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ABSTRACT: Ongoing efforts to reduce the perturbative uncertainty in the B — X v decay
rate have resulted in a theory estimate to NNLO in QCD. However, a few contributions
from multi-parton final states which are formally NLO are still unknown. These are para-
metrically small and included in the estimated error from higher order corrections, but must
be computed if one is to claim complete knowledge of the B — X v rate to NLO. A major
part of these unknown pieces are four-body contributions corresponding to the partonic
process b — sgqy. We compute these NLO four-body contributions to B — X7, and con-
firm the corresponding tree-level leading-order results. While the NLO contributions arise
from tree-level and one-loop Feynman diagrams, the four-body phase-space integrations
make the computation non-trivial. The decay rate contains collinear logarithms arising
from the mass regularization of collinear divergences. We perform an exhaustive numer-
ical analysis, and find that these contributions are positive and amount to no more than
~ 1% of the total rate in the Standard Model, thus confirming previous estimates of the

perturbative uncertainty.
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1 Introduction

The inclusive radiative B meson decay B — X,v is the paradigm for precision tests of

the Standard Model (SM) in quark flavor physics. Its branching ratio is measured with a

precision of ~ 7% [1-8],!

B(B = Xo) g1 6qev = (343 £0.22) - 1074

(1.1)

To match this experimental precision, a theory calculation to next-to-next-to-leading

order (NNLO) accuracy is necessary. This program has been carried out during the last

!The semi-inclusive measurement in reference [2] has recently been superseded by a new, more precise

one — see refs. [9, 10]. However, this new measurement is not yet taken into account in the HFAG average
of eq. (1.1).



two decades and it is almost — but not quite — finished. The current theory estimate results
in the following value [11]:

B(B = X% s16Gev = (3.15+£0.23) - 107, (1.2)

where the total 7% uncertainty is due to non-perturbative (5%), parametric (3%), higher
orders (3%) and mc-interpolation ambiguity (3%) [11].

The calculation can be divided into: 1. Matching conditions [12-20], 2. Anomalous di-
mensions [21-30], and 3. Matrix elements [31-50]. Matching conditions and anomalous di-
mensions are complete up to NNLO since a long time. Missing pieces include m.-dependent
matrix elements at NNLO [43, 51], as well as next-to-leading-order (NLO) matrix elements
proportional to penguin or CKM-suppressed current-current operators. The latter are for-
mally NLO but are suppressed by very small Wilson coefficients, and should indeed be
rather small, fitting within the estimated ~ 3% uncertainty from higher orders [11, 52].
However, only a full calculation can provide precise knowledge of their true effect, and
we intend to do that here. This work constitutes part of an ongoing effort to reduce the
perturbative uncertainty down to a negligible level.

The B — X, rate is given by the inclusive partonic rate of the b quark, up to non-
perturbative effects that, for a photon energy cut Fy = 1.6 GeV, are estimated at the level
of ~ 5% [53],

L(B = Xe7)E,>8, = Db — XP"") g s g, + O(1/my) (1.3)

where b — X7 arton’y denotes the partonic decay of the b quark into any number of particles
with an overall strangeness S=—1, plus a hard photon with E, > Ejy, and excluding charm:

D(b— XP™905) = D(b = 57) + D(b = sg7) + (b = sqgy) +---, (1.4

with ¢ = u,d, s. Each individual rate is an interference of different amplitudes, computed
as matrix elements of local operators in the effective Lagrangian:

2 8
4G
Lot = Loppraen + \/f ViVis | D (CEPE +CEPE) + 3 CiPi| + hec. (1.5)
i=1 i=3
where the operators P; are defined as [24]:
Pf = (527 Tqr)(qLy"T"br) , Pf = (507uq2)(qLy"0L) ,
= (SLbr) 2o a) 5.7 T°br) X- (" Tq)

) ) (1.6)
SV YpbL) 2o (@Y VP a) L TL) S (@Y 1T ) |

= (
= (s
6/167[' )mb(sLa“ bR)F;W7 Pg = ( /167T2)mb(§LO'“VTabR)GZV .

With this notation, Cf, contain CKM phases: Cf, = —\;C12, with Ay = ViV /ViiVi
and (' 2 defined in the usual way, e.g. ref. [24]. We will also use the notation Cy,, = C{* etc.
The other Wilson coefficients are simply C3 g = C3 g as in ref. [24].



For more than two final state particles, the rate involves integration over phase space;
the photon spectrum opens up, and the rate depends on the photon-energy cut. The
perturbative contribution can be written, in the notation of ref. [40], as:

D(b— XD g gy =To Y CM ()" C5T (1) Gij (1, ) (1.7)
2%
summed over ¢, ] = lu,2u,3,...,6,1c,2¢, 7,8, and with the normalization

_ Gimpae| ViV

I
0 3274

(1.8)

The “effective” Wilson coefficients are CTng,s,...,G = C14,2¢3,..6, C&" = Cr — 3C3 — %C4 -
%Cg — %C@ and Cgff =Cs+C3 — %C4 + 20C5 — %C(;. Throughout the paper we use the
NDR-MS scheme with fully anti-commuting ~s.

The objects éij arise from the interference of operators P; and P; in the squared matrix
elements, integrated over phase space. They depend on the photon energy cut through the
variable 0 = 1 — 2Ey/my. In the notation of ref. [43], where normalization to the inclusive
semileptonic b— u rate is used, Kj; :éij/Gu, with G, =1+CFr (3 — 12() $+0(a?) [54].

In this paper we focus on the four-body contributions to I'(b — XP**") B>y, COI-
responding to I'(b — sgqy):

T(b— sGq7) 5, >80 = To > C§™ ()" C (1) Gij (10, ) , (1.9)

i?j

where we define G; as the b — sgqy contribution to ézy In addition, we expand Gj; as:

as(p
Gi1n.0) = G00) + G0 1,5) 1 0(a?) (1.10)

There is a hierarchy in the size of the Wilson coefficients of the operators in eq. (1.6),
which can be divided into two classes:

A={P{,P;,P;,Ps}; B={P/ Py P3Py, Ps5 Fs} . (1.11)

Operators in class A have large Wilson coefficients, whereas class-B operators have either
very small Wilson coefficients or are CKM-suppressed. Among the four-body leading and
next-to leading contributions we distinguish four groups:

o Tree-level (B, B) interference (figure 1.a). These are the leading-order (LO) contri-
butions and provide the complete matrix G(©) (6). This matrix has been computed in
ref. [50].

o Tree-level (A, B) interference (figures 1.b and 1.c). These are NLO and provide the
matrix elements G%-) and Gg-), with j = 1u,2u, 3, ..., 6.

e One-loop (A, B) interference (figure 1.d). These are NLO and provide the matrix
elements GS), with ¢ = 1¢,2c and j = 1u,2u, 3, ..., 6.
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Figure 1. Sample cut-diagrams contributing to LO and NLO four-body matrix elements. In our
calculation we include all contributions but those from panel (f). See the text for details.

e One-loop (B, B) interference (figures 1.e and 1.f). The ones in panel (e) can be

obtained from the ones in panel (d) as discussed in section 2.1, and provide the
(1)
tj
particle cuts since the one-loop four-body diagrams must be complemented with the

matrix elements G.’, with i, j = lu,2u,3,...,6. The ones in panel (f) include five-
five-body gluon-bremsstrahlung correction b — sgqy + g. We therefore leave the
contributions from panel (f) aside from the present four-body calculation.

We note that NLO (A, B) interference terms are presumably as large as the (B, B)
interference at the LO since Ciy2u,3,..6 ~ as/m Cic2c7,8. For the same reason, the partly
neglected (B, B) interference terms at the NLO are expected to be much smaller than the
(A, B) interferences that we calculate in a complete manner. As a final comment, we note
that four-body NNLO contributions of the type b — sggvy are part of the calculation in
ref. [51], and do not interfere with our results.

The structure of the paper is the following. In section 2 we discuss the details of our
calculation and the structure of the different contributions, including the set of diagrams
needed, the UV renormalization, and the treatment of collinear divergences. In section 3
we collect the final results. In section 4 we perform a numerical study of all the evaluated
interferences. Section 5 contains our conclusions. In appendix A we collect some interme-
diate results of the calculation, where analytic cancellation of UV and collinear divergences
can be explicitly checked.



2 Details of the calculation
The NLO calculation is performed in 4 steps:

1. Evaluation of the cut-diagrams shown in figures 2, 3, 4. We use the Cutkosky rules
for cut (on-shell) propagators, accounting for spin and color sums for all external
particles. The result of each diagram is a contribution to the differential decay rate
K(sij), a scalar function of the momentum invariants s;;, 4,5 = 1,...,4, with i # j
(see sections 2.4 and 2.3.2).

2. Integration over the four-particle phase-space. This step is described in section 2.4.

3. Renormalization: this requires the evaluation of the tree-level diagrams with coun-
terterms shown in figure 5, and the corresponding phase-space integration. As a
bonus, this step allows one to check the LO result for Gg-)) of ref. [50]. This step is
described in section 2.5.

4. Collinear logarithms: having regularized collinear divergences in dimensional regular-
ization, we use the method of splitting functions [50, 55-58] to transform 1/eq poles
into collinear logarithms of the form log(mg/ms). This requires the computation of
the corresponding b — sgq corrections with subsequent photon emission ¢ — ¢'~
(with ¢ = ¢, s), by evaluation of the diagrams shown in figure 6, the convolution
with the splitting function, and the three-particle phase-space integration. This step
is described in section 2.6.

We note that every diagram has to be computed inserting all the operators P1y.24.3,...6
to the right of the cut, and Py 24,1¢,2¢,3,....8 to the left (see e.g. figure 1), leading to all the
(1)

different interference terms in the matrix Gi; . In section 2.1 we argue that most of the
elements of this matrix can be obtained from a reduced set by the use of different operator
relations and Fierz identities. In addition, this spells out transparently the dependence of
the full result on the Wilson coefficients before any calculation is performed. We will see
that — with one exception discussed at the end of section 2.1.3 — only diagrams with
Pr g 1. to the left of the cut and Py to the right must be considered. This simplifies the
calculation considerably.

