
Science of
Computer

ELSEVIER Science of Computer Programming 30 (I 998) 20 1-225
Programming

Constraint-based protocols for distributed problem solving 1

Uwe M. Borghoffa,*, Remo Pareschi a, Francesca Arcelli b,
Ferrante Format0 ’

aRnnk Xera Resetrrch Centre. Grenoble Luborrrtor?, 6. chemin de Maupertuis,
F-38240 Medun, France

b Diprtrtimento di Inyryneria dell’ hformazione e di Inyeyneria Elettrica, Lhiversitir di Salerno.

I-84084 Fisciano (SA), Ital]
’ Centro cli Ricerca in Matematica Pura e Applicata (CRMPA), Salerno, I-84084 Fisciano (SA). Italy

Abstract

Distributed Problem Solving (DPS) approaches decompose problems into subproblems to be

solved by interacting, cooperative software agents. Thus, DPS is suitable for solving problems

characterized by many interdependencies among suhprohlems in the context of parallel and dis-

tributed architectures. Concurrent Constraint Programming (CCP) provides a powerful execution

framework for DPS where constraints define local problem solving and the exchange of infor-
mation among agents declaratively. To optimize DPS, the protocol for constraint communication

must be tuned to the specific kind of DPS problem and the characteristics of the underlying sys-

tem architecture. In this paper, we provide a formal framework for modeling different problems

and we show how the framework applies to simple yet generalizahle examples. 0 1998 Elsevier

Science B.V.

Key~~wrds: Constraint propagation; Distributed artificial intelligence; Distributed problem

solving: Constraint-based knowledge brokers; Cooperative agents; Protocols

1. Introduction

From a problem solving point of view, distribution requires the decomposition of
a problem into a set of subproblems, where the solution of the problem amounts to

concurrently solving all of the subproblems and then composing their solutions. Sub-
problems are solved by parallel processes, or by dynamic software agents in networked
environments. As characterized in [15,291, if there are many interdependencies among
the subproblems (and thus the agents assigned to solve them must interact a great
deal) then we pass from simple distributed processing into the realm of true DPS. For
instance, gathering information from distributed knowledge repositories in the context

* Corresponding author. E-mail: borghoff~grenoble.rxrc.xerox.com.

’ Extended version of a paper [5] presented at the 1st International Workshop on Concurrent Constraint

Programming CCP ‘95 (Venice, Italy, 29-3 1 May 1995).

0167-6423/98/$19.00 @ 1998 Elsevier Science B.V. All rights reserved

PII SOl67-6423(97)0001 l-7

202 U.M. Borghojf et al. I Science of Computer Proyramming 30 (1998) 201-2-75

of executing a complex plan belongs to DPS: information gathered as part of a certain

task in the plan may influence other tasks.

Concurrent Constraint Programming (CCP) is a powerful framework to support DPS,

since it provides a direct implementation of the notion of shared, reusable, incrementally

refined information. To optimally solve DPS problems with CCP, we need, however,

to be able to tune the scope of inter-agent communication according to such factors

as the type of the DPS problem and of the characteristics of the underlying system

architecture. Specifically, we need to determine how many agents can make use of, and

thus should be exposed to, given information in the form of constraints. In this aim,

we define a design space of inter-agent communication protocols by formally defining

two opposite extremes of information sharing. One extreme captures the hypothesis of

minimal information reuse: all generated information is potentially made available, but

can be delivered only in response to specific requests. We shall then consider the op-

posite case, based on the idea of maximal information reuse: all generated information

is immediately broadcast to all agents. If the generation of a result is costly and if the

result is frequently reused at many agent sites, the broadcast of the result can decrease

the amount of network traffic in the entire system. Delivery of results is done once and

forever. On the other hand, there is a risk of cluttering agents with useless information.

In the course of the paper, we shall formally introduce the notion of quantity of
reuse of information to obtain a heuristic to decide between the two protocols, as well

as a basic metric over the space of protocols that lie in between the two extremes.

To provide a clear illustration of how this heuristic works, we shall apply it to a

very simple, abstract case, namely, the distributed parsing of a context-free grammar

generating boolean expressions. We shall also show, however, that this simple example

can be easily generalized to real-life problems. Conversely, we shall show that any

kind of DPS problem can be mapped into a grammatical problem, where experimented

algebraic techniques can be exploited to derive the heuristic.

Our study of protocols for constraint-based communication is done within the frame-

work of the Constraint-Based Knowledge Broker (CBKB) model [1,2], a recently

introduced approach to CCP where a sharp separation is drawn between the use of

constraints for (1) local problem solving; and (2) communication. Compared to other

formalizations of CCP, the CBKB model focuses more directly on communication is-

sues and, hence, on problem solving done via the interaction of cooperative agents. An

illustration of the use of CBKBs for information gathering in network-wide environ-

ments is given in [3]. Ref. [9] (see also [lo, 431) p rovides a detailed description of a

CBKB software implementing information gathering facilities on the World-Wide Web.

This paper indicates several directions for future work. As we pointed out, the two

protocols above are at the very opposite ends of a spectrum of possible protocols.

Intermediate cases correspond to group deliveries for subsets of agents. For many

practical applications these intermediate cases seem to be the most useful. Thus, our

heuristic provides an elementary compass to help navigate this space of protocols.

Further developments are needed to refine it into a set of techniques for automatically

assigning agents to appropriate “interest groups” and for allowing flexible tuning of

U. M. Boryhofl et al. I Scierrce of Computer Proyrwwxiny 30 (1998) 201-225 203

group-based communication. Moreover, there are situations where the optimal strategy

for DPS may involve splitting the problem into subproblems which are optimally solved

according to different protocols; these may in turn be themselves composite. Again, we

will need flexible ways for identifying and for expressing such protocols.

