
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 324 (2006) 739–745

www.elsevier.com/locate/jmaa

Note

A note on:
“Relaxation oscillators with exact limit cycles” ✩

Jaume Giné, Maite Grau ∗

Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida, Spain

Received 15 June 2005

Available online 27 December 2005

Submitted by William F. Ames

Abstract

In this note we give a family of planar polynomial differential systems with a prescribed hyperbolic limit
cycle. This family constitutes a corrected and wider version of an example given in the work [M.A. Ab-
delkader, Relaxation oscillators with exact limit cycles, J. Math. Anal. Appl. 218 (1998) 308–312]. The
result given in this note may be used to construct models of Liénard differential equations exhibiting a
desired limit cycle.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and statement of the main result

Our purpose in this work is to give a family of planar polynomial differential systems of the
form:

ẋ = P(x, y), ẏ = Q(x,y), (1)

for which an explicit expression of a limit cycle, that is, an isolated periodic orbit, can be given.
We assume that P(x, y) and Q(x,y) belong to the ring of real polynomials in two variables
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R[x, y], and we will always assume that P(x, y) and Q(x,y) are coprime polynomials. We
denote by d = max{degP,degQ} and we say that d is the degree of system (1).

In the work [1] a family of planar polynomial differential systems like (1) is studied and the
existence of an explicit limit cycle is pretended to be given. The author of [1] gives a family of
systems of the form (1) with a prescribed invariant algebraic curve. This curve f (x, y) = 0 has
an oval surrounding the origin of coordinates. However, in [1] there is no proof of the fact that
the oval of f (x, y) = 0 is an isolated periodic orbit, that is, a limit cycle. It is stated as obvious.
We have been able to weaken the hypothesis appearing in [1], getting a bigger family of planar
polynomial systems, and we have been able to show that the oval of f (x, y) = 0 is a hyperbolic
limit cycle.

Theorem 1. We consider a polynomial p(x) such that p(xe) = 0 and p(xd) = 0 for some xe < 0
and xd > 0, p′(xe) �= 0 and p′(xd) �= 0. We assume that p(x) > 0 for all x in the interval
(xe, xd). We consider another polynomial q(x) satisfying p(x)q(x)2 �= 1 for all x ∈ (xe, xd)

and q ′(x) �= 0 for all x ∈ (xe, xd). Then, the algebraic curve given by f (x, y) = 0 with
f (x, y) := (y − p(x)q(x))2 − p(x) has an oval in the band xe � x � xd which is a hyperbolic
limit cycle for the following system:

ẋ = y,

ẏ =
(

3

2
q(x)p′(x) + p(x)q ′(x)

)
y − p′(x)

2

(
p(x)q(x)2 − 1

)
. (2)

We note that a system of the form (2) can also be viewed as an autonomous Liénard differential
equation:

ẍ + f (x)ẋ + g(x) = 0, (3)

where f (x) and g(x) are the polynomials given by f (x) := −3q(x)p′(x)/2 − p(x)q ′(x) and
g(x) := (p′(x)/2)(p(x)q(x)2 − 1). Therefore, Theorem 1 may be used to construct models of
Liénard differential equations exhibiting a hyperbolic limit cycle.

One of the most famous Liénard differential equations is called van der Pol equation and it ap-
pears when studying the vacuum-tube circuits. This particular equation (3) has f (x) = μ(x2 −1)

and g(x) = 1, with μ ∈ R, and it exhibits a unique hyperbolic limit cycle surrounding the origin.
This limit cycle is shown to be non-algebraic in the work of Odani [3]. We are not considering
van der Pol’s equation since the systems described in Theorem 1 always exhibit an algebraic
limit cycle. The systems given in (2) are examples of Liénard equations with an algebraic and
hyperbolic limit cycle.

The same kind equations are studied in the work [1], but under other hypothesis for the poly-
nomials p(x) and q(x), and the author of [1] pretends to state the existence of a limit cycle. The
conditions for the polynomials p(x) and q(x) appearing in [1] are: p(x) is an even polynomial,
p(0) > 0, there exists a value X > 0 such that p(X) = 0, p(x) < 0 for all x > X, q(x) is an
odd polynomial and q(0) = 0. All these conditions are contained in the ones that we assume in
Theorem 1. However, the authors noticed that in the work [1] the condition p(x)q(x)2 �= 1 for
x ∈ (−X,X) does not appear and it is not implied by the other hypothesis. As we will see in the
proof of Theorem 1, condition p(x)q(x)2 �= 1 for x ∈ (xe, xd) is necessary to have a limit cycle
and it cannot be avoided.