Finally, for each diagram in figures 2—6, there is the corresponding mirror image. These
“mirror” contributions are just obtained by complex conjugation, and ensure that the rate
is real, i.e. GZ(»;) is hermitian. We disregard these mirror contributions in the calculation,

but at the end we substitute ngl-) — GS) + Gﬁ) "
2.1 Operator identities

2.1.1 Color

Diagrams with insertion of the color octet operators P,¢ are related to the ones with
insertion of color singlet operators P35 by a simple color factor, which can be obtained just



from the color structure of the gluon penguin:

(“straight”) tr(T*) =0 color singlet
—

tr(T*T) T = %T“ color octet

(“crossed”) N e color singlet 22)
TPToTb = —Q—}\QT“ color octet
This leads to the rule that P35 can always be replaced by:
Pss — 0 (straight insertion), (2.3)

P35 — —6Pyg (crossed insertion) .

For the same reason, one can always put Py — —6P], meaning that C{ , always come in
the combination (Cf — 6C3).
2.1.2 Insertions to the right of the cut
We restrict ourselves here to the insertion of operators to the right of the cut. Using the
4D identity 'yl‘fy”'y)‘ = g‘“’fyA + g’”"y“ — g“)‘fy” + ie‘“”\a'ya% we find:

Ps = 10P; — 6Py + O(e) (2.5)

where Py = 3 (BT )(qvuv5T*q). We now consider the following “crossed” insertion

of Py into a massless fermion loop with an arbitrary number of vector currents:

even # of v’s

Py
There is always an even number of gamma matrices to the left of +5, which can be moved
besides the projector Pr. After that, the relationship Prys = — P, provides the given
negative sign.

The “straight” insertion of Py does not vanish in general but does not contribute in
our case: in the situation where one vector current is attached to the loop (figure 2), the
result is proportional to Tr[y*y”7?y*vs] ~ €*P*| but there are not enough independent
momenta to be contracted with the antisymmetric tensor, so this contribution vanishes.
This is true also in the case where the photon couples twice to the quark loop (figure 4).
In the case of two current insertions (figure 3) the result is non-zero, but summing over
u,d, s quarks in the loop the result is proportional to @, + Q4 + @s = 0.



Summing up, in the diagrams with a Ps insertion one can always substitute:

Ps — 10Py + O(e) (straight insertion),
Ps — 16Py + O(e) (crossed insertion) . (2.7)

The replacement rules (2.7) combined with egs. (2.3) and (2.4) imply that the full contri-
bution from P34 56 can be obtained from the terms proportional to Cj:

Result(Ps 4 5 6,straight) = (C§ + 10Cg) x Result(Py,straight), (2.8)

Result(Ps 4 5 6,crossed) = (—6C3 + C; — 96 C5 + 16 C5) x Result(Py,crossed). (2.9)

Since this is based on a 4D identity, it is in principle only true up to evanescent terms.
Below we show that up to the needed order in € these terms do not contribute. We have
also checked this by direct computation.

The (crossed) insertion of the operators Py, can also be obtained from Py by an
argument almost identical to that of eq. (2.6). In this case one must pay attention to
the case where the photon couples to the loop, where the P, and Pj'y contributions are
proportional to different charge factors.

2.1.3 Insertions to the left of the cut

We have shown that we only need to compute diagrams with an insertion of Py to the
right of the cut. To the left of the cut we must insert P;g as well as P3 456 and Pff’;. As
before, P» 35 contributions are related to P; 46 by a simple color factor. In addition, the
contribution from P}* is obtained from the Py insertion with the replacement m, — 0. We
now show that insertions of P4 ¢ are also known from the insertions of P;, Ps and Pf.

First we consider the case of the photon penguin, where the gluon does not couple to
the fermion loop to the left of the cut. By direct inspection be find that:

0’3" |

| = O Ol VPt X P, (210)

b { i

. q2:0

where CST = C; — C3/3 — 4Cy/3 — 20C5/3 — 80Cg/9 is the usual “effective” Wilson coeffi-
cient [25], which includes the contributions from b-quark loops. The O(e) corrections are
irrelevant to our calculation as the contributions from P; are finite. The term X ¢g¢* denotes
the contribution from four-quark operators proportional to the structure [¢g* — ¢*>y*]. This
last term does not contribute in our case. To see this, consider the insertion of P; 2 into
the full diagram:

~ TR (g — @) P =0 (2.11)




Here the gluon is attached to either ‘x’. Since we cut the photon propagator, the photon
is on-shell but there is no ¢? denominator, and therefore the ¢ term cancels. The term dqu
also cancels due to the Ward identity ¢,I'* = 0. Note that non-zero contributions to the
Ward identity vanish since they either involve a massless fermion tadpole, or if the gluon
couples to the loop then it does not depend on the incoming/outgoing quark momenta.
We have also checked this result by explicit computation, and indeed the different sets of
diagrams satisfying the Ward identity vanish identically.

To summarize: all contributions from photon penguins to the left of the cut are ob-
tained from the diagrams with insertion of P; by the replacement C7; — C?H.

Next, we consider the case of the gluon penguin, where the photon does not couple to
the fermion loop to the left of the cut. We find:

[, a
q 1%
=3 105

b s = Ot mT P+ XT e — )]
0 (2.12)

where C§T = Cs + C3 — C4/6 + 20C5 — 10Cq/3, as usual (e.g. ref. [37]). As before, O(e)
corrections to the chromomagnetic contribution are irrelevant for our calculation because
contributions from Pg are UV-finite (collinear divergences are inconsequential here). In the
last term, the quantity X is given by:

X = f% (C5 — 6C5) g(me) + (CF — 6C%) g(0) + (Ca — 6C3)[g(0) + g(ms)]

+(4C6 — 24C5)(4 — € — €*) [9(0) + g(my)]
~ 6Cy 4 (60 — 36¢)Cs

Ty 6(0) + glme) + ()| (213)
where ny = 3 is the number of light flavors and
2
g(m) = 3 (1= u*e™m = T(e) 2F (e, 2:5/2;¢" /4m®) (2.14)

is the loop integral to all orders in €. Therefore, all contributions from gluon penguins to
the left of the cut are known from the contribution of Ps and Pf.
Now we consider the case in which both the photon and the gluon couple to the loop:

— C + u + q
L
Py, P, Ps
+ 5 @ b (2.15)
Ps456 Ps 456



When inserted into the full diagrams, these contributions are both UV-finite and collinear
safe,? and we can use 4D identities. The first term in the right-hand side of eq. (2.15) can
be written as Q,(C{ — 6CS)h*”(m.), which defines the function h*”(m). The second term
can be obtained from the first term by the replacement m, — 0: Q. (C{* —6C5)h*(0). The
third term (¢ = u,d, s, c,b) contains only the insertion of Py, because P35 insertions are
zero due to color, while the insertion of Py vanishes due to Furry’s theorem. For Py we can
make use of the Fierz identity:3
4

1 1 1
Pl=——P!+-Pl+ Pl — —

5= 5 5715 36P6q+0(e), (2.16)

which implies that we can trade the straight insertion of P{ with the crossed insertion of
—36P]. Note also that the contributions from ¢ = u,d, s add up to zero in the massless
limit due to electric charge: Q,+ Qg+ Qs = 0. This means that the third term in eq. (2.15)
is given by —36 Cs(Quh*" (m.) + Qqh* (mp)).

The fourth term can be obtained from the first one using the identities in egs. (2.5)
and (2.6), leading to: Qg(—6C3 + C4 — 96C5 + 16C¢)h*”(0). The fifth term cannot be
completely determined from the insertion of P; due to the chirality structure. Using the
Fierz identity (2.5) we can trade P — 4P} + 12P}. The second piece, together with the
corresponding contribution from P, results in Qq(—72Cs + 12Cg)h*(my). The rest will
provide a term Qq(—6Cs + Cy — 24C5 + 4C6)7L“”(mb), where hH #+ h*v. Altogether, the
right-hand side of eq. (2.15) can be written as:

Qu(C§ — 6CS)A™ (M) + Qu(Cy — 6CY)RH (0) — 36 CeQuh™ (me)
—Qa(72C5 + 24 Cs) " (myp) + Qa(—6Cs + C4 — 96 C5 + 16 Cs) h*" (0)
+Qa(—6C3 + Cy — 24C5 + 4C)h™ (my) (2.17)

Therefore only diagrams with insertions of the operators Prg and Pf to the left of the
cut need to be calculated, plus the extra contribution from h*¥(m;). All these relationships
shape the structure of the full results displayed below in the following sections.

2.2 Set of diagrams

There are three types of diagrams:

Type (i). The photon does not couple to the cut fermion loop (figure 2): in this case
crossed and straight diagrams contribute. In addition, straight diagrams contain a factor
ng. All in all, the contribution from these diagrams is:

Dk = Qu [W (Ci+10CE)(Pi) + (C*— 6CY*— 6Cy +C;—96C3+16 cg)<P4>(jﬂ . (2.18)
where (P4>f:]k) and (Py) (X J;C denote the contributions to (P, Py) interference terms from

straight and crossed insertions of the operator P; to the right of the cut, to diagrams of
type (J), respectively.

2We consider always the sum of the two diagrams obtained by swapping the gluon and photon insertions.
3Here we use the notation Py = (517,br)(a@v"u), etc.



Figure 2. Diagrams of type (i). Crosses denote alternative insertions of the photon vertex (always
one vertex at each side of the cut). Circle-cross denotes the alternative insertion of the gluon vertex.

Figure 3. Diagrams of type (ii). Crosses denote alternative insertions of the photon vertex (always
one vertex at each side of the cut). Circle-cross denotes the alternative insertion of the gluon vertex.

