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Abstract

In this work, a new class ofvector F-implicit complementarity problems and vectorF-implicit variational
inequality problems are introduced and studied, and the equivalence between of them is presented under certain
assumptions in Banach spaces. We also derive some newexistence theorems of solutions for the vectorF-implicit
complementarity problems and the vectorF-implicit variational inequality problems by using the FKKM theorem
under some suitable assumptions without monotonicity.
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1. Introduction

Vector variational inequality was first introduced and studied by Giannessi [4] in the setting of
finite-dimensional Euclidean spaces. This is a generalization of a scalar variational inequality to the
vector case by virtue of multi-criteria consideration. Throughout the development over the last twenty
years, existence theorems of solutions of vector variational inequalities in various situations have been
studied by many authors (see, for example, [1,5–10] and the references therein). At the same time, the
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vector variational inequality has found many applications in vector optimization, approximate vector
optimization, vector equilibria, vector traffic equilibria and other areas (see [5,8]).

Let X be a real Banach space with dual spaceX∗, and〈t, x〉 denote the value of the linear continuous
functiont ∈ X∗ at x . Let K be a closed convex cone ofX . In 2001, Yin et al. [10] introduced a class of
F -complementarity problems (F -CP), whichconsists of findingx ∈ K such that

〈T x, x〉 + F(x) = 0, 〈T x, y〉 + F(y) ≥ 0

for all y ∈ K , whereT : K → X∗ andF : K → (−∞,+∞), and they proved that (F -CP) is equivalent
to the following generalized variational inequality problem (GVIP): findx ∈ K such that

〈T x, y − x〉 + F(y) − F(x) ≥ 0, ∀y ∈ K ,

whenK is anonempty closed convex cone andF is apositively homogeneous and convex function. They
also proved the existence of solutions for (F -CP) under some assumptions withF -pseudomonotonicity.

Recently, by using the combination of demicontinuity and pseudomonotonicity, Fang and Huang [3]
introducedand studied a new class of vectorF -complementarity problems with demipseudomonotone
mappings in Banach spaces. They also presented the solvability of this class of vectorF -
complementarity problems with demipseudomonotone mappings and finite-dimensional continuous
mappings in reflexive Banach spaces.

Very recently, Huang and Li [6] introduced and studied a new class ofF -implicit complementarity
problems andF -implicit variational inequality problems in Banach spaces. The equivalence between
the F -implicit complementarity problem andF -implicit variational inequality problem was presented,
and some new existence theorems of solutions forF -implicit complementarity problems andF -implicit
variational inequality problems were also proved.

The main purpose of this work is to generalize some results of [6] for the vector case. We
introduce a new class of vectorF -implicit complementarity problems and vectorF -implicit variational
inequality problems in Banach spaces, and prove the equivalence between of them under certain
assumptions. Furthermore, we derive some new existence theorems of solutions for the vectorF -implicit
complementarity problems and the vectorF -implicit variational inequality problems by using the FKKM
theorem [2] under some suitable assumptions without any monotonicity.

2. Preliminaries

Let Y be a real Banach space. A nonempty subsetP of Y is said to be a convex cone if: (i)P + P = P ;
(ii) λP ⊆ P for all λ > 0. P is called a pointed cone ifP is a convex cone andP ∩ {−P} = {0}. An
ordered Banach space(Y, P) is a real Banach spaceY with an ordering defined by a closed convex cone
P ⊆ Y with an apex at the origin, in the form of

x ≥ y ⇔ x − y ∈ P

and

x �≥ y ⇔ x − y �∈ P.

If the interior of P , say intP , is nonempty, then a weak ordering inX is also defined by

y < x ⇔ x − y ∈ int P, ∀x, y ∈ Y,
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and

y �< x ⇔ x − y �∈ int P, ∀x, y ∈ Y.

Let X be a real Banach space,K ⊆ X be a nonempty closed convex set,(Y, P) be an ordered Banach
space induced by a pointed closed convex coneP . Denote byL(X, Y ) the space of all the continuous
linear mappings fromX into Y .

We first recall some definitions and lemmas which are needed in the main results of this work.

Definition 2.1. Let K be a nonempty subset of topological vector spaceX . A point-to-set mapping
T : K → 2X is called a KKM-mapping if, for every finite subset{x1, x2, . . . , xn} of K ,

conv{x1, x2, . . . , xn} ⊂
n⋃

i=1

T (xi),

where conv denotes the convex hull.

Definition 2.2. A mapping F : K → Y is said to bepositively homogeneous ifF(αx) = αF(x) for all
x ∈ K andα ≥ 0.