The paper is organized as follows. Section 2 outlines the main characteristics of the

concurrent language LO that is used to specify the DPS protocols. Section 3 formally

introduces the notion of Constraint Based Knowledge Broker, which is then used to

formalize and compare the two opposite DPS protocols, exploiting, respectively, the

minirnnl and the masimal reuse of generated results. In Section 4, an analysis follows

where the notion of quantit~~ of mm is introduced to provide a choice criterion for

the appropriate protocol. A simple example from context-free parsing illustrates the

heuristic thus defined. This example is then generalized to examples in the DPS domain

of information gathering. Conversely, it is shown how algebraic techniques from formal

languages can be applied to derive the heuristic. In Section 5, related work is discussed,

and finally, Section 6 concludes by addressing future work.

2. A declarative, executable specification language: LO

We use LO [4] as a specification language for our DPS protocols. LO is a declarative

concurrent language which amalgamates aspects of several concurrent languages based

on generative communication, including CHAM [7], Gamma [6], Linda [ll], Maude

[27], Swarm [31] and borrows also from concurrent logic programming languages

[12,20,24,38,40]. LO’s logical primitives for agent coordination and communication

make it particularly suitable for our purposes; however, our approach is also compatible

with other choices of specification language.

The LO programming constructs are rules that define interaction among concurrent

agents. Agents are seen as pools of tokens where a pool is represented as a multiset

of these tokens. There are three basic constructs in LO:

- The @,-construct is used to manage intra-pool concurrency. It is used in rules of the

form

a@b <>- c@d

meaning that a and b must both be present in the pool before application of the

rule and that both are withdrawn from the pool after application. Moreover, c and

d are present in the pool after application.

~ The &-construct is used to manage inter-pool concurrency. It is used in rules of the

form

a@b c>- c&d

meaning that a and b must both be present in the pool before application of the rule

and that both are withdrawn from the pool after application. Moreover, two new

pools are created by cloning the remaining tokens, adding c to one of the created

pools, and d to the other.

204 U. M. Borghoff et al. I Science of Computer Programming 30 (I 998) X-225

- The ^-construct is used to broadcast tokens between agents. It is used in rules of

the form

a@b@^c <>- d

meaning that a and b must both be present in the pool before application of the rule

and are both withdrawn from the pool after application. Moreover, after application,

d is present in the pool and c is present in any pool different from the one in which

the rule has been applied. 2

Tokens can be indexed so as to restrict broadcasting to multicasting up to the degenerate

case of one-to-one communication. Indices allow linking of senders and receivers for

specific tokens: indexed tokens are sent only to agents that are “registered” for that

index. Indexing and de-indexing of tokens will be the crucial means for differentiating

the DPS protocols to be specified in the course of the paper.

Rules are triggered via pattern matching. The state of a pool is matched against the

left-hand sides of rules. When a match is found, the selected rule is applied, i.e. the

tokens in its left-hand side are removed from the pool, broadcast tokens are transmitted

to other pools, and new multisets are defined according to the right-hand side of the

rule.

For a formal operational semantics of LO, based on the proof theory of Linear Logic

[19], see [4].

3. A formal framework for DPS

We can formalize the problem-subproblem relationship, which is at the basis of DPS,

via the notion of generator. Intuitively, a generator defines the subproblems which need

to be solved in order to solve a given problem. A generator works by formalizing prob-

lem solving in terms of stable models and fixed-point operators. Constraints provide

a declarative way to prune the search space.

In order to make the paper self-contained, we restate in the following some of the

formal definitions given in [2]. In the remainder, moreover, we illustrate many of these

formal aspects through concise examples.

3.1. Generatol

Given an abstract domain of values 9, representing tokens of knowledge, a generator

is a mapping %’ H u(Q), which produces new tokens from existing ones. That is, a

generator (having arity n) takes some n tokens of existing knowledge, applies the

generator’s function, and provides some new tokens of knowledge (if any).

A set of generators identifies a class of subsets of the abstract domain which are

stable by these generators. Let E be a subset of the domain and I- a set of generators.

*A library of higher-level communication facilities on top of the basic mechanism of broadcasting in LO

is described in [8].

205

Definition 1. E is called r-stable if and only if

VLJE:, Vx ,,..., x,,cE: c/(x I,..., x,,)cE.

The class of stable sets is closed under intersection, so that it has a smallest element

in the sense of inclusion, given by the intersection of all the stable sets. This minimal

stable set, also called mininzul ~~zoclrl, represents the intended semantics of the set of

generators. The class of stable sets is also closed under non-decreasing union. so that

a standard fixed-point procedure can be applied to compute the minimal model. The

core of the procedure is given by the mapping:

7- : ,+1(P) H ,$J(Ci) where VEE p(9): T(E)= IJ ~(sI,..., x,,).
w-

I, c,, El?

The minimal model A4 is then given by the least fixed-point of T, expressed as

A4 = u T”(0).
IlEld

Thus, T provides a way of incrementally computing the minimal stable set, by com-

puting the sequence (T”(@)),,,N, given by Eo = 8 and E,,+t = T(E,,).

Note, however, that a minimal model can be infinite. Take for instance as abstract

domain the set of words built out of the letters ‘a’ and ‘b’. Assume, furthermore,

a generator (having arity 2) that takes two existing words, concatenates them, appends

an ‘a’ or a ‘b’ randomly, and provides this (new) word as additional knowledge. This

new word can then serve as new input to generate more knowledge. Obviously, this

procedure will generate infinitely many words of the domain. A well-known mechanism

to prune this generation procedure uses constraints. In our example, constraining the

maximal length of the words would immediately result in a finite minimal model.

In addition to simply constrain an individual generator’s function. we shall define

some mappings to express dependencies between the input and the output tokens of

different generators.

Generators can be associated with a class of LO-agents which we call broker agents.

A broker implements a generator function taking several input tokens (according to its

arity) and producing corresponding output tokens.

The fixed-point procedure is initialized by putting the following special input tokens

inside each broker agent:
_ the token arity-n, where II is a non-negative integer, holds the arity of the generator 9
_ the token free-k (for each positive integer k, less than or equal to the arity) which

represents a place holder, one for each argument of the generator 9. These tokens

are consumed as arguments get bound.