Type (ii). The photon couples to the cut fermion loop once (figure 3): in this case the
straight diagrams are proportional to @, + Q4 + Qs = 0 and need not be considered. The
Py, contributions are proportional to Q. Therefore the total contribution from these

diagrams is:
Dby = |Qu (=603 +Ci = 96C5 +16C5) + Qu (C1*— 65| (Pa) [ - (2.19)
Type (iii). The photon couples to the cut fermion loop twice (figure 4): in this case

crossed diagrams are proportional to Q% = Q?Z (or @2 in the case of Pffz) and straight
diagrams to Q2 + Q% + Q2 = Q2 + 2Q3. We have:

Dl = [Q2 +2Q3) (Cr +10C5) (Pa) ik
+[@3 (- 605+ 963 +16¢7) + @3 (€~ 6¢8") [P - (220)

We assume that the objects (P4>f:]l§ are phase-space-integrated matrix elements containing

no prefactors or couplings, such that:

Soogage)= Y [D(CJ)+ 3 ij)} (2.21)

=3,...,8,14,2q J=i,ii,iii k=3,...,8,1q,2¢

~10 -



in the notation of eq. (1.9). In eq. (2.21), D(C}) denotes the UV counterterms, and both

D( J),D( ) include the relevant collinear counterterms. Both are discussed below in sec-
tions 2.5 and 2.6. The structure of the objects <P4>E J)X)’k can be deduced from the discus-
sion in section 2.1.3. In the case of P7g we have:

(Py) () = CSTF (5 (6) for (I,.) = (s,4), (x,), (x,i),

(PN = CTQuFLRG)  or (1,0) = (5,1), (%), (%, i),

(Pl = cs 7 18(6) for  I=sx and J=iii. (222)

For Pl(g) we have:

k;w{j; = (Cf — 6C5) [QuF ;) (2e:6) + QuF{ ;) (2, 0)]
o for (I, J) = (s,4), (x, ), (x, i) ,

ST (PR = (Cf— 6C5) FL(206)  for T=s,x and J=iii,  (223)
k=12
u u 1,1 I 1
S (P = (CF = 6CY) [QuF (5 (0,6) + QuF(5(0,0)]
k=1u,2u

for (I,J) = (s,1),(x,4),(x,ii),

Y (P = (€ —6C5) F(5(0,6)  for I=s,x and J=iii, (2.24)
k=1u,2u

where z. = m? /mg. The contributions with penguin operators to the left of the cut are
given by:

Y POy = (Ca—6C3) Qu [F{3)(0,0) + F(5(1,8) + F3)(0,6)]
k=3...6

+4(Co — 6C5) Qu [(4— ) (F{)(0,6) + F{})(1,6)) + 4 F3)(0,9)]

_604 + (60 — 36€) Cq
1—c¢

—36Co Qu F(j) (2, 6) — 24(3C5 + C5)Qu Fj(1,9)

~1,1 ~1,1
Qd [W ‘7.—(])(075) +]:(J)(Z(276) f(J)(lﬂé)]

+(=6C3 +C4 —24C5 + 4Cs) Qd]:14( 9)

for (I,J) = (s,i),(x,1),(x,ii),
(Pa)(f, = [(Ca = 6Ca) +4(4 — €)(Cs — 6C5)] [F{,(0,6) + F{)(1,6)]

6Cy + (60 — 36¢) Cq 11 71 11
- T [nef(J)(075)+f(J)(ZCa5) ‘F(J)(l 6)]

for I=s,x and J=1iii. (2.25)

- 11 -



Figure 4. Diagrams of type (iii). Crosses denote alternative insertions of the photon vertex (always
one vertex at each side of the cut).

The functions ﬁ{j; = }"(IJI§ + fg(;ﬁ( J) include the collinear regulators discussed in sec-

tion 2.6. The functions .7?({]; and .7?(1(;)L are related to diagrams where the photon couples
to the left-hand quark loop, corresponding respectively to the terms with h#*” and R in

eq. (2.17). Explicit results for all these functions are collected in appendix A.

2.3 Other details
2.3.1 Irrelevance of evanescent terms to the right of the cut

In the case of (Pr, P;) interference, there are no UV or collinear divergences, and therefore
evanescent structures are irrelevant for the O(€®) result.

In the case of (Pg, P;) interference, collinear divergences appear which combined with
evanescent terms give finite contributions in the dimensionally regularized result. However
these finite terms cancel when we express the dimensional regulators in terms of logarithms
of masses, via the splitting-function approach (see section 2.6):

+O(e) (2.26)

dr ~ dx dzx + dzx

dr _dle  dlai dUeY  dUe\ _ dlmass reg.
dx dx

since the 1/€ terms cancel in both 4D and evanescent terms separately.

In the case of (P2, P;) interference, UV and collinear divergences are nested inside
dimensionally regularized expressions. However all UV divergences cancel against coun-
terterm diagrams, including finite terms from evanescent operators:

1
=€ < +UV ﬁnite) (2.27)

€coll

P o eOFEV Ci2 eOFV

All “finite” terms from collinear divergences now disappear when going to mass regular-
ization, as in the case with Pk.
2.3.2 Cancellation of i, . k)'ky k5] terms

Traces with 5 will introduce terms proportional to ie,“,pak’f k5 k:g k7 in the differential decay
rate. Here we show that these terms always cancel if we perform a full angular integration
over phase-space.
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Consider fixing all double invariants k; - k. Then all k; are fixed only up to an Euler
rotation and an orientation. To see this go to the rest frame of the b-quark. Momentum
conservation fixes all the energies (since k; - pp are fixed). This implies that l;:; . Ej are also
fixed. We can rotate the frame to put k1 along the positive z axis, and k2 in the (y, z) plane.
Then ks is fixed only up to a two-fold ambiguity (an orientation), given by the sign of its
x component. Once this sign is chosen k4 is also fixed. This proves that iew,pgsz k5 kzg kJ is
fixed by k; - k; up to a sign, which is given by the orientation of (El, ko, Eg)

Now consider phase-space integration. Terms in the integrand of the form F'(k; - k;)
do not depend on the Euler rotation nor the orientation, and the angular integral over
d3d2dSY; can always be performed trivially, giving a factor 1672. Terms of the form
F(k; ~kj)ew,pgk’f k5 kLK, however, change sign under change of orientation, and vanish upon
integration over df);. Obviously parity-odd terms cancel out in parity-even observables.
Therefore we drop these terms from the beginning in the calculation of the integrated
decay rate.

2.4 Phase-space integration

The phase-space measure for a (1 — 4) decay of a particle of mass M into four massless
particles with momenta kj 234 is given in terms of kinematic invariants by [59]:

dPSy = [i5¢ 25~ 5dpd=3d3d=8 (_ A4)%5(1—5’12—813—814—823—824—334)

X @(—A4) de—l de_Q de_3 d512 d813 d514 d823 d824 d834 s (228)
where s;; = 2k; - k‘j/M2 (0 <535 <1), and Ay is the Gram determinant:
W2 2 2 2 2 2
+ A4 = S19834 + S13S94 + 814523 — 2519534513524 — 2512534514523 — 2513524514523 - (2.29)

The unpolarized decay rate is given by the phase-space integral:

= 5s o / S| M[2aps, (2.30)

where the sum runs over the spins and color of all particles (we assume the parent is a
color triplet). > |M|? depends only on s;;: Y. |M|? = K(s;5), so the angular integrations
can be performed trivially:

/ A1 Ay dQg_3 = (2.31)

DT (T(F)
and the general formula for the decay rate becomes

ji6€ 98-5d 71-3d/2 ) r3d-9
NI (D (0%

) [ldsi]5(0 = So)ks) (-89 T 0(-20) . (232)

This integral might contain soft and/or collinear divergences associated to regions of phase
space where some particles are soft or collinear. These divergences can be regularized in
dimensional regularization by setting d = 4 — 2¢. If we insist on integrating over these
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regions, one must include virtual corrections to cancel the divergences. Otherwise, the
regulator must be traded by a physical cutoff at a later stage.

We now specify to the b — q(k1)q(k2)s(ks)y(ka) case. We consider a cut on the photon
energy E, > Ey = %(1 — ) (in the b quark rest frame), which defines the parameter 4.
This translates into the constraint s14+S24+534 > 1—46, which can be included in the phase-
space integral in the following way. We include a delta function §(1 — z — s14 — S24 — S34)
in the integrand, and we integrate over the new variable z from 0 to §:

/ dz /1[61%‘] 5(1_Z_814_824_834)6(2_512_323_513)K(3ij)(_A4)% O(—Ay) . (2.33)
0 0

The delta functions can be used to integrate over two invariants, e.g. s13 and sa4:

) z Z—S834 Z—812 d—
FE7>E0 = N(d)/(; dz/o d834/0 d814/ d812/d323 IC 31] A4)T5 @(—A4) (2.34)

513,524

where Z = 1 — 2z, and N(d) is given by the prefactor in eq. (2.32), and the substitution rule
X 515,504 cOrresponds to s13 — z — S12 — S23 and Sa4 — Z — S14 — S34. The next integration
can be performed over an invariant that appears only polynomially in C (see e.g. [60]). It
is easy to see that ss3 always satisfies this criterion by checking the uncut propagators in
figures 2, 3, 4 and the loop functions. Upon substitution of si3, s24, the Gram determinant

+

remains quadratic in se3: —Ag = (2 —534)%(a™ — 523)(s23 — a™), where a® are complicated

functions of the rest of the invariants:

(Z — 834)2ai = (Z — 834)[2(2 — 834)(1 — 814) — 812(5 — 814)(5 -+ 834)] + 2\@, (2.35)

—
(=
—

= 812814834(814 + 834 — 2) [Z834 — 2(2’ — 812)] . (2.36)

Thus, —A is positive only if a® are real (happening only if s34 < Z(z — s12)/2 < Z), and
for a= < s93 < a™. In addition, a= > 0. This sets the integration limits for so3 and s34
imposed by the ©-function, which can then be dropped:

é z Z(z—s12)/z pZ—s34 pa™t a5
I'e,>E :N(d)/dZ/dS12/ d834/d814/ dsy3 K(sij)(—A4) 2 - (237)
0 0 0 a~ 513,524

Now it is convenient to perform the following changes of variables:

