, Vﬁ = 28[#Vyi]j — 2V[2‘V,,]kj and C\,p0 is the Weyl tensor. Note that
the D? term contains a factor of the Ricci scalar squared, which is why we have labelled
the invariant C? + %RQ. This fact is what allows one to combine it with the Riemann
squared invariant to form the Gauss-Bonnet combination [45] in the » = 1 dilaton-Weyl
multiplet, which is the only case that at present the Riemann squared invariant is known.
Inserting the expressions for the composite fields T, D and y Ol given in (A.5) we obtain
a supersymmetric invariant for arbitrary numbers of internal and external multiplets. We
may then make the transformations (3.11), (3.13) in order to identify the dilaton. We note
that the symmetry (3.57) is broken unless we couple exclusively to external multiplets, i.e.
Br = 0 and that only the third line of this invariant may be neglected in a perturbative
treatment, due to the vanishing of the fields V,jj and Y7 at the two derivative level.

5 Conclusions

In this work we described in detail the construction of the N' = 2 d = 5 supergravity of
Nishino and Rajpoot [22, 23] from the superconformal formulation [19, 20, 25, 27]. The
construction of the minimal N-R model proceeded straightforwardly. In the case of the
N-R model coupled to vector multiplets we paid particular attention to the identification
of the dilaton amongst the scalars, and the resulting scalar manifolds. We found that in
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order for the supersymmetry transformations to be non-singular we must require that the
homogeneous quadratic A = ajsp’p’ must never vanish. Making the coordinate transfor-
mation (3.11) we then found it easy to identify the scalar manifold in the case that the only
contribution from the vector multiplet coupling came from a quadratic coupling between
them which in turn is coupled to a Lagrange multiplier vector multiplet, which gave rise
to the original N-R formulation. It is well know that the general (two derivative) vector
multiplet coupling is defined by a symmetric tensor Cryx which can be viewed as the triple
intersection of a Calabi-Yau manifold in the compactification of M-theory [13]. From this
point of view, the coupling that results in the N-R formulation is schematically

Cryg V- L(V/,VE) =V, L (a1, V'V’) (5.1)
where ay; has Lorentzian signature and may be diagonalized so that in the new basis
a'ry=mnry = diag(—1,1--- ,1). (5.2)
As a shorthand for this we will use the notation
Cyry = ary (5.3)

indicating that only this component is non-zero. This can be plugged into the vector
multiplet density (3.43), and we found that the scalar manifold is SO(1,1) xSO(1,n)/SO(n)
as described in [22, 23].

We generalized the vector multiplet matter coupling available in the literature, but
this came at the price of breaking the global scaling symmetry of the action that is present
in the N-R formulation. We always consider densities that preserve the function of V, as
Lagrange multipliers. In particular first we took

Chry = ary, C'1ik (5.4)

non-zero and derived the density (3.47). This generically breaks the shift symmetry (3.41),
and only respects it when the C’;jx contribution to the density vanishes, the conditions for
which are given in (3.48). We called the vector multiplets V! in the above internal vector
multiplets, as they appear in the gravitational multiplet. We can extend the coupling to
external vector multiplets which do not appear in the gravitational multiplet by considering

Cory = ary, C'iike s (5.5)
where I = (I ,f ) and in particular does not include the b direction. The form of the
coefficients (5.4) arises from a compactification of the low energy limit of M-theory on a
Calabi-Yau which is a K3 fibration [14] where it is assumed that the rank of a is maximal.
Taking (5.5) results in the most general vector multiplet coupling that allows for the V), to
function as a Lagrange multiplier, and we gave the density in (3.50). Not surprisingly this
density generically breaks the symmetry (3.41), but we found that if we allow the external
vector multiplets to be inert under these transformations we could preserve the symme-
try (3.57) in the particular case that we take the vector density (3.58), so that the scalar
manifold is now a product SO(1,1)xSO(1,n)/SO(n)x M. We then turned to higher deriva-
tive corrections and generalized the known Ricci squared and Weyl squared densities to
include more than one internal multiplet. Again these break the symmetry (3.41), but if we
take them to be coupled to only external multiplets we may maintain the symmetry (3.57).
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It would be interesting to explicitly consider the appropriate compactifications of the
heterotic theory on suitable five manifolds and to understand better the relation of that
theory to the off-shell theory presented here, and the duality to M-theory on a Calabi-
Yau 3-fold. In [14] such a computation was carried out using the very special geometry
condition C = Cj jf(pl p? p% =1 to produce a Lagangian for the effective heterotic theory
by removing one of the scalars from the action in the case of two internal vector multiplets,
which is equivalent to fixing the Lagrange multiplier scalar p’ using the D equation of
motion in the off-shell formulation, at least at the two derivative level. In the heterotic
superstring picture the presence of the additional vector couplings Cjjx were related to
1-loop corrections, whilst the original N-R formulation is the tree level contribution. In the
off-shell formulation in the standard-Weyl multiplet the very special geometry condition
arises at the two derivative level by integrating out a Lagrange multiplier, the standard-
Weyl field D. After the dualization we have no such constraint in the vector multiplet
sector, as it can be solved using the Lagrange multiplier vector multiplet. These two
approaches are equivalent at the two derivative level, but it seems that we ought to include
the higher derivative corrections to the very special geometry constraint, or in our picture
to include couplings between the higher derivative terms and the Lagrange multiplier vector
multiplet, introducing higher derivative terms in the expression for the composite standard-
Weyl fields. For the case of only one internal vector multiplet the heterotic result implies
the absence of a one loop term corresponding to the vanishing vector density of section 2,
which was straightforward to show in our set-up. It would be interesting to see how our
external vector multiplets fit into this picture, and particularly how the higher derivative
corrections in the standard- and dilaton-Weyl multiplets may be related by the heterotic/M-
theory duality.