This basic protocol, which relies on a simple forward-chaining scheme, can be refined

into protocols appropriate for DPS by taking into account dependencies between the

input and output tokens of different broker agents’ generators. Both refinements to be

illustrated in this paper rely on the idea that a broker agent has some knowledge of the

206 U hf. Bouyhqff et al. I Science of Computer Programming 30 (1998) 201-225

dependencies between the input and output tokens of its associated generator. Thus the

broker is able, given a constraint on the outputs (the constraint given by a request),
to infer constraints on the inputs. In this way, constraints provide top-down filtering

over the set of values that can be produced by a generator as candidate solutions for

a given problem, and permit the exploitation of interdependencies between subproblems.

More formally, let us consider the mapping g: $>(62)~ &>(2?“) defined by

VW E p(9), g(w) = fi jk(W).
k=l

Note that, in order to infer constraints on the inputs, .qk(w), the so-called back-

dependency function for argument position k, must be known.

By definition, we have: \JxEP, V’WE ,~(22), if g(x) n w # 0 then x~g(w). If 99

denotes the graph of the hmction of generator g (hence ‘3~ u(Sn+‘)), then we have

equivalently, V’wE w(9), 3 n (9” x w) c(j(w) x w).

In other words, g(w) x w provides an upper approximation (in the sense of inclu-

sion) of the part of the set (2’ x w) which is contained in the graph of the generator’s

function. To capture inter-argument dependencies, we generalize this notion of approx-

imation, and we assume that each broker is equipped not only with a generator g but

also with an interdependency function S. The interdependency function computes an

upper approximation of the part of any subset of P+’ which is included in the graph

of the generator’s function.

Intuitively,
- the buckdependency functions describe how a broker will decompose a given prob-

lem description into subproblems. These subproblems are then propagated to other

brokers as their problem descriptions.

The set of all brokers act on request. The request may come from an end user,

or, as part of a subproblem propagation, from other brokers. All involved brokers

cooperate to solve their part of the overall problem.
- the interdependency function describes how the subproblem solutions relate to each

other.

We illustrate this behavior in Fig. 1. The body of this figure shows graphically how

interdependencies in the activities of broker agents are exploited to feed the generator’s

function with the needed input tokens.

3.2. Scope oj‘a broker

We define the scope of a broker as the subset of the domain which does not intersect

any of the constraints of the requests it has already processed. In other words, the scope

of a broker denotes the complement of the set of elements of the minimal model the

broker (or one of its clones) has already explicitly generated (or is in the process

of generating). A broker can be viewed as an agent which explores a domain and

explicitly generates the elements it encounters which are in the minimal model. The

scope of the broker denotes the un-explored area of the domain.

U. h4. Borghqjf et al. I Science of’ Computer Programming 30 (1998) 201-225 207

answers reauest

Fig. 1. Exploiting interdependencies in a broker of arity n.

Let wo be the scope of a broker at some point, and let w be the constraint of a

request it receives. The broker spawns an agent in charge of exploring the subset wonw

(and answering the request), and then continues with a reduced scope won lw (where

lw is the complement of w). The interested reader is referred to [3,42] for a detailed

discussion on how to implement, work with, and split the scope of a broker.

3.3. The request-subrequest protocol

The request-subrequest protocol refines constraint-based communication as illustrated

in the section above by exploiting yet another dependency: the request carries an index

that is added to all output tokens that are sent out. In this way, requester and requestee

are directly linked. Information is provided only if requested, and is sent only to the

original requester.

The initial request carries an index which acts as an address for the requesting agent,

as well as a description of the problem to be solved (instantiated as a constraint on the

208 U. M. Boryhqf et ul. I Sciwzce of Computer Proyrrrrrminy 30 (1998) -7O/-.??5

problem domain). A broker agent takes the problem description and simplifies it into

subproblems. These descriptions of the subproblems are then submitted as subrequests

in the same way as the initial request. The subrequests are individually indexed so

that they can be collected into a solution by the requestee agents which is eventually

returned to the original requester.

We encode the request-subrequest protocol with the following LO rules.

(RSl): broker(u,o) @ requ(Z,til) @split(~o, IV, WI, 14’2) @ init(w,,s)

C >- broker(w2) & process @ requ(Z, W) @cot&(s).

The token split(lv~, W, ~1, ~9) defines, given two subsets WO. w of 9, the subsets

~‘1, ~‘2 of Y defined by IVY = wa n w and ~‘2 = wg n lu’. As mentioned before, each

broker is equipped not only with a generator g, but also with an interdependency

function d which computes an upper approximation of the part of any subset of

G”‘+’ which is included in the graph of the function of generator g. Now, the token

init(w,s) is used to compute the initial approximation: It builds, given a subset 1~ of 9,

the subset s of P”+’ - called broker-local constraint store - defined as s = g(P’ x w).

It is assumed that if the broker-local constraint store s is empty, the token is not present.

The index I of a request acts as an address for the requester.

(RS2): const(s) @free-k @ seek-k(s. w) @ ^requ(Z, W)

C >- con&(s) @ wait-k(Z) @ requ(Z, 14’).

The token seek-k(s,w) is used to extract information from an approximation (by

simple projection in the broker-local constraint store). It builds, given a subset s of

Pnf’ the subset n’ of Y defined as 1%’ = zk (s). The agent sends an indexed subrequest

for the kth subproblem specified by ~1.

(RS3): const(s) @ wait-k(l) @ answer(Z,x) @ ins-X-(x,s,s’)

< >- const(s) @ wait-k(Z) & const(s’) @bound-k(x).

The token ins-k(x,s,s’) provides further refinements of the approximation upon re-

ceiving answers to the kth subrequest. It builds, given a subset s of G”*+’ (the broker-

local constraint store) and an element x of Y (a particular answer), the subset s’ of

Q”+’ defined as s’=&sn7~;’ < x >). In other words, s’ is the approximation of the

subset of s consisting of the tuples which are in the graph of the generator’s function

and whose kth component is precisely x. Thus, the binding of the kth argument may

reduce the scope of the other arguments. It is assumed here that if the broker-local

constraint store s’ is empty, the token is not present.