S12 = ZOW 834 = 2V
2.38
S14 = ZUX so3 = (@™ —a ) )u+a” ( )
where u, v, w, z are integrated independently from 0 to 1, and
(at —a”) = 4z(vwwzz)'/?, (2.39)
a” = z[bwz + VT — Z(Ewwx:i’)_l/Q] . (2.40)
This gives
1) 1 des
I'e>p, = N(d)/dzzzd 3/dudvdwdm (ua) 2 v 3 (et —a )T K
0 0
d—4 ’ d—3 ! =5 d—3 d—4
= N(d)4*~ /dz (z2)™ /dudv dwdz (va) 2z v*°(vwwzz) 2 K. (2.41)
0 0
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In the following we must consider the kernel K(u,v,w,z,z). As mentioned above, K is
polynomial in sg3: K = > fn(v,w,x, z)s5;. Expanding sg3 according to (2.38)—(2.40) will
provide a sum of terms of the form

K=" fomv,wz,z2) u™, (2.42)
m,n
and the integral over the variable u gives a factor 3 ( 5= +m, ) for each term. The next

steps depend on the diagram at hand. Consider the diagrams Wlth Pr 5. In this case,
Fam(v,w,x,2) = v TP wéw® af 792" 2P (1 - 20)7 (1 — 20)" (2.43)

for some a,b,c,... € R. The integral over x gives again a -function: B(d 2 4 f,822 4 g)
Because of the ( —zv)q and (1 —zw)" factors, the next steps will introduce hypergeometrlc
functions. The integral over v gives

d— d—2 3d—6
8 <d—2—|—a, +e> o F1 <—q, + b; —i—a—l—b;Z) , (2.44)

2 2

and the integral over w, gives:

d—2 d—2
5( 5 Te +e>ﬂﬁ(—

The next step is to expand around € — 0 (with d = 4 — 2¢). The expansion of hyperge-

; > . (2.45)

ometric functions is performed automatically by the package HypExp [61]. This will give
finite results in the case of Py, but 1/e poles in the case of P, corresponding to collinear
divergences. The integration over the photon energy z € (0,4) can then be performed, also
analytically, for all terms.

The case of loop diagrams is in principle more complicated, as the function K contains
already a hypergeometric function. For instance, in the case of diagrams (i) with the
photon not attaching to the quark loop, the variable si2 appears in the function g(mg) ~
o Fy (€, 25 5; %) (cf. eq. (2.14)). However, by a suitable choice in the order of integration,
analytic results can be obtained as before. In the case of diagrams such as (iii), the
hypergeometric function depends on the triple invariant sijo4 = s12 + S14 + So4, and the
sequential-integration procedure described above does not seem to work up to finite order
in e. In this case we extract all the 1/¢? and 1/¢ poles analytically and leave the finite
terms differential in one of the variables, which we integrate numerically afterwards. This
is also the case for the diagrams where the photon couples to the charm loop, which are
both UV and collinear finite. In general, for the loop contributions, some finite terms turn
out to be complicated functions of § and z. = m?/mZ. We give these results as polynomial
expansions in § around the physical value § = 0.316. The coefficients of this expansion
are presented as numerical interpolations in the variable z., reproducing the exact results
to enough precision for all practical purposes. We have checked that the interpolated
expressions in the appendix reproduce the exact results with high precision in the full
range z. € (0,1) for values of § near 0.316.
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2.5 Renormalization

Tree-level four-body contributions from four-quark operators arise at LO in o, and have
been computed in ref. [50]. At NLO the corresponding counterterm contributions must be
included, which cancel the UV divergences from the loop diagrams. One must consider the
insertion of the bare operators Pi(o), 1 = 1q,2q,3,...,6, in the tree-level diagrams to the
left of the cut, where:

SooarV= Y cazgp= Y G <5,]+1O‘552U>

1=3,...,6,1¢,2¢ 1=3,...,6,1¢,2¢ 1=3,..., 6,1¢,2q
7=3,...,6,1u,2u 7=3,...,6,1u,2u
1 ag
= E C P+ *47 E CZ 5ZZ]P] (246)
7
1=3,...,6,1u,2u 1=3,...,6,1¢q,2¢q
7=3,...,6,1u,2u

The first term leads to the LO contributions in ref. [50], while the second term contributes
to the NLO result and takes care of the UV divergences. For this we need, a priori, the tree
level results with P3¢ 14,2, including O(e) terms, and the renormalization factors 67;;.

The relevant renormalization factors are simple to compute. Using the relationships
developed in section 2.1, and expressing the result in terms of tree-level matrix elements
of four-quark operators, we find that:

= [Cv—6CY+CS—6C5—12C3 —28Cy — 192C5 — 268 Cq

2.47)
1lag, 0 (
P ree O .
9 € 47r< )"+ 0(€)
This fixes the renormalization factors needed in our calculation:
0Z1a =~ 0Z1c4 = —y5 0231 =35 07 =% (2.48)
029y 4 = % 0Z2cq = % 054 = 64 0Zgq = 2:%8 .

We also see that we need only tree level diagrams with insertion of P to the left of the
cut. All the diagrams needed are shown in figure 5.

For the operator insertions to the right of the cut we can (and must) use the 4D
identities derived in section 2.1, noting that evanescent terms cancel in the renormal-
ization process by virtue of eq. (2.27). This leads to exactly the same structure as
egs. (2.18), (2.19), (2.20) for the counterterm diagrams ng) (i.e. eq. (2.21)), with the

corresponding matrix elements <P4)( N given by:
<P4>{°)‘ [CY —6CY +Cf —6C5 —12C5 — 28C4 — 192C5 — 268 C]
QuF(f(8)  for (I,J) = (s,1), (x,), (x,ii)

F5 ) for I=s,x and J=iii .

(2.49)
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Py Pyg Py

)

Figure 5. Tree-level counterterm diagrams. Crosses denote alternative insertions of the photon
vertex (always one vertex at each side of the cut). These diagrams can be classified in types (i),
(ii), (iii) as done for the loop diagrams.

F

coll

Again, ]:(I)C = ]:(IJ? + ]:coll( )" The functions f( )

can check that all UV divergences cancel, as expected: <P4)€£ +> k(P4>([3]€)

( J) are given in appendix A. One
= UV finite.

2.6 Collinear divergences and splitting functions

The region of phase space in which the photon is collinear to one of the light quarks
gives rise to collinear divergences. These divergences are regulated dimensionally in our
computation. However, these are just artifacts of the massless limit used for light quarks,
and there is a more natural regulator: a physical cut-off given by the light meson masses.
A suitable parametrization of such (near-) collinear effects consists in keeping the light
quarks massive and perform a massive phase-space integration. This is quite complicated
from the practical point of view, taking into account that the massless phase-space integrals
computed here are already rather challenging.

Fortunately, one may resort to the factorization properties of the amplitudes in the
quasi-collinear limit (see e.g. [50]). The idea is that close to the collinear region, the
b — q1G2g3y amplitude may be expressed as a b — ¢1G2g3 amplitude times a splitting
function f;, describing the quasi-collinear emission of a photon from ¢;, summed over
1 =1,2,3. The splitting functions encode the collinear divergences, and can themselves be
regulated by quark masses or in dimensional regularization. Both approaches are rather
simple, since in this limit the four-body phase space factorizes into a convolution of the
three-body phase space of the non-radiative process and the phase space of the radiative
process alone: d®4 = d®3 ® d®. By comparing the splitting functions regulated in these
two different schemes, one can write a formula to switch from one to the other at the level

of the decay rate [50]:
dl'y o dl’c dl shigt

dz  dz dz (2:50)
where
dlgpite (Z — 523)°
dz Zmb 2N, /dPSS K3(5”) {Ql{ (1 — s23)?
1 (1 — 323),u .
——1+42log ——— — 1 . 2.51
X L + 2log o (1~ 2) O(z — s23) + (cyclic) (2.51)

Here K3 = > |M3|? is the spin-summed squared matrix element of the b — q1G2q3 decay
obtained by evaluating the diagrams in figure 6, and dPS}3 is the three-particle phase-space
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Figure 6. Three-particle-cut diagrams needed for the calculation of collinear terms.

measure in d = 4 — 2¢ dimensions [59]:

~de 2—3d_3—2d,__2d—6 d—4
dPSg = u € 2 ™ mb (812813823) 2 (5(1 — 812 — S13 — 823)

X de_lde_g d$12d813d823 . (2.52)

Integrating eq. (2.51) over z € [0,d] provides the terms F.oy contained in the func-
tions F. The contributions from the chromomagnetic operator (figure 6, left) enter
into eq. (2.22). The contributions from four-quark operators (figure 6, center) go into
egs. (2.23), (2.24) and (2.25). The counterterm contributions (figure 6, right), enter into
eq. (2.49). The functions F.on(d) are collected in appendix A.

One can check that adding the collinear contribution removes the 1/¢ terms that survive
the renormalization process, trading them for collinear logarithms of quark-mass ratios.
These collinear logarithms are of the form log(mg/my), with ¢ = u, d, s. The quark masses
are collinear regulators and it is difficult to relate them to physical masses. In our numerical
analysis we will take a common constituent-quark mass m, ~ 100 — 250 MeV for all three
light flavors, and use the notation L, = log(mg/myp) ~ log(my,/my) ~ log(mg/mp) ~
log(ms/my). This should provide a reasonable estimate of the effect of collinear logarithms.

3 Results
We write the four-body contribution to the B — X v rate as:

AT(B = XN E gy =To > C (1) €5 (o) Gij (1, 6) (3.1)
i,J
where I'g is the absolute normalization of the decay rate:

~ Graemp| ViV |

I'g= 3.2
0 3274 (3:2)
The sum runs over %, j = lu, 2u, 3,...,6,1c,2¢,7,8. The Wilson coefficients C3 . g are real,
but Ciy2u,1¢,2c contain CKM phases:
Vi Vb ViV
Ceff :C , eff :_usuc« , Ceff :_CSCC ,
3,...,6 37---76 1U,2’LL ‘/{;‘/tb 172 16,26 ‘/;j;‘/;fb 172
1 4 20 80
CM = C7 — 203 — -0y — 5 C5 — —C
7 7 3 3 3 4 3 5 9 ()
1 10
S = Cy+ C3 — 604 +20C5 — 306, (3.3)
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with C; the Wilson coefficients in the notation of ref. [24]. They are needed here to NLO:
(1) = L) + 2D ) 1 o), (3.4
their numerical values are given below.