It would be highly desirable to derive a Riemann squared or Ricci tensor squared
supersymmetric invariant in the standard-Weyl multiplet in order to construct arbitrary
quadratic curvature supergravities. This would be of interest when considering higher order
string theory corrections, but also within the framework of supersymmetric Lovelock theory
or Chern-Simons supergravity [46], although this has been investigated in a rather different
approach to that we have taken here. For generic higher order theories the auxiliary fields
of the off-shell formulation become dynamical, and in order to avoid this one must take
a perturbative approach to integrating out these fields, as done in [35, 47]. In [45] it was
shown that for the supersymmetrization of the Gauss-Bonnet term, in the background of a
dilaton-Weyl multiplet containing only one internal vector multiplet, that the kinetic terms
for the auxiliary fields exactly cancel, meaning that they can be integrated out exactly. It
would be interesting to see if this also happens in the background of the standard-Weyl
multiplet, and to understand the compactifications of string and M-theory to this theory.
Interestingly the coefficients of the Chern-Simons terms which along with supersymmetry
specify the vector multiplet couplings completely, at both the two and four derivative level,
have been investigated recently in [48-50] from a 6D and M-theoretic perspective. Whilst
this article was in preparation the interesting article [44] appeared which addresses many
of these issues from a superspace perspective.

We may also straightforwardly add on-shell hypermultiplet couplings to this theory
which is desirable due to the presence of the universal hyper-multiplet in compactifications.
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This was recently discussed in [51] in addition to higher derivative couplings. In the
superconformal tensor calculus it is not known how to put general hypermultiplets off-
shell, however in the superspace formulation this has been discussed in [37-42] and whilst
this article was in preparation the interesting paper [52] also appeared. Since the field N
appears in the linear multiplet sector which, on coupling to additional tensor multiplets,
may provide a factor in the scalar manifold closer to the very special geometry of the
standard formulation it would be interesting to include general linear multiplet couplings.
It would be also be particularly interesting to gauge the models presented here, using
the methods of [43], in particular for applications to four dimensional field theories via
the AdS/CFT correspondence. It should also be possible to extend the internal gauging
procedure of that work from gauging the internal U(1) gauge field of the dilaton-Weyl
multiplet to gauging the full SU(2) R-symmetry using these methods to produce a Weyl
multiplet with an internal Yang-Mills multiplet and find a suitable gauge fixing of the
superconformal fields.

A Generalized dilaton-Weyl superconformal multiplets

t16

A general dilaton-Weyl multiplet™ is made up of the vielbien e, gravitino zpj“ m gauge

fields A{L,
triplet of vectors V,ij with Vuij = V,ﬂ.i, (m — 1) SU(2) triplets of scalars, Y and a gauge

field for local dilatations b,. Using vector multiplet indices I = (0, ) these transform under

a two-form gauge field B, m scalars p’, m gauginos ', an auxiliary SU(2)

supersymmetry with parameter ¢! and special supersymmetry with parameter 7' as

1_
562 = 56’)/‘11/)“,

) 1 ) .. ) .
(WL = (VH + 2bu) € — V;Jej + Y L € — iyun’,
ij 31 _i (i §) =G mn i) L OV~
oV = —56( ﬁ} + ey x D + ey, T ) + 577( W)
i _ 1 _
by, = §€?M —2enux + 577¢u )
I iog_ 17
0A, = 5P €y, + 5‘5%)‘ )
1 T
6BMV - _5“467[/11/}1/] - §A167HVAI - nIJA[I#(S(e)AV} ’

. 1 T i 7 . . .s .
5)\]1 _ _Z'anFIm d— 5’)/& (Dapl) el +pI,ymnImn€1 _Xfljej ‘|‘PI771 ’

Syl — _ig(lfympm)@)l + %g(lfymnz\mnl)@)l — dip'eliyd) + %ﬁ(l)\J)l ’

sp! = %af, (A1)
where the spin covariant derivative is defined by
. 1 .
V€ = (au + 4wumn'}’mn) €, (A.2)