Lemma 2.1 ([2]). Let K be a nonempty subset of Hausdorff topological vector space X. Let G : K →
2X be a KKM-mapping, such that for any y ∈ K , G(y) is closed and G(y∗) is compact for some y∗ ∈ K .
Then there exists x∗ ∈ K such that x∗ ∈ G(y) for all y ∈ K , i.e., ∩y∈K G(y) �= ∅.

Lemma 2.2. Let (Y, P) be an ordered Banach space induced by a pointed closed convex cone P. Then,
x ≥ 0 and y ≥ 0 imply that x + y ≥ 0, ∀x, y ∈ Y .

Proof. SinceP is a convex cone,x ≥ 0 ⇔ x ∈ P andy ≥ 0 ⇔ y ∈ P , weknow thatx+y ∈ P+P = P
and sox + y ≥ 0. This completes the proof. �

3. Vector F -implicit complementarity problems and vector variational inequality problems

Throughout this section, letX be a real Banach space,K ⊆ X be a nonempty closed convex set, and
(Y, P) be an ordered Banach space induced by a pointed closed convex coneP . Denote byL(X, Y ) the
space of all the continuous linear mappings fromX into Y , and〈t, x〉 the value of the linear continuous
mappingt ∈ L(X, Y ) at x . Let f : K → L(X, Y ), g : K → K andF : K → Y . In this section, we
consider the following vectorF -implicit complementarity problem(VF -ICP): find x∗ ∈ K such that

〈 f (x∗), g(x∗)〉 + F(g(x∗)) = 0 and 〈 f (x∗), y〉 + F(y) ≥ 0, ∀y ∈ K .

Examples of (VF -ICP):
(1) If g is an identity mapping onK , then (VF -ICP) collapses to the vectorF -complementary

problem (for short VF -CP) offinding x∗ ∈ K such that

〈 f (x∗), x∗〉 + F(x∗) = 0 and 〈 f (x∗), y〉 + F(y) ≥ 0, ∀y ∈ K .

(2) If F = 0, then (VF -CP) collapses to the vector complementary problem (for short VCP) of finding
x∗ ∈ K such that

〈 f (x∗), x∗〉 = 0 and 〈 f (x∗), y〉 ≥ 0, ∀y ∈ K ,

which has been studied by Chen and Yang [1], and Yang [9].
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(3) If L(X, Y ) = X∗ and F : K → R, then(VF -ICP) collapses to theF -implicit complementary
problem (for shortF -ICP) of finding x∗ ∈ K such that

〈 f (x∗), g(x∗)〉 + F(g(x∗)) = 0 and 〈 f (x∗), y〉 + F(y) ≥ 0, ∀y ∈ K ,

which is considered by Huang and Li [6].
(4) If g is an identity mapping onK , then (F -ICP) collapses to theF -complementary problem (for

shortF -CP) offinding x∗ ∈ K such that

〈 f (x∗), x∗〉 + F(x∗) = 0 and 〈 f (x∗), y〉 + F(y) ≥ 0, ∀y ∈ K ,

which has been studied by Yin et al. [10].
(5) If F = 0, then (F -ICP) reduces to the implicit complementary problem (for short ICP) of finding

x∗ ∈ K such that

〈 f (x∗), g(x∗)〉 = 0 and 〈 f (x∗), y〉 ≥ 0, ∀y ∈ K .

which has been studied by Isac [7,8].
(6) If g is an identity mapping onK andF = 0, then (F -ICP) reduces to the complementary problem

(for short CP)of finding x∗ ∈ K such that

〈 f (x∗), x∗〉 = 0 and 〈 f (x∗), y〉 ≥ 0, ∀y ∈ K .

which has been studied by many authors, see [8]. If X = X∗ = Rn , then (CP) becomes the classical
complementarity problem.

Wealso introduce the following vectorF -implicit variational inequality problem (for short VF -IVIP):
find x∗ ∈ K such that

〈 f (x∗), y − g(x∗)〉 + F(y) − F(g(x∗)) ≥ 0, ∀y ∈ K .

We first establish the equivalence between(VF -ICP) and(VF -IVIP).

Theorem 3.1. (i) If x∗ solves (VF -ICP), then x∗ solves (VF -IVIP); (ii) if F : K → Y is positively
homogeneous and x∗ solves (VF -IVIP), then x∗ solves (VF -ICP).

Proof. (i) Let x∗ be a solution of(VF -ICP). Then, x∗ ∈ K such that

〈 f (x∗), g(x∗)〉 + F(g(x∗)) = 0 and 〈 f (x∗), y〉 + F(y) ≥ 0, ∀y ∈ K .