The matrix elements G;;j(u,d) depend on the renormalization scale and the photon-
energy cut and can be split into LO and NLO components:

0 s\ 1
Gyl 9) = GD0) + G (5) + 002 (35)
The LO matrix G(9 is real and symmetric and was computed in ref. [50]: we reproduce
and confirm these results (after the 2014 update of that paper). We write (here i,j =
1u,2u,3,...,6):

i 0 5T -1 8Ty 2T,
0 T 3T 5Ty 87, 81
4 1 4 64
i, Iy, T4+ T i 10Ty + 16T 64,
G(0)<5) - 92 i ?1 ; 14 ’ 2 e 164 ’ 20 ’ 332 (3.6)
81, BT, 107 + 1675 G175 13671 + 25675 10Ty
32 64 64 20 32 1024 272 512
—pl g BTy Fhi-gTs Ty -5 Th
where:
236 1 19163 4 1762 1 1095
Ty(8) = = — ~§%1 I | - 2 | —
1(8) 16 25 0g(0) 108 + 9(5 og(d) + 13 35 og(d) + 13
—gélog(é) + I—Z log(1—6) — glog(l — ) log(0)
8 2 10. 10 m 5Lia(6)
0 — 283+ 282+ =6+ —log(1—0)|log [ —2L) — 3.7
+{ o0 T 307+ 50+ o log( )ogmb 3 (3.7)
11816* 17 39503 4 752 1 1878
Th(8) = — —5*log(8) — — 53 1og(8) + — — =6%log(d) + ——
200) = 595" ~ 1080 108(0) — Tz T 570 loal(0) + T — 507 1es(d) + g
1 133 1
— =51 —“og(1 —8) — = log(1 — §)1
26 og(d) + 103 og(1—9) 5 og(1 — §) log(9)
1764 863 262 m Lis(6)
- 4= log(1 —6)|log [ —4 ) — .
—i—{ 1 T + 0 + log( 5)] og (mb> 5 (3.8)
34154 5 8963 1 52 1 356
T5(8) = — —5*log(8) — —— + —683log(8) + — — —62log(d) + —
300) = g~ 390 10809) — [y + g0 108(0) + 75— g0  loel(0) + 7
1 13 1
—Eélog(é) + 8l log(1—0) — 18 log(1 — ¢) log(d)
564 283 6% 5 1 m Lis(9)
T 44+ log(1=08)|log [ L) - = 3.9
+L62 ST 51 7ot glel )} ©8 <mb> 18 (39)

The NLO matrix GV contains perturbative strong phases from on-shell contributions from
light quarks, as well as from charm quarks when the photon-energy cut is low enough. The
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matrix G(M) is the main result of this paper. It has the following structure:
GW (1, 8) = G1(8) Ly L, + Ga(8) Ly + G3(2e, ) Ly + Ga(ze,0), (3.10)

where L, = log(u/my), Ly = log(mg/myp) and z. = m?Z/m?. The explicit form of Gz(;) is
too complicated to be written down here. However, it can be constructed completely from
the expressions in sections 2.2, 2.5 and appendix A: start from eq. (2.21), substitute the
objects Dy from egs. (2.18), (2.19), (2.20), then use egs. (2.22)-(2.25) and (2.49) for the
different matrix eleNments <P4)( J)s anAd use the expressions in the appendix for the functions
F(ays Feo(y and F ), noting that F( 7y = F( )+ Feon(s)- Finally, perform the replacement
G — GM 4 GWT o account for the “mirror” contributions. For convenience, we provide
the full matrices GEJO.) and GS») in the file “Gij.m” attached to the arXiv submission of the
present manuscript. The first is given by the 6 x 6 matrix “GijL0” (i,j = lu,2u,3,...,6)
and the second by the 10 x 10 matrix “GijNLO” (with i, j = lu,2u,3,...,6,1c,2¢,7,8).

4 Numerical analysis

We briefly discuss here the numerical impact of the four-body contributions to the total
B — X, rate. We consider for convenience the following quantity:

T ANB o Xy,
B (0)eff|2 )
Lo [C77|
given by eq. (3.1) and normalized to the leading contribution to the decay rate. The Wilson

(4.1)

coefficients are given by:

C () = €O () 4 A 4 0 a2), (4.2)

(3 471- (2
which are computed following ref. [17]. For the reference matching and renormalization
scales p19 = 160 GeV, pu = pup = 2.5 GeV, we have:*

O — (0.828 Ay, —1.063 Ag, —0.013, —0.125,0.0012, 0.0027, —0.372, —0.172) ,  (4.3)
eVl — (21532 \,,2.10 Ay, 0.097, —0.447, —0.021, —0.013, nn, nn) , (4.4)

for ¢ = 1¢q,2¢q,3,...,8. However, the u-dependence of the Wilson coeflicients is important
and we will analyze it here. In addition, A\, = V;V/ViiVip denote the appropriate CKM
factors, given by [62]:

Ay = —0.0059 4+ 0.018;, A, = —0.97. (4.5)
The quantity AT can be expanded in ag:
(0)* ~(0)
I P ()

AT = AT0 + ATNpo = Z e 2 G (4.6)
i =tw2u G|
(1) »(0) (0)* ~(1) (0)* ~(0)
L as(n) 3 GG +G G o, > GG
A o (0)eff 2 ij o2 g |-
1,5 = lu,2u ‘ 7 ‘ i,j=all ‘ 7 ‘

IR}

4The NLO Wilson Coefficients C?fg are not needed for our NLO results as Pr,g do not contribute at LO.
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Figure 7. Renormalization-scale dependence of AT in percent units. Here we have taken pg =
160 GeV, z, = 0.07, § = 0.316 and L, = —1log50 (m, ~ 100 MeV) [Left panel], or L, = —log20
(mg ~ 250 MeV) [Right panel].

We begin with a discussion of the p-dependence of our results. To leading order, the u-
dependence is given purely by the LL (leading-log) running in the effective theory. Note
that to this order, only CﬁQ and C3456 contribute. At NLO, three new contributions
arise: (i) the contribution from NLO Wilson coefficients, (ii) NLO matrix elements and
(iii) contributions from Cf ,,C7s, absent at LO. The u-dependence should cancel up to a
residual scale-dependence from higher orders, and up to the neglected contributions shown
in figure 1.f (note that the Z factors in eq. (2.48) are not the full renormalization constants).

In figure 7 we show the p-dependence of the LO result, and LO4+NLO excluding
Cf 2:Cr,8, LO+NLO excluding Cf 5 and LO+ full NLO. We also gauge the impact of collinear
logarithms, showing the result for two different choices of L,, corresponding to m, = my/50
(mg ~ 100 MeV) and mg = my/20 (mg ~ 250 MeV). Collinear logarithms are, as expected,
numerically important.

Contributions from Pf, and P7g arise only at NLO and therefore introduce at this
order a novel u-dependence. Although, as we will see, certain cancellations make the
NLO contribution small, there is a considerable reduction in the renormalization-scale
dependence of the full LO4+NLO result as compared to the LO contribution alone. This is
due to the fact that the main p-dependence of the leading order contribution arises from
the mixing of Py, into penguin operators, which is compensated at NLO by the matrix
elements of Py,. This can be seen in figure 7: the reduction in the p-dependence is achieved
only after including Cf 5, contributions.

In the left plot of figure 7 one can see that for the value p >~ 4 GeV strong cancellations
make the NLO contribution very small. More concretely, for the inputs pg = 160 GeV,
p=4GeV, z. = 0.07, § = 0.316 and my, = my;/50, we have:

AT (%) = (0.300)c0 + (0.044)x10 wes — (0-087)x1.0 penguins — (0-169) ¢ + (0.219)c¢

(0300)LO + (0044)NLO WCs — (0036)NLO MEs

(0.300).0 — (0.007) 510 (4.7)

- 21 —
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Figure 8. AT in percent units. Left: dependence on the photon energy cut Ey. Right: dependence
on the charm mass. We have fixed po = 160 GeV, u = 2.5 GeV and L, = —log 50 (m, ~ 100 MeV).
The vertical dashed line in the left panel shows the benchmark point § = 0.316, while the vertical
band in the right panel corresponds to the physical value z. = 0.07 = 0.02.

where the term labeled ‘NLO WCs’ corresponds to the second term in eq. (4.6). This
cancellation is very efficient for u ~ 3.8 GeV, but depends strongly on m, and z.. However,
it is a general feature of our results that the contribution from Cf , is of the same order as
the rest of the NLO contribution, but with opposite sign, leading always to some level of
cancellation. Note also that the (NLO) C{ 5 contribution is also as large as the LO result.

In the following we fix the renormalization scale to u = 2.5 GeV and study the depen-
dence on the charm mass and the photon-energy cut. This is shown in figure 8. In general
the full LO4+-NLO result increases with § and decreases with m,, always remaining below
the 1% level for 6 < 0.45. We note that these results are only valid for é not far from 0.316
as some of the functions are expanded up to second order in (§ — 0.316).

Finally, we provide some results for two different values of Ey of interest: Eg = 1.6 GeV,
corresponding to § = 0.316, and Ey = 1.9 GeV, corresponding to § = 0.188. For the input
parameters and their uncertainties we take: pg = 160f§8, = 2.5:2):?) and z. = 0.07 £0.02,
which captures the different values for m, within different schemes.