For m > 1.
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where
n vim_n min 1 Tn.om 1 n m
me = QeV[ma[ueu]] —evlme ]ae#p&,eg + 26L b — ilb[ Y ]1/)/.1 - Zlb Y™, (A.3)

and we have underlined composite fields, expressions for which are given by

i i m B i mn p i
Qﬂ = 37 Eum(Q) - ﬂ’hﬁ B/mn(Q)ﬂ

as in the standard-Weyl multiplet but now we also have

1 /1 - AT ix1 J
Imn = _8A <6€mnpqupqr - AIF mn_ T’IJZ)\ Pymn)\ > )
. N7 [ :
Xl — 'rHJA 1 <8pl’7mDmAJ1 + E,}/m(z)mpl) )\Jl
1 plmnyJi +1 Lo, pmnyJi ly.f./\JJ

32’Ymn 4/) YmnlL {—U ’

26 2 -1 1 I J 1 I J 1 il fJmn 1_1 m J
D=—ZT" A7 1pOp” + 2 (Dp') (Dp7) = 1o Fan ™" = A" DA

1 " ) ) i
YRy - i <2pan‘in + 4A17mnAJ> T"m> :
i -1 17 1= .
KUO = (pO) A YU 1771»7 (pO) iy , (A5)
where

A=nr5p'p”, Ar =m0’ nry = diag(—,+,--- ,+). (A.6)

As discussed at length in the main body of the text the dilaton of the N-R formulation
is to be identitified as o = 3 In(—.A) and we need A # 0 for the expressions (A.5) to be
non-singular.

B Explicit field redefinition

Here we give the explicit field redefinitions needed to arrive at the N-R formulation in the
notation of [22, 23]. Starting from the on-shell theory with Lagrangian (3.39), which is
invariant under supersymmetry transformations (3.40) we need to make the following field

redefinitions
. . . . 1
d=—VE' = VAL AL=VRA Ve= Vi
. 2 . ;
Xl - _gxlla )\al - _\/i)\/al7 VO? = \/ivlgﬁ (B]‘)
and redefine ]
L-vart, 1= Lre (B.2)

V2

— 28 —



The definition of the three form field strength, which be now call G, has therefore
changed to

G//U/P = BG[HB,,p] 377]JA [M I/p] s (B3)
where F'I = qA' = V2F! and the metric is rescaled to

, 1 1 s 1
== (8.5 — Son 03507 = —Gag - B.4
9 apB 9 B (L9)2 vOBsP P 29 B (B.4)

Note that L and the SO(n) connection 1-form A remains unchanged, however the
parameter £ has now become £ = — f’ due to the appearance of the vielbein in (3.32).
It is not difficult to see that on can further rescale the vielbein V2 = kV'S V2 = ,1€V’ .
leaving Lﬁl fixed and redefining the scalars p = %np’ whilst leaving all other fields fixed. The
Lagrangian and supersymmetry transformations are invariant under this map, however the
explicit expressions for the LII4 in terms of the scalars will change. This is equivalent to
scaling the spacelike directions in our coordinate transformations (3.11) and (3.13) and so
the choice of the parameter £ is, in this way, arbitrary. For each fixed value of the dilaton
the physical scalar manifold with metric g, is a cone. The full scalar manifold including
the dilaton is clearly the solid cone, and what we have described is a foliation by the dilaton
of the full scalar manifold, whose leaves are hyperboloids of equal constant Ricci curvature.
A different choice of the value of the Ricci scalar is then just an alternative foliation. The
bosonic part of the action is now given by

1 1 ) I J 1 —4 2
= —-R— e %(L"Lj,+ LiLy)Fl Fr/ — —¢=0
L R ge (Lr"Lja+ L1Ly)F,, 5¢ G
1 N 3
- §9a6(d<f3 ) - (dg”) — Z(dff)2 (B.5)

and its fermionic completion up the quadratic order in the fermions is given in [22, 23].
The supersymmetry transformations, up to quadratic order in fermions read:

L 0oc = —¢€

. . i : 1 3 i
S.i=D —O‘( PT _ A5 P O‘) ILF —20( paT _ 2§ P 0’7’) el or s
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; 1
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—=e"ey ALy
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2v6 6v3 2

) 1 . ; .
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C Vector multiplet composed of a linear multiplet

One can also construct the elements of vector multiplet in terms of the elements of a linear
multiplet and a Weyl multiplet [36, 43, 45]. Here we just list the bosonic parts

p=2L"'N,
Vyj = L7 '0%Lij — DaLy gD Ljym L™ L% — N?Lyy L™ — P,P*LyyL >
8
+ L 'T? Ly 4+ 4L 7' DL + 2P, L D" Lj)* L™,

3
Fu = 4D, (L' Py)) + 2L R,,,3 (V) Lyy — 2L~ * L1 Dy, L** D, Ly, . (C.1)

where the bosonic parts of the relevant covariant derivatives, d’Alembertion and the cur-
vatures are given by

DLV = (V, — 3b,)LY + 2v G [V*

D,P, = (V, —4b,)P,

O°L = (v — 469D, LY + 2V, DLV 1 6L fo
R(V)S, : =V =20,Vi - 2VU‘j(iijk

and for closure of the algebra the constraint D*P, = 0 is needed, and f¢ is given in (2.3).

(C.2)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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