We remark that each system of the family (2) has an algebraic limit cycle, which is an oval
of the real algebraic curve f (x, y) = 0, and it may have other limit cycles which are not taken
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into consideration. These other limit cycles can be contained in f (x, y) = 0 or not. If they are
contained in an invariant curve, we can treat them with the same methods described in this note.
For instance, it can be shown that the system (2) with p(x) = (1 − x2)(4 − x2)(9 − x2) and
q(x) = x/100 has 3 hyperbolic limit cycles all of them contained in the corresponding invariant
algebraic curve f (x, y) = 0.

In order to prove Theorem 1, we need some results relating ovals of curves of the form
f (x, y) = 0 with the fact that the oval of such a curve is a limit cycle. These preliminary re-
sults are stated in Section 2. Once we have stated these previous results, we prove Theorem 1 in
Section 3.

2. Preliminary results

We are considering limit cycles which are contained in a real curve f (x, y) = 0, which does
not need to be algebraic. This fact leads us to the definition of invariant of a system (1).

Definition 2. Let us consider an open set U ⊆ R
2 and a C1(U) real function denoted by

f (x, y) :U ⊆ R
2 → R. We say that f (x, y) is an invariant for a system (1) if

P(x, y)
∂f

∂x
(x, y) + Q(x,y)

∂f

∂y
(x, y) = k(x, y)f (x, y), (4)

with k(x, y) a polynomial of degree lower or equal than d − 1, where d is the degree of the
system. This polynomial k(x, y) is called the cofactor of f (x, y).

In case that f (x, y) is a polynomial we say that f (x, y) = 0 is an invariant algebraic curve
for system (1). We notice that if f (x, y) is an invariant of system (1) and f (x, y) = 0 defines
a curve in the real plane, then the function P(x, y)(∂f/∂x) + Q(x,y)(∂f/∂y) equals zero on
the points such that f (x, y) = 0. This fact implies that the real curve f (x, y) = 0 is formed by
orbits of system (1). In particular if f (x, y) = 0 contains an oval without any singular point of
system (1), this oval is a periodic orbit of system (1).

As well as invariant curves, the other objects taken into consideration in this paper are limit
cycles. A limit cycle of system (1) is an isolated periodic orbit. Let γ be a limit cycle for sys-
tem (1). We say that γ is stable if there exists a neighborhood such that all the orbits starting in
it have γ as ω-limit set. We say that γ is unstable if there is a neighborhood such that all the
orbits starting in it have γ as α-limit set. There might be limit cycles which are neither stable nor
unstable. These limit cycles have a neighborhood such that in the interior of the limit cycle all
the orbits have γ as ω-limit set and in the exterior of γ all the orbits have γ as α-limit set. Or the
other way round: the orbits of the interior have γ as α-limit set and the orbits in the exterior have
γ as ω-limit set. In this case, we say that γ is semi-stable. Any limit cycle γ of a system (1) is
either stable, unstable or semi-stable as it is stated in [4].

A classical known result, given in the book of Perko [4], let us distinguish the hyperbolicity
of a limit cycle. If we consider γ (t) a periodic orbit of system (1) of period T , we may compute
the finite value given by the following integral

∫ T

0 div(γ (t)) dt , where div(x, y) = (∂P/∂x) +
(∂Q/∂y) is called the divergence of system (1). It can be shown that if

∫ T

0 div(γ (t)) dt < 0,

then γ is a stable limit cycle, if
∫ T

0 div(γ (t)) dt > 0, then γ is a unstable limit cycle and if∫ T

0 div(γ (t)) dt = 0, then γ may be a stable, unstable or semi-stable limit cycle or it may belong

to a continuous band of cycles. When the quantity
∫ T div(γ (t)) dt is different from zero, we say
0
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that the limit cycle γ is hyperbolic. We notice that if
∫ T

0 div(γ (t)) dt �= 0, then the periodic orbit
γ is a limit cycle (either stable or unstable). We are going to use this property to ensure that a
periodic orbit is a limit cycle, that is, that it does not belong to a continuous band of cycles.