For mg = my/50 ~ 100 MeV, we find:

AT py—1.6cev [%] = (0.419)10 — (0.080)xr0 % (0.028),,, % (0.032),, + (0.019)..,
= 0.34£0.05 (4.8)

AT gy—1.9cev [%] = (0.105)50 — (0.077)xro % (0.012),,, % (0.009),, + (0.003)..,
= 0.03 4 0.02 (4.9)

For my = m;/20 ~ 250 MeV:

AT gy—1.6cev [%] = (0.189)10 — (0.107)xro % (0.019),,, % (0.007),, % (0.007)..,

= 0.08 +0.02 (4.10)
AT gy—1.9cev [%] = (0.037)10 — (0.081)xr0 % (0.009),,, % (0.020),, + (0.001)..,
= —0.04 + 0.02 (4.11)
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For the value § = 0.188 (Ey = 1.9GeV) we have used the exact results (not the
expanded ones), as for this value of § the quadratic expansion is not expected to be accurate
enough.

5 Conclusions

The inclusive radiative decay B — X, has beyond any doubt reached the era of precision
physics, with the total uncertainties on both the experimental and theoretical side being
at the 7% level. The foreseen improvement in precision on the experimental side — the
envisaged uncertainty with 50/ab at Belle II is of O(6%) [63], although this might even be
a conservative estimate — justifies every effort to reduce the theoretical error to at least
the same level.

The present article aims at addressing a particular higher-order perturbative contribu-
tion, namely the four-body contributions b — sqgy to I'(B — X47) at NLO. The smallness
of the Wilson coefficients of penguin operators and CKM-suppression of current-current
operators suggests that this contribution should be small. However, only an explicit cal-
culation can turn this estimate into a firm statement. The calculation arises from tree and
one-loop amplitudes, but it involves the four-body phase-space integration in dimensional
regularization, which makes the calculation non-trivial owing to the appearance of higher
transcendental functions. Moreover, the cancellation of poles in the dimensional regular-
ization parameter € is only achieved after proper UV and IR renormalization. The latter
gives rise to logarithms In(my/ms) when turning the dimensional into a mass regulator.
These logarithms stem from the phase space region of energetic collinear photon radiation
off light quarks in the final state. They are computed with the splitting function technique
and treated in the same way as in [50, 60].

We find indeed that the contribution of our four-body NLO correction to the total
rate is below the 1% level, as expected. This statement even holds true once we vary the
input parameters such as the charm mass m., the photon energy cut (parameterized by ¢),
the masses my of the light quarks, or the renormalization and matching scales, as can be
seen by the numbers and the plots in section 4. We also confirm the LO results presented
previously in ref. [50].

Yet the NLO calculation of B — X,y is still not complete. There are certain yet
unpublished three-particle cuts contributing to I'(b — sg7y), mainly interferences of Py
with Py, which are also of the (A, B)-interference type. These contributions can be
extracted from the results of ref. [32]. The only missing pieces are given by the diagrams in
figure 1.f. These are NLO interferences of the type (B, B) and are expected to be negligible
with respect to the (A, B) ones that we have calculated in a complete manner. While these
contributions can be calculated with the techniques described in this paper, they are left
for future work.
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A Intermediate results

A.1 (P, P;) interference

The functions ]-"{5(5) are given by:

Foy(6) = =6 F57(6) ; (A.1)
‘.7 —185 + 3382 — 26% — 136% + 663(2 + 6) log(¥)
N = N A.2
w7, o 120 —36% — 86 — 6% 4 66%(2 4 6) log(d)

A.2 (Pg, P;) interference

Up to subleading terms in €, we have always
Fo8(8) = =6 (1+€) F*8(0) . (A.4)

The functions F*8(§) are given by:

Fit(0) = As(0) % + 6Lu- + Bs(0) ; (A.5)
]:(27)8(5) = By(9) ’ *7_:;’1?(1’1)(5) =0; (A.6)
Fo3(6) = AL) 1 6L, | + BUO) ; (A7)
Foaio(8) = —As(9) {1 + 6L, — qu} + Dg(0) ; (A.8)
Foeitiiin(8) = —AL(5) [1 + 6L, — qu] + DY(5) ; (A.9)

where L,, = log(u/ms) and Ly = log(mg/my), and:

46% 62 45 4

nigy - 40° 1007 20 (207 45 2 s
s(0) = 51 + o + 7 9 5 " 37 log(1—9) ; (A.11)

3 2 3 2
Bg(0) = 620 — 170 + 1169 — <86 - % + 85> logd — i10g510g(1 —9)

243 162 81 81 27 27 27

853 262 8 92 8Lis(4)
—log(1—=0) (= — S+ = — — ) — —=log?(1—-0) — ———=; (A.12
og(1 —9) (81 27 o7 81) plog’l=9)——7=; (Al2)
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, 46 6% 26°  4log(l-9)

By(0) = o~ gt gy T e (A.13)
PRI N
<88513 B 4;?2 N 520;(5 N % 452EI)og5 B 851;)g6 B 41;)7g5> log(1 — 0)
+<5952—135+277> log?(1 — &) + <432—895—247>L12(5); (A.14)
+ <g’—£+;l§> 10g(5)+;710g2(1—5)+4L;27(5) ; (A.15)
DY) :fif—ff—?—(i‘f—3§5+22075+§§>10g(1_5)
—<4;13—12(752—§(;> logd — (f—?—;) log d log(1 — §)
- <432—8;+247> log2(1 — §) — (232—‘;5—227) Lis(5) : (A.16)

A.3 (P, P;j) interference

For F, (Iﬁ(é) we give analytical results for m.-independent functions, but the m.-dependence
is given as interpolated functions. Up to subleading terms in €, we have always

F3(24,0) = =6 (1 + € + €2) F*(24,9) . (A.17)

The functions F*(z4, d) are given by:

1 1 1

f(xi),l(zq, 5) = A(9) [52 + E8LH + 32Li] + B(z4,9) L + 8L4 + C(zq,90) ; (A.18)
1

Fiiy (24:8) = B'(9) L + 8LM] +C(2,0) 5 Fooiiiny(20:8) = 05 (A.19)

11 1
f(j;j)(zq, §) = A”(6) [62 + 8L+ 32Lﬂ + B"(24,6) L + SLM] +C"(24,0) 5 (A.20)

11
5+ Z(8L, = 2Lg) + 30L2 —12L,Lg + 2L, — 2Lq] (A.21)

Fosiiiny(za:6) = —A(9) [
_[B(29,8) + F(5) + H(), [1 4+ 8L, — qu] - F(8) (L — L) + E(zg.):

FAL (0 8) = —A"(5) [1 + %(8LM —2Lg) + 30L% —12L,L, + 2L, — qu] (A.22)

coll(4i7) €2

—[B”(zq, 5)"‘ FH((S)"‘ HH<5)] [i + 8L;L - 2LQ] + f”((S) [Lu - Lq] + E”(ZQ7 5)3
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Counterterms are given by:

11 1
FC0) = —A(0)| = + =6L, + 18L% | + F(8) | = + 6L, | + G(5) ; (A.23)
(@) e e M # € H
1
f(jlf)c (8) = —B'(3) [6 +6LM] +G'(6) ; fcf;lﬁii)(zq,a) =0; (A.24)
11 1
f(j;g(é) = —A"(5) [62 + EGL“ + 18Lﬂ + F"(6) [6 + GLM] + G"(9) ; (A.25)
x,C 1 1 2
Foohny(8) = A(6) 5+ E(6LM —2Lg) + 16L7 — 8L, Ly + 2L, — 2L,
1
+H () [6 + 6L, — 2Lq] — F(8) [Ly — Lg] + 1(6) ; (A.26)
11
fciiﬁiii)(@ = A"(5) [62 + (6L, — 2Lg) + 16L7 — 8L, Lq + 2L, — 2Lq}
1
+H"(5) [6 +6L, — 2Lq] — f"(0) [Ly — Lg] + I"(0) ; (A.27)

where again L, = log(u/my) and L, = log(mg/ms). From these expressions one can check
the pattern of cancellation of UV and collinear divergences. The z,-independent functions
are given by (with the notation § = 1 — 6, L = log(1 — §), Ls = log ),

AQG) = ——— — ° [, (A.28)

AV) =~ 2 Ly ; (A.29)

B'(§) = — S JE A.30

(9) 9187 T 720 729 72970 (4.30)

fay = (40240 LN 2, L6t 58 2807 6 (A31)
T\ 243 729 243 ) 70 T 24375 T 8748 ' 729 1458 243 ’

(A.32)

g (1082 165 2 4, 118t 348% 2002 20
J10) = ( Ls+ ol tomgr Tosr ~ 729 729

2L; & 2 st 28 97 L 535%  46°
FO)= — (24 —+ ) Ls— (oo — —— | L5 — =2
©) (243 METT 243) ’ (729 243 " 2916) % " 243 " 17496 ' 2187

76° 1210 2Lis(d)

- A.
*5832 T 2016 243 7 (A.33)
F”(é)—_ ﬁ ﬁ_£+ﬁ+i§ _ ﬁ_ﬁ_’_ﬁ_’_ﬁ_ﬂ _
- 243 729 729 ' 243 " 243)7° 729 729 ' 243 ' 243 729) °
202 716% 3893 4952 595 4Liy(d
i } - + 599 _ 4Liz(9) . (A.34)
243 ' 4374 2187 ' 2916 ' 729 243