(RS4): arity-rz @ bound-l (11) @ . . . @ bound-n(x,,)

C >- tuple-n(xl, . ,x,~).

The broker agent feeds the generator’s function with input tokens of the corre-

sponding arity. Using these input tokens provided in tuple-n(xl, . .,x,,), the generator

produces a result tuple res(x) = g(xl,x,,).

(RS5): process @ res(x) C >- process&process(x).

A result tuple res(x) is used to create a process process(x) that is in charge of a

specific result x.

U. M. Boryhoff et al. I Science of Computer Proyranming 30 (1998) 201-225 209

(RS6): process(x) @ requ(1, w) @ sat(x, w) @ -answer(Z,x)

< >- process(x).

Send out the answer using the index I. The token sat(x, w) is needed for consistency

reasons: it simply checks whether a partial result x complies with the given constraint w.

The request-subrequest protocol as given above avoids redundancies in subproblem

generation within a broker. Once obtained, results are cached and reused.

Example 2. Suppose a broker has a generator y with g(t) = {t} and receives a request

with a constraint w such that t E w. As illustrated in rule (RSl), a specialized agent

process is created to process this request. Suppose furthermore that the initial problem

(given as a constraint) @(k x w), returned by the token z%t(w,s), is s = w x w. Now,

since seek-l(s, w) = nr (s) = w, the subrequest for the (single) argument of the generator

also has w as constraint. Sent in rule (RS2), the same broker receives this subrequest.

However, due to the scope reduction performed by split(wO,~,wi,w~), the broker is

no longer in charge of a problem constrained by w. Instead, the specialized agent

pvocess(x) will reuse, as illustrated in rule (RS6), the already calculated result.

3.4. The local caching protocol

In contrast with the request-subrequest protocol, the local caching protocol does

not link requesters with requestees. Instead, as soon as they are available, solutions

to subproblems are broadcast to all existing broker agents. The local caching protocol

aims to avoid redundancies in subproblem generation among brokers.

The initial request carries only a description of the problem to be solved; no index

is associated with it. As before, a broker agent takes the problem description and

simplifies it into subproblems. However, as a consequence of this protocol, some of

the subproblems solutions may already be known to the broker agents. The description

of still unsolved subproblems are submitted as subrequests in the same way as the initial

request, i.e., again without index. In this way, we obtain a situation of local caching

of information for all existing broker instantiations, thus decreasing the overall amount

of result generations and, possibly, network traffic, as we avoid the re-generation of

the same requests from different requesters. On the other hand, we may end up storing

information which never gets used.

In general, this approach is appropriate when there may be several requests of the

same item.

We encode the local caching protocol with the following LO rules.

(LCl): broker(wo)@requ(w)@split(wo,w,wl,w2)@init(wl,s)

< >-broker(wz) & process @ requ(w) @ const(s).

The request carries no index.

(LC2): const(s) @free-k @ nosolution-k(T, S) @ seek-k(s, w) @ ^requ(w)

< >-const(s) @ requ(w).

210 U, M. Boryhf et al. I Scrrmv of Computer Proyrartminy 30 (1998) 201725

If a solution to the kth subproblem specified through w has not yet been obtained, the

agent sends a de-indexed subrequest. The token nosolution-k(l‘,s) checks the multiset

1’ of already obtained results; if and only if none of the elements of ZF complies with

the constraint for the kth argument position, the token holds. Even if an answer arrives

which complies with the constraint for the kth argument position, but is not checked

in time, the only drawback is that a redundant subrequest will be generated. Effective

handling of negative information of this kind is a well-known problem in concurrent

programming, for which first results can be found in [33].

(LC3): constfs) @ answer(x) @ seek-k(s, W) @ sat(x. W) @ ins-k(x, S, s’)

< >-const(s) & const(s’) @bound-k(x).

If a partial result x is (already) found that complies with the constraint w for the

kth argument position, the answer x is (re-)used.

(LC4): arity-n @bound-1(x1) @ . . . @ bound-n(x,)

< >-tuple-n(x,, . ,x,).

As in rule (RS4), using tuple-n(xl, . . _ ,xn), the generator produces a result tuple

res(x) = y(xl ,. . . .X,~).

(LC5): process @ res(x) C >-process&process(x).

Again, this rule generates a new token in the pool representing the “memory” of the

broker. It can be reused by triggering the next rule, whose task is to check whether the

answer produced by the generator contained in the token res(x) satisfies the constraint

of a request. Eventually, the token is broadcast to all existing broker agents, by means

of the unindexed token answer(x).

(LC6): process(x) @ requ(w) @ sat(x, W) @ -answer(x)

< >-process(x).

The generated token is cached in process(x) and is broadcast to all other agents.

4. Analysis of reuse of information in the two protocols

In this section, we compare the behavior of request-subrequest and local caching

from the point of view of the reuse of information. In particular, we shall substantiate

the hypothesis that local caching performs better than request-subrequest when (and

only when) reuse of partial results is high.

To define the terms of comparison, we introduce the notion of a tizeuszlre of’ wux R

in terms of the number of the partial results that can be reused. Thus, R will provide a

heuristic for the choice of the appropriate protocol. High values of R suggest choosing

the local caching protocol, while low values of R indicate using the request-subrequest

protocol.

To be as explicit as possible, we define R for two domains given: one, the set of

propositional formulas, and the second, the algebra of closed first-order terms. Indeed,

the latter domain fully generalizes the former. Throughout the paper, propositional

U. M. Boryhoff et al. I Science of Computer Programming 30 (I 998) X-225 211

formulas will provide a suitably simple yet non-trivial specific case where to exemplify

our concepts and techniques for the analysis of the reuse of information in DPS.

4.1. Specific case: propositional forrwlas

The value R gives a measure of the reusability of tokens in the generation of a

well-formed propositional formula, by counting the number of occurrences of the same

subformula in a given propositional formula.