We relate limit cycles with invariants in the following way. We assume that we have a periodic
orbit γ of system (1) which is given in an implicit way, that is, there exists an invariant curve
f (x, y) = 0 such that γ ⊆ {(x, y) | f (x, y) = 0}. In order to have a smooth curve f (x, y) = 0
defining the periodic orbit, we will assume that ∇f (p) �= 0 for any p ∈ γ , that is, the gradient
vector of f (x, y) is different from zero in all the points of γ . Then we have the following result
stated and proved in [2].

Theorem 3. Let us consider a system (1) and γ (t) a periodic orbit of period T > 0. Assume
that f :U ⊆ R

2 → R is an invariant curve with γ ⊆ {(x, y) | f (x, y) = 0} and let k(x, y) be the
cofactor of f (x, y) as given in (4). We assume that ∇f (p) �= 0 for any p ∈ γ . Then,

T∫
0

k
(
γ (t)

)
dt =

T∫
0

div
(
γ (t)

)
dt. (5)

Hence, we have an alternative way to compute the value
∫ T

0 div(γ (t)) dt . In the family of
planar polynomial differential systems which we are considering, that is, the one described in
Theorem 1, we will not be able to directly compute the value

∫ T

0 div(γ (t)) dt . This is due to the
fact that we are not considering a fixed system with a concrete periodic orbit, but a family of
systems each one with a different periodic orbit and, thus, the expression of the integrand is too
general to be manipulated. By Theorem 3, we can also compute the value

∫ T

0 k(γ (t)) dt but this
integral is as much difficult as the previous one. That is why we are going to use the fact that for
any w ∈ R:

T∫
0

div
(
γ (t)

)
dt =

T∫
0

div
(
γ (t)

)
dt + w

( T∫
0

div
(
γ (t)

)
dt −

T∫
0

k
(
γ (t)

)
dt

)
.

The integrand in the right-hand side of this equality will be chosen strictly positive or negative
in all the interval of integration for a suitable value of w. Therefore, the value of the integral will
be different from zero. Using these steps, we will be able to prove that the oval of the invariant
curve described in Theorem 1 is a limit cycle of the corresponding system.

3. Proof of Theorem 1

Proof. In order to prove this theorem, we first show that f (x, y) = 0, where f (x, y) := (y −
p(x)q(x))2 − p(x), is an invariant algebraic curve of system (2). Straightforward computations
show that

y

(
∂f

∂x

)
+

[(
3

2
q(x)p′(x) + p(x)q ′(x)

)
y − p′(x)

2

(
p(x)q(x)2 − 1

)](
∂f

∂y

)
= q(x)p′(x)f (x, y),

and, thus, we have that f (x, y) = 0 is an invariant algebraic curve for system (2) with cofactor
k(x, y) := q(x)p′(x).
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Since p(xe) = p(xd) = 0 for the values xe < 0 and xd > 0 and p(x) > 0 for x ∈ (xe, xd),
we deduce that f (x, y) = 0 has an oval in the band xe � x � xd surrounding the origin of
coordinates, which can be parameterized in two parts by:

x(τ) = τ, y±(τ ) = p(τ)q(τ ) ± √
p(τ), (6)

with τ ∈ (xe, xd). We are going to prove that this oval does not contain any singular point of sys-
tem (2), and then, we will have that it defines a periodic orbit of the system. The singular points
of system (2) have coordinates of the form (a,0) where the value a is a root of the polynomial
p′(x)(p(x)q(x)2 − 1). We have that f (a,0) = p(a)(p(a)q(a)2 − 1) and (p(a)q(a)2 − 1) is dif-
ferent from zero in all the closed interval a ∈ [xe, xd ] by the hypothesis that p(x)q(x)2 �= 1 for
all x ∈ (xe, xd) and p(xe) = p(xd) = 0.