4 - 4 I3 4 3
G(é):<5 26 97>L2 (QL(; ot 25)L2 ; (535 86

720 T 243 2016 ) 913 T 720 T 243 ) 0 T 729 ~ \ 8748 T 2187

5
762 1216 ALiy(6) 7> 6901> <254 46 97> .
5 R0

2016 = 1458 243 972 34992 ) 7°

720 T 243~ 1458
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N 4L%  536* 863 762 1216 4Lis(6) I 137%5*  22335*  &°
243 8748 2187 2916 1458 243 ® 717496 " 209952 ' 81
7330% 13725 98050  97Lip(9)  4Lig(d) 4Liz(d)  4¢(3) | (A.35)
69984 2916 = 34992 1458 243 243 243 ' ‘
- 3 2 3 2 4 212
Gy = (M 480 48 A0 (48 42 46 59 205
729 2187 729 729 2187 729 729 2187 729
3 2 4Li
+g 500 715 4Lig(d) ; (A.36)
729 2187 2187 729
46% 463 82 46 4T AL;  46%  46° 6% 48
mey = [ — - 4 4 — )2 it A T N et B "
&) (729 729 243 243 729) 5 (243 729 729 243 243) 0
4 g (T16* 765° 496 1185  8Lig(8) | 7x* 1645 I
72970\ 2187 2187 @ 1458 729 243 486 4374) °
I 8ot 8% 20° &5 o4\ 8Ly 718t 768° 4947
’ 720 729 243 243 ' 729)7° 243 ' 2187 2187 ' 1458
1185  8Lip(8)]  13#%6*  18776*  137n°6%  5276°  137°6% | 14935°
729 243 4374 26244 4374 6561 5832 17496
13776 | 23536 94Liy(6) | 8Liz(6) 8Lis(6)  8((3) . (A.37)
1458 4374 729 243 243 243 ' ‘
Ly = 0! ) ot 2 7 Lz 5% 195°
H) = (=% — | L o ——— | L+ = — —— —
() (243 1458 © 243) ot (729 o3 324) 57943 7 3388 8748
2 .
5832 972 243
2L  20* 283 &2 20 464 483 8% 46 7
H'(§) = (226 . =2 =2 . ° 2 = = 47 4+ = "I
() (243 T 729 T 720 T 486 243) ot (729 729 243 243 162) 0
2L 20*  296° 8% 2 2Li
+75_i 96> 8% 250 i2(9) : (A.39)
243 243 4374 729 486 243
Ly ot 5\ Lo st 202 8 23\ ., 504 1963
= [ == — )2 — - = - = )2
1) <486 2916 486> 0" \720 " 213 "9 " om2 ) T \Goma T 37
676 610  2Liy(6) = w* 809 1 ﬁ+276_i I
2016 ' 4374 ' 243 ' 486 11664)° 0 |[\720 " 243 729) 7
50 196 76% 250 | Lig(d) N m26t  50* 2476° 24614
3888 8748 5832 972 243 2016 2916 34992 69984
7?0 11095  35Liy(6) | 7Lip(6) 2Liz(5) = Liz(0) N 2¢(3) N 35m% (A40)
486 11664 2916 729 243 243 243 ' 17496 '
" 46 483 487 206 T3\ L, Ly & 8 82 5\ Lo
= |——_——— =t =-— |- | 2=+ —=+— L
) <729 720 243 " 729 1458) % \2a3 " 729 720 Tom2 Tas3) 0
N 46 295% 586 50 4Lig() w2215 L1 46
243 2187 729 2187 243 243 17496 ) 70 ° |\ 729
400 9% 48 5\ 200 2990 80P 256 2Lia(9)] | %!
729 ' 243 ' 243 243)7° 243 4374 729 486 243 729
38364 w283 92352 N 7262 135742 N 7% 31150  11Liy(8) | 5Liy(6)
23328 729 17496 = 972 11664 = 243 17496 486 243
.: N .: 2
_4Lig(6) | 2Lis(9) N 4¢(3) L Unr ; (A41)
243 243 243 2916
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Uy e o) o My M) hE

(5] 2.608502 -2.3748¢3 7.8427¢2  -2.5064c0 -1.8780cl  -7.0839¢l
(4} 5.5417¢2  1.6248¢2 8.9587¢2  3.6935¢0  2.6209¢1  8.9418cl
(3} -8.6141e0 1.2216e3 -2.0804e2 -1.6902¢0 -1.1864cl  -3.5637el
(2} -15107¢0 -9.2378el 2.1731lel  3.230le-1  2.2545¢0  6.0307¢0
(1} 112411 54522c0 -1.3841e0 -2.6875e-2 -1.8840c-1 -4.5543¢-1
(0} 3.2101e-3 2.06750-2 4.0727e-2  8.0387c-4  5.7122-3  1.2664e-2
(-1} 2.7478¢l  2.4950¢2 -3.5865¢l  5.1543¢0  -9.6139c0  -2.1925el
(-2} -6.5543¢1 -4.3377e3  5.9242¢2  -2.5093¢2  -1.8937¢2  -1.6101e2
(-3] -9.6131e3 5.7863¢4 -5.6283¢3  1.7465¢4  1.13494  1.1056e4
(-4) 226125 7.7096e4 2.113led  -4.3025¢5  -2.3262¢5  -1.5200¢5
(-5} 1.67825 -2.0939¢5 3.835led  4.3797¢6  1.7123c6  7.2442¢5

Table 1. Padé coefficients for B(zg, 9).

While our calculation provides ezactly all the functions B (z,,8), C"")(z,,8) and
E")(z,,6), the corresponding expressions depend on z, and the photon energy E., through
complex functions of harmonic polylogarithms of various weights, which must be integrated
in the region 2E,/mp € [1 —6,1]. Solving these integrals analytically is highly non-trivial,
and even the numerical integration is computationally demanding. We have performed a
numerical evaluation of such integrals and find it more convenient to present the results
as an expansion in ¢ around the value 6 = 0.316, and as an interpolation in z,. These
interpolations coincide with the exact results in the region z € [0, 1] to a very good precision.
The relevant functions are written as:

G2q.8) = [£§)(z) + 115 (2)] + [£5 (20) + i1 (24)] (8 — 0.316)

+ [f8 (zq)—Hh( )(29)] (6 — 0.316)2 + - - (A.42)

with G = B,B",C,C",C",E, E". The functions fg) (2q)s hg) (zq) are fitted to padé approx-
imants of order [5/5]:

fg{5} 5+ 1y {4} q+fg{3}zq+fg{z} 2+ 15 G.(1} q+fg{o}

- . (A.43)
fg{ 5} q+fg{ 4}%q Jrfg{ _3} q+fg{ 2}%4 Jrfg{ 13%¢ 11

fg)(zq) =

and similar for h(gi)(zq). The Padé coefficients fgl; G h(g){ ;) are given in tables 1-7.

The functions F (z4,0) are UV finite and collinear safe. Again, we have the following

relationship,
75,1 Zx,1
Fi (2q,8) = =6 F (5 (24,9) - (A.44)
As before, the ‘crossed’ functions ]-"( J’) (z4,0) are known exactly but we provide here sim-

plified expressions as an expansion in (§ — 0.316) and interpolated in z,. We write:

F (2:0) = [ (z0) + 15 (z)] + [F5)(29) + i 1)) (29)] (5 = 0.316)

+ 7O (z0) + 173 (20)] (6 - 0.316) + - (A.45)
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W e B0y B M Meg Mg
(5] -9.5730c-1 -9.6422¢0 -2.8386c1 -7.9067c-2 -6.6893c-1 -2.9051¢0
{4} 3.0239¢0 270361  1.2091e2  1.9267c-1  1.6095¢0  6.3544c0
(3} -3.9058¢-1 -6.8880c-1 2.3899c0 -1.7623c-1 -1.4512¢0  -5.1486¢c0
(2} 3.7847c-3  -6.4972c-1 -4.0154e0 7.5813e-2  6.1479-1  1.9516¢0
(1} -9.5759¢-3 3.62650-3 2.4684c-1 -1.5417¢-2 -1.2304e-1 -3.5068¢-1
(0}  3.964le-3  3.0018¢-2 7.5378¢-2 1.1925¢-3  9.3670e-3  2.42040-2
(-1} -4.6336c0 -2.3791e0 2.8343c-1 -7.6041¢0  -6.7239c0  -5.9052¢0
(-2} 31991l  1.5265¢1 -1.9554e0 5.0750el  4.1512¢1  2.0995cl
(-3} -2.6083¢2 -2.3013¢2  -3.0385¢2 -1.6999¢2  -8.9622c1  2.8933¢2
(-4} 1.1184e3  1.4088¢3  2.6697c3  -2.6338c2  -7.5669¢2  -4.3799¢3
(-5} -3.14702 -44778¢2 -4.4635¢2 3.2029¢3  5.1645¢3  1.9822c4
Table 2. Padé coefficients for B"(z,,0).
Uy & o o hGisy hodsy o
(5] 6.7269c2 4.9426e2  1.0451¢3 -3.4512c1 -2.3670e2 -9.4447c2
(4] 3.3679¢3 5.8344e3 349743  4.83421  3.2457¢2  1.1315¢3
(3] 231782  2.4369¢2 -6.8258¢2 -2.1749%¢1 -1.4202¢2 -4.2386¢2
(2} -3.3437el -8.0765el 7.0897cl  4.0984e0  2.657lel  6.7645¢l
(1} 1.7801e0  2.8034¢0 -5.3246¢0 -3.3765e-1 -2.180500 -4.8418¢0
(0} 1.8570c-2 1.0740c-1 1.8133¢-1 1.0040e-2  6.5154-2 1.2819¢-1
(-1} 7.1021el  1.0202¢1 -3.4108¢1  9.6116c0 -8.1610c0 -2.2268¢l
(-2} -6.9880e2 -1.5360c2 5.3644c2  -6.8385c2 -3.9083¢2 -2.5150¢2
(-3) -5.952803 -6.3499¢3 -5.0770e3  3.0179%4  1.5933¢4  1.3515e4
(4] 3.3626e5 9.950led  2.0032e4  -6.1404c5 -2.6974e5 -1.696605
(-5} 1.9465¢5 4.3193e4  3.0917¢4  5.0960c6  1.7175¢6  7.4113¢h
Table 3. Padé coefficients for C(zg, 6).
Uy & oy oy Mol helyy  hEh
(5] 3.7841c2 5011862  3.0056e2 -4.5121e-1 -6.0463e1  -2.1698¢1
(4)  2.7044¢2  4.8884¢2  5.4690¢2  7.9268¢-1  8.8873¢l  3.5043¢l
(3] -1.1579¢2 -1.8312¢2 -1.8791¢2 -5.0952e-1 -3.9767el  -1.8854el
(2} 13594l  1.9867el  2.5682el  1.5463c-1  5.9243c0  4.2454c0
{1} 3.0207¢-2 -1.6165¢-1 -1.7434¢0 -2.2768¢-2 -1.7640c-1 -4.0900¢-1
(0} 5.8184e-3 3.5538¢-2 5.7703e-2 1.3344e-3  8.5805-3  1.5244e-2
(-1} 1.4953¢0 -7.2811c0 -3.1995¢1  1.1886c1  -8.8975¢0  -2.7485cl
(-2} 24503¢3  6.0955¢2  4.7985¢2 -5.2688¢2  4.2689¢2  3.3788¢2
(-3} -1.9815e4 -5.2682c3 -3.415603 5.3900e3  1.1219¢4  -9.5618¢2
(-4} 3.7632e4 1.178lc4  8.8305¢3 -2.344ded  -1.4783¢5  -1.2086e4
(-5} 1.0249¢5  2.6408¢4 1.1136e4  3.8372c4  5.4497¢5  8.0691e4