Definition 3. Let CI and fi represent well-formed propositional formulas, and let A

stand for a possibly empty multiset of formulas. Let {Al, AZ,. . . ,A,I} represent a set

of propositional atomic formulas. Furthermore, let tiz(Ai) express the multiplicity of

occurrences of A; in {Al,A2,. . ,A,,}.

R({aVfl} UA)=R({a,/}UA)

R({ccvx}uA)=R({cx,a}UA)+2

R({rx /I P} U A) = R({a,p} U A)

R({a A CI.} u A) = R({z,cc} U A) + 2

R({Tx} u A) = R({sr} u A)

R({A,,.. ., %I}>= c m(A)
.4, 6 {A, ,.... A,,}
where m(.4,) > I

Example 4. The following are two formulas with the same number of propositional

atomic formulas where the measure of reuse R is low in the former and high in the

latter:

G, = AI v (A2 V (A3 v A4))

KM=(AI vA1Jvc.41 VAI)

In the first case, the value of reuse R({cc,}) is 0 (no reuse at all), while in the second

the value of reuse R({C(M)) is 10 (the maximum value of reuse for a formula of

length 4).

At first glance, the definition of the measure of reuse looks rather arbitrary. However.

it can be easily generalized, as we show just below.

4.2. Algebra of closed jirst-order terms

We give now a definition of R for the case where the minimal model is any algebra

of closed first-order terms. As can be seen, 3 this definition generalizes Definition 3.

3 I.e.. by interpreting ‘V’ and ‘A’ as functions of arity 2, and seeing propositional atomic formulas as
constants.

212 U.M. Boryhof et al. IScience of Computer Programming 30 (1998) 201-225

Definition 5. Let il indicate a possibly empty multiset of terms in a signature and let

{a,,..., a,} represent a set of constants. Furthermore, let m(tl) express the multiplicity

of occurrences of term fi in the multiset {ti , . . . , t,}, and m(q) express the multiplicity

of occurrences of constant ai in the multiset {al,. . . ,a,,}.

R({f(t,,...,t,)}Un)=R({tl,...,~,}Un)+ c m(ti>

f, E {t I,.... t,)
where m(f,) > I

N{~l,...,~,})= c 44 1
a, E {a ,..... 4,)

where m(a,) > I

Example 6. In analogy to the previous example, we give two terms with the same

number of constants for which there are two different values for the measure of reuse:

In the former case, the value of reuse R({t,}) is 0 (no reuse at all), while in the

second the value of reuse R({thf}) is 10 (the maximum value of reuse for a term of

length 4; note that, R({f(tl,. ., t,)}) =R({f(f(tl,. . . , t,))}).

4.3. Example for the reuse in the local caching protocol

Below we present an example of reuse of information in the local caching protocol,

in the case of the generation of the minimal model of an algebra of closed first-order

terms under the constraint w represented by the set of terms t E 3 whose length L(t)

is not more than 3.

Let g be a generator of arity 2. According to the computational model that takes

into account the interdependencies of the tokens of the generators, we take as i the

following function mapping fJ(Y’) into itself:

G((tl,tl,t3))={((tl,t2,t3)EF3 I(tl,tz)~.F~ and tj=g(tl,tz)}.

It can be immediately verified that g satisfies the properties of the approximating func-

tion described in [l] as: ,cJ : p(P+‘) ++ g(9’“+‘) where

VS E fJ(g”+‘): 3 n S c g”(S).

Thus, the interdependency function computes an upper approximation of the part of

any subset of SW’ which is included in the graph of the generator’s function. Being

an approximation function, we assume that B has the usual (anti-)closure properties,

i.e., it is reductive, monotonous and idempotent, i.e.

S(s) c s

~S>SI?S2, if s1 c s2 then J(si) c I”

m(s)) = 8s)

U. M. Borghoff et al. IScience oj Computer Proyrrmuning 30 (1998) X1-225 213

When 5 is thus defined, the semantics of the token ins-k of rule (LC3) and init of

rule (LCl) are well defined. Let us now analyze the flow of messages in the local

caching protocol.

A broker is initially given the scope wo = {t E 9 1 L(t) < 3). Suppose it receives the

request requ(w) where w = {t E ,YlL(t)<2}. As explained before, the token split(lvO,++:

W~,PQ) produces two new sets WI and ~‘2. In our example, it immediately follows that

wI = WO~K’=JV and w2 = WO~~MV= {t E JIL(t) = 3). Besides, the token init(w,,s)

will set s = {t E Y 1 L(t) d 2). By triggering the rule (LCl), a new agent will be

spawned, whose scope will be held in s.

Let us focus our attention on this new agent. Suppose the tokens seek-l and free-l

are already present in the agent’s multiset of tokens; then, token seek-l will activate the

backdependency function on the broker-local constraint store s, establishing a constraint

over the arguments. Notice that since L(t) < 2, the backdependency function will deliver

a subrequest to a zero-ary or unary broker. This will produce a subrequest to another

agent, encoded as the argument of the token requ. If the answer to this request is already

present in the broker’s local storage, encoded as the argument of the token answer,

then rule (LC3) will be triggered, instantiating the first argument and generating the

answer to the initial request M’. The argument of the answer could instead have been

generated by the broker itself during a past computation, and then broadcast to all

existing brokers, as shown in rule (LC6).

4.4. Coinparing reuse iiz the two protocols

Both the request-subrequest and the local caching protocol provide support for re-

using already generated results. The main difference between the two protocols is that

local caching allows a structured possibility of reuse, i.e., it automatically binds the new

results of a generator with the results that are already known. By contrast, as illustrated

in rule (RS6), the request-subrequest protocol offers only unstructured memory, namely

it merely stores the results via the persistence of the token process(x) in the state of

the requestee broker.