Here we notice that the assumption p(x)q(x)2 �= 1 for x ∈ (xe, xd) is necessary for the oval
of f (x, y) = 0 to be a limit cycle. In [1], this assumption is not given. We notice that an oval of
an invariant algebraic curve of a system may contain singular points of the system, and in such a
case, it is not even a periodic orbit.

Since xe and xd are simple zeroes of p(x) and p(x) > 0 for all x in the interval (xe, xd)

we have that there is no singular point of system (2) on the oval given by f (x, y) = 0 and
parameterized by (6). From this fact and that f (x, y) = 0 is an invariant algebraic curve of the
system, we deduce that this oval is a periodic orbit of system (1). We denote this periodic orbit
by γ for the rest of the proof. We note that we do not know the parameterization of γ as explicit
solution of system (2), that is, we do not know the periodic function γ (t) := (γ1(t), γ2(t)) such
that dγ1(t)/dt = γ2(t) and

dγ2(t)

dt
=

(
3

2
q
(
γ1(t)

)
p′(γ1(t)

) + p
(
γ1(t)

)
q ′(γ1(t)

))
γ2(t)

− p′(γ1(t))

2

(
p
(
γ1(t)

)
q
(
γ1(t)

)2 − 1
)
,

for all t ∈ R. We do neither know its period T > 0 but we have been able to show its existence
by using the invariant algebraic curve f (x, y) = 0 and its properties in relation with system (2).

Finally, we need to prove that the periodic orbit γ is a hyperbolic limit cycle. To do so, we are
going to show that the value of the integral

∫ T

0 div(γ (t)) dt is different from zero. Since we do
not know γ (t) nor the period T , we use the parameterization of the oval γ given in (6). In order
to get the correct sign of the integral

∫ T

0 div(γ (t)) dt , we need to know the sense of the flow
over γ . We take the point of coordinates (xd,0), which belongs to γ , and we have that the vector
field defined by system (2) on that point is (0,p′(xd)/2) because p(xd) = 0. Since p(xd) = 0,
p′(xd) �= 0 and p(x) > 0 in the interval (xe, xd), we deduce that p′(xd) < 0. Hence, the sense of
the flow over γ is clockwise. We can write the following equality, using the parameterization (6):

T∫
0

div
(
γ (t)

)
dt =

xd∫
xe

div(x(τ ), y+(τ ))

y+(τ )
dτ +

xe∫
xd

div(x(τ ), y−(τ ))

y−(τ )
dτ

=
xd∫ (

div(x(τ ), y+(τ ))

y+(τ )
− div(x(τ ), y−(τ ))

y−(τ )

)
dτ.
xe



744 J. Giné, M. Grau / J. Math. Anal. Appl. 324 (2006) 739–745
We note that the divergence of system (2) is div(x, y) = 3q(x)p′(x)/2 + p(x)q ′(x), and substi-
tuting this expression in the former equality, we get

T∫
0

div
(
γ (t)

)
dt =

xd∫
xe

−3q(τ)p′(τ ) − 2p(τ)q ′(τ )

(p(τ)q(τ )2 − 1)
√

p(τ)
dτ.

This integral is well defined because we are assuming that (p(τ)q(τ )2 −1)p(τ) is different from
zero for τ ∈ (xe, xd). However, we are not able to distinguish if its value is positive, negative or
zero. By using the same reasonings, we can write the following equality:

T∫
0

k
(
γ (t)

)
dt =

xd∫
xe

−2q(τ)p′(τ )

(p(τ)q(τ )2 − 1)
√

p(τ)
dτ.

Using Theorem 3, we have that, for any value of w ∈ R:

T∫
0

div
(
γ (t)

)
dt =

T∫
0

div
(
γ (t)

)
dt + w

( T∫
0

div
(
γ (t)

)
dt −

T∫
0

k
(
γ (t)

)
dt

)

=
xd∫

xe

−(w + 3)q(τ )p′(τ ) − 2(1 + w)p(τ)q ′(τ )

(p(τ)q(τ )2 − 1)
√

p(τ)
dτ.