It follows that

〈 f (x∗), y − g(x∗)〉 + F(y) − F(g(x∗))
= [〈 f (x∗), y〉 + F(y)] − [〈 f (x∗), g(x∗)〉 + F(g(x∗))]
= 〈 f (x∗), y〉 + F(y)

≥ 0

for all y ∈ K . Thus,x∗ is a solution of (VF -IVIP).
(ii) Let x∗ be a solution of(VF -IVIP). Then, x∗ ∈ K such that

〈 f (x∗), y − g(x∗)〉 + F(y) − F(g(x∗)) ≥ 0, ∀y ∈ K . (3.1)

SinceF : K → Y is a positively homogeneous mapping, andK is a convex cone, lettingy = 2g(x∗)
andy = 1

2g(x∗) in (3.1), we have

〈 f (x∗), g(x∗)〉 + F(g(x∗)) ≥ 0, and 〈 f (x∗), g(x∗)〉 + F(g(x∗)) ≤ 0,
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that is,

〈 f (x∗), g(x∗)〉 + F(g(x∗)) ∈ P ∩ {−P}.
SinceP is apointed cone,

〈 f (x∗), g(x∗)〉 + F(g(x∗)) = 0.

By using this equality and (3.1), weobtain

〈 f (x∗), y〉 + F(y)

= [〈 f (x∗), y − g(x∗)〉 + F(y) − F(g(x∗))] + [〈 f (x∗), g(x∗)〉 + F(g(x∗))]
= 〈 f (x∗), y − g(x∗)〉 + F(y) − F(g(x∗))
≥ 0

for all y ∈ K , which shows thatx∗ solves(VF -ICP). This completes the proof. �

If g is an identity mapping onK , then we have the following:

Corollary 3.1. (i) If x∗ solves ( VF -CP), then x∗ solves (VF -VIP); (ii) if F : K → Y is positively
homogeneous and x∗ solves (VF -VIP), then x∗ solves ( VF -CP).

Theorem 3.2. Assume that:

(a) f : K → L(X, Y ), g : K → K and F : K → Y are continuous;
(b) there exists a mapping h : K × K → Y such that

(i) h(x, x) ≥ 0, ∀x ∈ K ;
(ii) 〈 f (x), y − g(x)〉 + F(y) − F(g(x)) − h(x, y) ≥ 0, ∀x, y ∈ K ;

(iii) the set {y ∈ K : h(x, y) �≥ 0} is convex, ∀x ∈ K ;
(c) there exists a nonempty, compact, convex subset C of K , such that ∀x ∈ K\C, ∃y ∈ C such that

〈 f (x), y − g(x)〉 + F(y) − F(g(x)) �≥ 0.

Then, (VF -IVIP) has a solution. Furthermore, the solution set of (VF -IVIP) is closed.

Proof. Define

G(y) = {x ∈ C | 〈 f (x), y − g(x)〉 + F(y) − F(g(x)) ≥ 0}, ∀y ∈ K .

From assumption (a), we have that for anyy ∈ K , G(y) is closed in C. Since every element
x∗ ∈ ∩y∈K G(y) is a solution of (VF -IVIP), we have to show that∩y∈K G(y) �= ∅. SinceC is compact,
it is sufficient to prove that the family{G(y)}y∈K has the finite intersection property. Let{y1, y2, . . . , yn}
be a finite subset ofK and setB = conv(C ∪ {y1, . . . , yn}). Then B is a compact and convex subset
of K .

We define twopoint-to-set mappingsF1, F2 : B → 2B as follows:

F1(y) = {x ∈ B | 〈 f (x), y − g(x)〉 + F(y) − F(g(x)) ≥ 0}, ∀y ∈ B

and

F2(y) = {x ∈ B | h(x, y) ≥ 0}, ∀y ∈ B.

From assumptions (i) and (ii) of (b), we have

h(y, y) ≥ 0
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and

〈 f (y), y − g(y)〉 + F(y) − F(g(y)) − h(y, y) ≥ 0.

Now Lemma 2.2implies

〈 f (y), y − g(y)〉 + F(y) − F(g(y)) ≥ 0

and soF1(y) is nonempty. Similarly, we can prove that for anyy ∈ K , F1(y) is closed. SinceF1(y) is
a closed subset of a compact setB, weknow thatF1(y) is compact. Next, we prove thatF2 is a KKM-
mapping. Suppose that there exists a finite subset{u1, u2, . . . , un} of B andλi ≥ 0(i = 1, 2, . . . , n)

with
∑n

i=1 λi = 1 such that

u =
n∑

i=1

λi ui �∈
n⋃

j=1

F2(u j ).