This difference in behavior is illustrated through the example of Fig. 2. where a

broker associated with a generator g of arity 2 asks two other brokers a request of

the same kind; these, in turn, ask two other brokers a subrequest to generate tokens a

and 6. The request-subrequest protocol allows a simple form of reuse, amounting to

storing the partial results a and b in the requestee broker which can then re-deliver

such results upon new requests without newly generating them. By contrast, the local

caching protocol allows complete re-use of results, shifting all the computational load to

the broker associated with the generator g. Generators for a and b send their answer to

y to yield y(a, b); this token is returned in a de-indexed fashion and reaches all existing

brokers, that can then use it to build the new token g(g(a, b), g(a, b)). The local caching

protocol’s structured reuse dramatically reduces the number of brokers involved, even

though the de-indexed message flow characteristic of local caching produces in some

cases bundles of wasted messages.

214 (I. M. Boryhoff et al. IScience of Computer Programming 30 (1998) 201-225

broker for g broker for g

request-subrequest protocol

broker for a broker for b

local caching protocol

Fig. 2. Comparison of the message flow in the both protocols

4.5. The average quantity of reuse

In the previous section, we have shown how a numerical value can be assigned to a

given DPS problem expressed as a first-order term. This numerical value corresponds

to the measure of reuse of information for that specific problem. To make practical

sense of this measure of reuse, think of the following simple procedure:

~ Define a criterion for the size of DPS problems in a given domain. For instance,

we can choose to treat problems up to an arbitrary length n, where length is defined

w.r.t. the encoding of a problem as a first-order term.

- Calculate the mean value of reuse p,, for all problems of length less than or equal

to n. This can be done by exhaustively computing the individual value of reuse for

each term of length less than or equal to n, and then dividing the sum of all values

by the corresponding number of terms.

- Use further criteria to measure additional costs in the two protocols. For instance,

determine the average number BS, of brokers spawned for all problems of length less

than or equal to n in the given domain according the request-subrequest protocol.

See [2] for techniques for determining these parameters.
_ Now take the value ,u,, * BS, and, when faced with the question of which protocol

to use for the treatment of a specific DPS problem of length less than or equal to n

in the given domain, apply the following rule of thumb: if the individual value of

reuse R for the specific problem is greater than ,LL,, * BS, then opt for local caching,

otherwise stick to request-subrequest.

U. M. Borghqf et al. I Science of’ Computer Programming 30 (I 998) 201-225 215

An interesting problem arises when the average value of reuse cannot be computed

because the criterion for fixing the size of a DPS problem does not determine a finite

set. Take for instance the following recursive ambiguous context-free grammar G for

generating boolean expressions, where with the symbol F we denote a generic propo-

sitional formula, with A an atomic formula, and with a, b, c and d we denote four

particular atomic formulas:

F+A(FVFjFAFI+I(F)

A+alblcld

Now take the criterion for defining the size of a problem to be given by the number

n of occurrences of atomic formulas in a given formula; it is easy to see that for

any 12 >, 1 the number of such formulas is infinite. Yet the criterion is intuitively finite,

under the assumption that the equivalence from classical logic 71~ H c[(law of double

negation) holds. In fact, in this way any even number of occurrences of ‘1’ can simply

be ignored, and any odd number of occurrences of ‘1’ can be reduced to a single

occurrence of ‘1’. An easy variation of this case can be taken from text processing:

in the LaTex text processing system, any sequence of occurrences of the operator

{\mbox} can be reduced to a single occurrence of the same operator.

In the next section we formalize these arguments by showing how the criterion above

for the language of boolean formulas can still lead to a computable average of reuse if

the language is simplified by taking into account the semantic equivalences generated

by the law of double negation. Section 4.8 provides a general set of simplifying tech-

niques that can be applied to all DPS problems as formalized in the CBKB framework.

Interestingly enough, this is done by reducing DPS problems to parsing problems; in

a way, this generalizes to DPS the relationship between parsing and database querying

as characterized in [30,41].

On the other hand, the case of a boolean formula with multiple occurrences of the

same subformula can be thought as an abstract version of many real-life examples,

where the same piece of information is used over and over again in different places.

Consider for example a hyper-document where e.g. all Xerox copiers are described in

terms of specification, costs, suppliers, references, table of comparisons, other com-

pany’s products, etc. Obviously, the same pieces of information (e.g., price list, vendor

addresses, warranty text, Xerox logo and Xerox common information,. . .) are reused

in most of the documents of this sort. In a hyper-document, typically, there are many

links that point to these pieces of information. Likely reuse of this information during

a browsing session suggests local caching as the appropriate protocol.

4.6. Language quotienting

Let 2 be an ambiguous propositional formula and M the set of parsed trees generated

by the grammar G, we denote with M,- the set of parsed trees having 2 as leaf. The

216 U. M. Boryhoff et ul. I Scirrm of Computer Proyranming 30 (1998) 201-225

cardinality of Mg is given by the (FZ - 1)th number of Catalan C’,~_-],’ where n is the

number of atomic formulas in g, i.e.

This holds, since we can set a bijection between the binary trees with n leaves and the

ways of putting parentheses to a word of length FL See [25] for details.

Example 7. Let E be a V b A c V a’. Then, we get M,- = {((a V b) A (c V d)), (a V (b A

(c v d))), (a V ((b A c) V d)), (((a V 6) A c) V a’), ((a V (b A c)) V d)}, and hence

/A4,-I = cs = 5.

Let A& be the (infinite) set of well-formed propositional formulas with II atomic

formulas yielded by the grammar G. Thus, the quantity

gives the average value for the measure of reuse R in the domain of well-formed

propositional formulas of length n. According to its value, the quantity Al,, supplies us

with a reliable criterion for deciding which of the two protocols is more suitable for

implementing the CBKB model in the domain of the well-formed formulas without

variables.

We now define the least equivalence relation P on the language L(G) generated

by the grammar G (which contains the following relation -) where CI stands for a

well-formed propositional formula:

((l)“Z) - 6! if II is even

((1)“~) - YY if n is odd

Now consider

L(G)
L(G)‘ = :.