Table 4. Padé coefficients for C’(z,, d).
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)N P oy e Ry hengy  Reng
(5] -7.707260 -7.3684cl -3.267202 -8.7364e-1 -6.3940c0 -3.5367cl
(4} 6.5728¢0  3.624lel  1.4444¢2  2.0978¢0  1.5469¢1  7.387lel
(3} 4.6807¢0  7.0186c1  3.8320e2 -1.8917c0  -1.4054cl  -5.6847cl
(2} -1.5486e0 -1.9670c1 -9.3766el 8.0372-1 6.0118¢0  2.0476el
{1} 1.0573¢-1 1.6449¢0 8.0166e0 -1.6179-1 -1.2175c0 -3.5220¢0
(0} 1.8873e2 1.3658¢-1 3.3186e-1 1.2423¢-2  9.3960e-2  2.3583¢-1
(-1} -4.4964c-1 4.8147c0 14577l  -6.6212¢0 -4.6773¢0 -2.9278¢0
(-2} -2.5300¢0 -4.5104cl -1.3130e2 2.286lcl  -8.8411c0 -7.8932¢l
(-3} -1.7756¢2  -5.9658¢1 1.1661e2  1.0154¢2  4.6805¢2  1.6895¢3
(-4} 1.3958¢3 1.8710c3 3.9334e3 -1.5110e3 -3.7935¢3 -1.3934cd
(-5} -1.0185¢3 -1.5684c3 -3.22013  5.1086e3  1.1386e4  4.47Tled
Table 5. Padé coefficients for C”'(z,, 9).
Uy few fon o Moy Moty Ry
(5] 6.4306e1  3.5981c2  1.204002  2.180lcl  1.5065c2  6.3214c2
(4] 85279¢2 -1.5483¢3  -1.4843¢3  -3.0643¢1 -2.0732e2  -7.5761c2
(3] -9.9349¢1  -4.0637¢2  2.2130e2  1.3820e1  9.1544el  2.8342c2
(2} 1.287lel  6.1243¢1  -2.0763¢l  -2.6077c0  -1.7054el  -4.5145¢l
{1} -5.9578¢-1 -2.2780c0  1.9360e0  2.1490e-1 140150  3.2245¢0
(0} -7.3348¢-3 -4.1945c-2 -7.84620-2 -6.3860c-3 -4.1912-2 -8.5194c-2
(-1} 47343¢]  2.3190el  -3.2893¢l  1.4649¢1  -3.5937¢0  -1.8952¢l
(-2} -1.4068¢2 -3.0228¢2  5.2625¢2  -T.6567¢2  -5.4265¢2  -3.8314¢2
(-3)  -1.3504e4  -7.1646e3 -5.3673e3  3.2009e4  1.9737c4  1.5799e4
(-4} 327385  1.3102¢5  2.2555¢4  -6.6974c5  -3.2807¢5  -1.9062¢5
(-5} 2.8262¢5  4.3433e4  3.7019¢4  5.6997c6  2.0888¢6  8.2259¢5
Table 6. Padé coefficients for E(zg, d).
Uy fo (5} by Pengy Mangy Reeg
(5] 2704601 -1.1652¢2 -6.3378¢3  4.8640e-1 301140 1.7243¢1
(4)  -4.230262 -4.6203¢3 -5.8000e4  -1.1720c0  -9.3898¢0  -3.7292¢l
(3] 1.3189¢2  1.3432e3  1.5166e4  1.0609¢0  8.4650c0  3.0070cl
(2} 8.8744e0 -9.3948¢1  -1.1660e3 -4.5251e-1 -3.5954e0  -1.1478el
(1} -1.4275¢0 -1.2464e1 -8.582lel  9.14660-2 7.2362e-1  2.1083¢c0
{0}  -4.5677¢-3 -3.6869¢-2 -1.1199e-1 -7.0517e-3 -5.5554e-2 -1.5106e-1
(-1} 2.8279¢2  3.0406e2  7.1445¢2  -7.6394c0  -6.0846¢0  -4.0315¢0
(-2} -1.2889¢3  -9.3334¢2  1.1757e3  3.3059el  7.5335¢0  -4.7914el
(-3 9.6814e3  7.3874e3  -7.4918¢3  1.2448¢1  2.7671e2  1.2068¢3
(-4} -7.8680c4 -8.4193c4 -1.9839¢5 -1.0211e3  -2.5305¢3  -1.0096e4
(-5]  2.9932¢5  3.9930¢5  1.7241e6  3.8601e3  7.8008¢3  3.2678¢4

Table 7. Padé coefficients for E(z,, d).
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W fow  fowm  Towm  fawm fewm e
(5] -6.039cl -7.9313c2 -4.1781c2 8522663 _ 5.9550¢4  6.0577c2
(4} -4.3337el  4.3943¢1  1.7075¢2  5.2397¢2  -1.7693¢3  -2.4607c2
(3} 273981 7.1810¢l -2.3013¢l  -6.9260c2 -2.5828¢3  4.0981el
(2} -4.9232¢0 -1.6196el 1.0162¢0  1.3412¢2  5.3783¢2  -3.9970c0
(1} 1.9455¢-1 6.973%-1 -1.0853¢-2 -3.4138¢0 -1.4094el  2.401de-1
(0} 4.7105¢-4 2.1302e-3 4.5410e-4 -1.5811e-3 -8.3330e-3 -5.10000-3
(-1} 3.2507¢2  2.5362¢2 -6.733%cl  1.8046e3  1.4787e3  -3.6244el
(-2} -1.2129¢3 -3.3619¢3  2.9914e3 279834  1.4145¢4  1.3530e3
(-3)  4587led  3.7550e4  -6.7242e4  3.3450e5  -3.508led  -3.2312ed
(-4) -27172¢5 8.5735e4  7.6883¢5  2.2367¢6  T.2362¢6  4.1425¢5
(-5} -3.6784c5 -2.6336e6 -4.2134c6 -4.8970¢7 -T.8826e7  -2.5466c6
(-6} 4.8301e6 9.5241e6  8.8361e6  3.1279¢8  4.0127¢8  5.9475¢6

Table 8. Padé coeflicients for the real parts of ]-"( 7 ' (24,0).

with J = 4,7i. The functions f((g)) (z4) are again fitted to Padé approximants:

) ) () ) ) ()
FonusyZa T 1 {4}Z3+fJ> {3}23+f {2}23+f ).y )00
(1) () #(4)
IO -8+ 1y B+ IO A+ Ty BT ey BT oyt
(A.46)

f(J)(ZQ)

(4)

but a different parameterization for the functions fz( J)(zq) is found to reproduce the exact

result more accurately. While for fzgg))(zq) and fLEIJ))(zq) we use

i 7 (i 1 2 (1 % i ;
hEJ))( q) = 2g exp [ — hEJ))’{e} Zq) <4 — zq> 0 (4 - zq> Z hEJ)),{j} 2y, (A.47)
we make the ansatz

7 (2 j
1 2 N S0l i 2
W2 (2g) = 2 (—z) 9<—z> i CIL ), (A.48)
(J) q q q 2
4 4 1+ZJ 1hEJ){} J

for fzg)) (z¢). The coefficients f((f]))’{j} and BE?%{J'} can be found in tables 8 and 9, respectively.
Finally the functions .7-"( ) (5) are given by

Fiy0) = =6 F5(5) (A.49)

and

F51(8) = ~0.0000513772 — 0.0003375398 (5 — 0.316) — 0.000532746 (5 — 0.316) + - - - ,

F {53y (6) = =0.0001176336 — 0.0003362453 (§ — 0.316) + 0.001067501 (6 — 0.316)? +
(A.50)
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0 - () - (0) () o - ()
Ut hagy Mgy heogy Mo U higy o haog

{6} 0 0 2.7269¢9  3.0740e10 {7} 1.9156e7 0

{5} 0 5.9601eb -5.6512e8 -5.4396e9 {6} -1.2045e7 -4.0614e7
{4} -3.4279e4 -2.5773e¢5 5.1876e7  4.4076¢8 {b} 2.7691e6  2.8773e7
{3} 5.4423e3  3.5916e4 -2.2643e6 -1.6493e7 {4} -2.4695e5 -9.2094e6
{2} -5.0377e2 -2.5068e3 5.7546e4  3.7561eb {3} -1.3034e3 1.6547e6
{1}  9.7190e0  2.9523el -5.7810e2 -3.0581e3 {2} 1.5514e3 -1.5575eb
{0} -7.3742e-1 -2.5466e0 6.7661e0  3.4673el {1} -8.3143el  5.4749e3
{e}  2.980lel  2.3898el  8.2260el  9.3516el {0}  1.1641e0  3.0407el

Op
Att

{-1} 5.3853¢1 1.0191e3
(-2} -4.7202e3  5.4442e3
{-3} 1.2537¢5  -6.7695¢5
{-4} -1.7062¢6 1.0194¢7
{-5} 1.2920e7 -4.8380e7
{-6} -5.1347e7 -2.3921eT7
{-7} 8.3239¢7  4.9141e8

Table 9. Coefficients for the imaginary parts of f(ﬁ’)l(zq, J).
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