Then

h(u, u j ) �≥ 0, j = 1, 2, . . . , n.

From assumption(b)(iii), we have

h(u, u) �≥ 0,

which contradicts assumption (b)(i). HenceF2 is a KKM-mapping. From assumption (b)(ii), we have
F2(y) ⊆ F1(y),∀y ∈ B. In fact,x ∈ F2(y) implies thath(x, y) ≥ 0, and by assumption(b)(ii), we have

〈 f (x), y − g(x)〉 + F(y) − F(g(x)) − h(x, y) ≥ 0.

It follows from Lemma 2.2that

〈 f (x), y − g(x)〉 + F(y) − F(g(x)) ≥ 0,

i.e., x ∈ F1(y). Thus,F1 is also a KKM-mapping. FromLemma 2.1, thereexistsx∗ ∈ B such thatx∗ ∈
F1(y) for all y ∈ B. Therefore, there existsx∗ ∈ B such that〈 f (x∗), y −g(x∗)〉+ F(y)− F(g(x∗)) ≥ 0
for all y ∈ B. By assumption (c), we getx∗ ∈ C and moreoverx∗ ∈ G(yi), i = 1, 2, . . . , n. Hence
{G(y)}y∈K has the finite intersection property.

Since f : K → X∗, g : K → K andF : K → Y are continuous, it is easy to see that the solution set
of (VF -IVIP) is closed. This completes the proof ofTheorem 3.2. �

Example 3.1. Let X = Y = R2, K = P = R2+ = [0,∞) × [0,∞), C = [0, 1] × [0, 1]. Let

g(x) =
( x2

2
,

x1

2

)
, F(x) = (x1, 0), f (x) ≡ f

and〈 f (x), z〉 = f (z) = (z1 + z2, 0) for anyx, z ∈ K , with x = (x1, x2) andz = (z1, z2). Then,

〈 f (x), y − g(x)〉 =
(

(y1 + y2) − x1 + x2

2
, 0

)

for anyx, y ∈ K , with x = (x1, x2) andy = (y1, y2). If we set

h(x, y) =
(
(2y1 + y2) −

( x1

2
+ x2

)
, 0

)

for anyx, y ∈ K , with x = (x1, x2) andy = (y1, y2), then all assumptions inTheorem 3.2hold. It is
easy to see that(0, 0) ∈ K is a unique solution of(VF -IVIP).
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If g is an identity mapping onK , thenfrom Theorem 3.2, weobtain an existence theorem for (F -VIP)
as follows.

Corollary 3.2. Assume that

(a) f : K → L(X, Y ), g : K → K and F : K → Y are continuous;
(b) there exists a mapping h : K × K → Y such that

(i) h(x, x) ≥ 0, ∀x ∈ K ;
(ii) 〈 f (x), y − x〉 + F(y) − F(x) − h(x, y) ≥ 0, ∀x, y ∈ K ;

(iii) the set {y ∈ K : h(x, y) �≥ 0} is convex, ∀x ∈ K ;
(c) there exists a nonempty, compact, convex subset C of K , such that ∀x ∈ K\C, ∃y ∈ C such that

〈 f (x), y − x〉 + F(y) − F(x) �≥ 0.

Then, (VF -VIP) has a solution. Furthermore, the solution set of (VF -VIP) is closed.

Theorem 3.3. Assume that f : K → L(X, Y ) and g : K → K are continuous, and F : K → Y is
positively homogeneous and continuous. If assumptions (b) and (c) in Theorem 3.2hold, then (VF -ICP)

has a solution. Furthermore, the solution set of (VF -ICP) is closed.

Proof. It follows directly from Theorems 3.1and 3.2 that the conclusion holds. This completes the
proof. �

Example 3.2. Let X = Y = R2, K = P = R2+ = [0,∞) × [0,∞) andC = [0, 1] × [0, 1]. Let

g(x) =
(

x1 + x2

2
,

x2

2

)
, F(x) =

(
−x1 + x2

2
, 0

)
, f (x) ≡ f

and〈 f (x), z〉 = f (z) = (z1 + z2, 0) for anyx, z ∈ K , with x = (x1, x2) andz = (z1, z2). Then,

〈 f (x), y − g(x)〉 = ((y1 + y2) − (x1 + x2), 0)

for anyx, y ∈ K , with x = (x1, x2) andy = (y1, y2). If we set

h(x, y) =
(

(y1 + y2) − (x1 + x2)

2
, 0

)

for any x, y ∈ K , with x = (x1, x2) andy = (y1, y2), then all assumptions inTheorem 3.3hold. It is
easy to see that(0, 0) ∈ K is aunique solution of(VF -ICP).
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