We can now simplify L(G) to the quotient language L(G)’ without loss of gener-

ality (by assuming the equivalence llrxt,c(). Clearly in L(G)‘, for any n the set

M,, of well-formed propositional formulas with n atomic formulas is finite, and this

makes possible to compute the average value of reuse for formulas with n or less

occurrences of atomic formulas. Furthermore, we can prove a proposition which shows

an interesting relation between the individual measure of reuse R and the number of

Catalan.

Proposition 8. Let L(G),; be the set of well-formed form.dus in

utornic occurrences, and let 4 be the number of d@erent atomic

yran~r~ar G, then IL(G); 1 = C,,-1 @‘23np2.

L(G)‘ hurk~ n

fornmhs in the

U. M. Borghoff et al. IScience of Computer Progranming 30 (1998) 201-225 217

Proof. Let T be a binary tree representing the parse of a formula with n atomic

occurrences. Obviously, the number of nodes of T is 2n - 1, and the total number of

inner nodes (i.e., nodes that are not leaves) is (2n - 1) - n = n - 1. Now there will

be only two ways of generating a well-formed propositional formula from the tree 2’.

Briefly,

(i) since every inner node is binary, and since a propositional formula has only two

binary connectives (‘V’ and ‘A’), there are 2”-’ ways of placing these connectives

to the formula.

(ii) since the double negation is absorbed by a blank, there are CfI,’ (2n1Y’) (= 2’+’)

ways of adding the negation symbol (i = 0 represents the case where no negation

symbol is set).

It is easy to see that there is a bijection between the binary trees generated in this way

and the well-formed propositional formulas of L(G)‘. Since there are Cn_i different

binary trees and only @ different dispositions of 4 atomic formulas into n atomic

occurrences, the claim follows. Cl

By Proposition 8, we can now capture the quantity pL, defining the average value

for the measure of reuse, with the following closed formula

4.7. Discussion

While local caching would seem in general appropriate for parsing boolean expres-

sions with the grammar above, there are cases where request-subrequest is instead

preferable.

As shown in Fig. 3, in the generation of the parse tree for the formula x = ((a A

b) A (c v d)) where only little reuse of previous partial results is possible, the request-

subrequest protocol is the right choice. As stated in the grey box of the ‘and’-broker’s

generator for the partial result (cVd), the possible reuse of information is low, and as

a consequence the use of the local caching protocol is not recommended.

The local caching protocol is particularly appropriate when parsing formulas with

multiple occurrences of the same subformulas, as in the case of the formula x = ((a A

a) A (a A a)). This aspect is put in evidence in Fig. 4 by showing the traffic among

brokers agents during the generation of x Solid lines represent messages which are

effectively used in constructing the token, while dashed lines stand for broadcast mes-

sages which could possibly get wasted.

The broker agent in charge of a sends a to the ‘und’-broker’s generator which binds

(and reuses) this argument to generate (a A a); finally, this new token is again reused

and bound twice for the generation of the token ((aAa)A(a Au)). This is a significant

case of reuse, obtained at the price of a bundle of possibly wasted messages.

Fig. 5 focuses on how the number of broadcast messages grow with increasing the

number of brokers. It displays a rich bundle of messages, very few of which (printed

218 I/. M. Borghoff et al. I Science of‘ Computer Programming 30 (I 998) 201-225

broker for ‘and’

broker for a broker for b broker for c broker for d

Fig. 3. Message flow during parsing of a formula with possible reuse.

broker for a broker for ‘and’

- useful message flow
.>

useless message flow

Fig. 4. Message flow in the local caching protocol with two broker agents.

in solid lines) are actually used for the generation of the token ((aVb)A (aVb)). Here

the ‘and’-broker’s generator can benefit of the deindexation of the answer because both

pools containing the tokens free- 1 and free-2 receive the partial result (a V 6), causing

the generator to yield the answer.

4.8. Algebraic analysis

We now generalize the parsing example of Section 4.6 by showing how DPS prob-

lems can be mapped into grammars. The computation of the average value of reuse

U.M. Borghoff et al. IScience of Computer Programming 30 (1998) 201-225 219

broker for ‘and’ broker for ‘or’

- useful message flow
.>

useless message flow

Fig. 5. Message flow in the local caching protocol with four broker agents

can then take advantage of Schiitzenberger’s techniques [36,37] based on algebraic

and transcendental generating functions. These techniques allow the analytical compu-

tation of combinatorial quantities relative to the language generated by a grammar G,

allowing a full (although possibly asymptotic) analysis of the reuse. More specifically,

these techniques support the calculation of the mean value of reuse pn: again, this is

done by exhaustively computing the individual value of reuse for each word in the

language of length less than or equal to 12, and then dividing the sum of all values by

the number of words up to length n. The number of words up to length n is provided

as part of the generating function for G.

In two steps, we elaborate on generalizing the heuristic presented before:
_ first, we convert a Herbrand domain into a grammar G, and
_ then we apply some well-known algebraic techniques to evaluate the measure of

reuse for the terms in the Herbrand domain, i.e., we calculate the mean value of

reuse pa for all words in L(G).

Let us focus on the first step. Given a signature Z, the algebra of closed terms Tr can

be generated by a suitable algebraic operator T by means of a minimum fixed-point

procedure. It can be seen that Tz = U,“=, T”(0). This is a worthy, although informal,

argument for the recursive enumerability of Tz, so we are able to state the following

proposition.

220 U.M. Borghoff et al. I Science of Computer Programming 30 (1998) 201-225

Proposition 9. Let Tz be an algebra of closed terms, then there exists a grammar G

such that the language generated by G is L(G) = Tz.