Taking w = −3, we get

T∫
0

div
(
γ (t)

)
dt =

xd∫
xe

4p(τ)q ′(τ )

(p(τ)q(τ )2 − 1)
√

p(τ)
dτ. (7)

The hypotheses of Theorem 1 on the sign of the polynomials p(x) and q(x) in the interval
x ∈ (xe, xd) are p(x) > 0, p(x)q(x)2 �= 1 and q ′(x) �= 0. Therefore the integrand of the right-
hand side of (7) is strictly positive or negative in all the interval τ ∈ (xe, xd). We deduce that the
value of the integral cannot be zero and, hence, the periodic orbit γ is a hyperbolic limit cycle as
we wanted to show.

We would also like to characterize if this limit cycle is stable or unstable, so we are going to
study the sign of the integrand in the right-hand side of (7). Since p(x)q(x)2 �= 1 for x ∈ (xe, xd)

and p(xd)q(xd)2 − 1 = −1 (because p(xd) = 0), we deduce that p(x)q(x)2 − 1 < 0 for x ∈
(xe, xd). Therefore, we have that the integrand in the right-hand side of (7) is strictly positive if
q ′(τ ) < 0 for all τ ∈ (xe, xd) and strictly negative if q ′(τ ) > 0 for all τ ∈ (xe, xd). We can state
that the hyperbolic limit cycle γ is stable if q ′(0) > 0 and unstable if q ′(0) < 0. �

We also note that in the work [1], the expression of an example of a more general limit cycle
for a family of planar polynomial differential systems is pretended to be given. In fact, we are
going to show that in the case that the oval of this example is a limit cycle, we are in the same
family of systems as written in (2), that is, the one described in Theorem 1.

In [1] the following planar polynomial differential system is given as an example of a more
general family of systems with an explicit limit cycle.



J. Giné, M. Grau / J. Math. Anal. Appl. 324 (2006) 739–745 745
ẋ = y,

ẏ = {
p′(x)

[
(m + r)h(x)p(x)r−1 + (m + 1)q(x)

] + h′(x)p(x)r + p(x)q ′(x)
}
y

− mp(x)p′(x)
([

h(x)p(x)r−1 + q(x)
]2 − p(x)2m−2), (8)

where p(x) is an even polynomial, q(x) and h(x) are odd polynomials, m = n + 1/2, n is an
integer number with n � 0 and r is an integer number with r � 2. Moreover, it is assumed
that p(0) > 0 and there exists a value X > 0 such that p(X) = 0, p(x) < 0 for all x > X and
q(0) = 0.

Some straightforward computations show that system (8) exhibits the invariant algebraic
curve f (x, y) = 0 with f (x, y) := (y − h(x)p(x)r − q(x)p(x))2 − p(x)2n+1 and with cofactor
k(x, y) := (2n+1)p′(x)[h(x)p(x)r−1 +q(x)]. We have that f (x, y) = 0 has an oval in the band
−X � x � X which can be parameterized by:

x(τ) = τ, y(τ ) = h(τ)p(τ)r + p(τ)q(τ ) ± p(τ)n
√

p(τ).

In order to show that this oval is a periodic orbit of system (8), we only need to show that it
does not contain any singular point of the system. The singular points of system (8) in the band
|x| � X are of the form (a,0) where a is a root of the polynomial p(x)p′(x)([h(x)p(x)r−1 +
q(x)]2 − p(x)2n−1), because m = n + 1/2. We notice that, unless n = 0, the points with coor-
dinates (−X,0) and (X,0) are singular points of the system which are contained in the oval of
f (x, y) = 0. Therefore, if n > 0, we have that the oval of f (x, y) = 0 cannot be a limit cycle. If
n = 0, we can consider the polynomial q̃(x) := q(x)+h(x)p(x)r−1 and we have that system (8)
coincides with system (2) with polynomials p(x) and q̃(x). Therefore, this is not an example of
a more general limit cycle.

References

[1] M.A. Abdelkader, Relaxation oscillators with exact limit cycles, J. Math. Anal. Appl. 218 (1998) 308–312.
[2] H. Giacomini, M. Grau, On the stability of limit cycles for planar differential systems, J. Differential Equations 213

(2005) 368–388.
[3] K. Odani, The limit cycle of the van der Pol equation is not algebraic, J. Differential Equations 115 (1995) 146–152.
[4] L. Perko, Differential Equations and Dynamical Systems, third ed., Texts Appl. Math., vol. 7, Springer, New York,

2001.