The grammar generating the closed terms algebra TX could be given by the quadruple

G = ({term}, CO, {term H f(term, . . , term)}, {term}),

where {term} is the set of non-terminal symbols, Ca is the set of terminal symbols,

and where f E C. Since this is an unambiguous grammar, we can apply to G all the

methods and tools derived from the theory of algebraic languages. In order to sim-

plify the algebraic analysis from the point of view of reuse, we will quotient the

Herbrand domain according to the symmetric transitive closure of a rewrite-rules sys-

tem with roots in the semantic properties of the domain. Then we derive once again

the generating grammar for the quotient of L(G) and reapply the algebraic methods

to the simplified domain, increasing computational complexity. The main problem is

to keep the quotient of a generated language as computable as possible. From the

point of view of computability theory, this amounts to keeping the quotient set at

least recursively enumerable. For this property to be meaningful, one must identify an

equivalence class with a particular element, namely a normal form with respect to an

equational theory E. Thus we can set an injective map I between Tz/E and Tz such that

Z([t]) = n&(t). Then we can embed Tz/E into the free monoid (I)* which is codifiable

in N.

This creates an interesting connection between the results of our approach and the

decidability problem of equational first-order theories. Indeed the following proposition

is an immediate consequence of Birckhoff’s basic result on equational logic.

Proposition 10. Let TX be an algebra of closed terms and let E be an equational

first-order theory over C. If E is decidable then there exists a grammar such that

L(G) = Tz/E.

Example 11. Consider the algebra of well-formed propositional formulas of the pre-

ceding section and let E = { T-X!= a}. This set is trivially decidable, so the quo-

tient algebra modulo E can still be generated by a grammar (it will be the set

{a,-~ where do is a or b}).

After the discussion of the conversion of a Herbrand domain into a grammar G,

we now use Schiitzenberger’s method to simplify the combinatorial complexity of the

language and to calculate the mean value of reuse pn for all words in L(G).

Algebraic languages can be associated with an algebraic function fL, such that, if

fL(X> = cr, WiX f or some subset of the real numbers, then wi gives the number of

words of the language L whose length is i. Consequently, we can use the wi in our

heuristic to give a more general measure for ,u~. Having a measure of reuse R for an

individual word and letting A&, represent the set of words of L up to length n, the

U.M. Borghoff et al. IScience of Computer Programming 30 (1998) 201-225 221

mean value of reuse p, for all words in AI, is given by

c rnEM” R({m])

pn = c;=,W

Example 12. Let L(G) be the language generated by the following grammar

F++,jaIb (1)

Applying Schiitzenberger’s method to such a grammar, we get the following generating

function f~o)(x) = 2x/(1 - x) which, in the interval (- 1,1) is the functional limit of

the power series cz, 2x’. Therefore, for each integer i there will be two words of

length i.

Now let us quotient the language L(G) with respect to the equivalence relation gener-

ated by equational system E = { 71x =x}. This is a trivial decidable equational system

where the normal form of a term is easily derivable; thus, according to Proposition 10,

we expect L(G)/E to be a language generated by a grammar. This holds since the

following grammar G’, defined by

F+yGIG

G+alb

generates the language L(G)/E.

(2)

(3)

If we now apply the Schiitzenberger method to L(G’) we find a corresponding gener-

ating function f~(of)(~) = 2x + 2x2 whose power-series expansion is immediate. Again,

the central idea of this method is that the “quotienting” of a grammar-generated lan-

guage actually trims the recursive structure of the production rules. This is reflected

in the Schiitzenberger method by a loner degree or, more generally, by a simpler

algebraic expression of the generating function.

5. Related work

This paper relates directly to previous results published in [l] where the notion of

Constraint Based Knowledge Broker was first introduced. More recent work on the

CBKB model [2] has provided a number of complexity results concerning the number

of agents needed in the request-subrequest protocol, and the number of messages sent,

both in the foml of requests and answers. These results have directly influenced the

idea of investigating different protocols, so as to handle a variety of problem domains

and system architectures.

For a conceptual characterization of Distributed Problem Solving see [17, 181.

A number of different cooperation strategies between agents have been proposed, rang-

ing from strongly hierarchical master-slave relationship (as in the CBKB framework

using the request-subrequest protocol), to the less hierarchical Contract-Net [39], to the

sharing of common goals. Both the Contract-Net protocol and the CBKB framework

222 U. M. Borghoff et al. IScience of Computer Programming 30 (1998) 201-225

apply structured messages to model agent interaction. The Contract-Net protocol sup-

ports an application protocol for communication between problem solving agents and

facilitates distributed control during the problem solving effort. Special emphasis is put

on finding those agents which are eligible for solving the created subproblems, and on

the negotiation between agents for information exchange with respect to subproblem

descriptions, required agent capabilities, and subproblem solutions [151. The Contract-

Net protocol can be seen as a particular instance of a CBKB-system with two broker

roles, namely a manager and a set of bidders. The manager tries to locate a contractor

among the bidders to solve a particular problem. As a result, the manager is equipped

with a very specific generator for the bid selection. The protocol is negotiation-based

along five different phases. In the first phase, the manager announces the problem by

sending a request for bids to the set of bidders, e.g. by sending a request constraining

the problem domain and constraining the capabilities a potential contractor must have.

In the next phase, the bidders check the problem constraints and propagate their bids,

e.g. by tailoring the problem domain to their scope. The next phase comprises the se-

lection of a contractor by the manager. Upon receipt of answers the manager invokes its

generator. The result generation is quite simple. If the bid satisfies the initial constraint,

a potential contractor is found. Among all potential contractors, a “best” (according to

some problem-dependent criteria) potential contractor is selected as contractor. In the

fourth phase, the problem solving task is transmitted to the contractor. The final phase

concludes with the problem solving itself.

More recently, a cooperative information gathering approach using a multi-

agent system based on DPS has been illustrated in [29]. Additional relevant litera-

ture can be found in [26]. Cooperative Solutions for Constraint Satisfaction Problems

have been addressed in [13] where quantitative measures (e.g. time to solution distri-

butions) based on experiments are given. However, so far, DPS has been missing a

real computational model, and our work can be seen as a first contribution to fill this

gap.
Concurrent Constraint Programming - the background for our CBKB model - in-

troduced in [32] (see also [35]), applies the insights gained through Constraint Logic

Programming [21,23] to concurrent programming. A process transition is controlled by

the presence of a constraint in the constraint store, or, more precisely, by its entail-

ment from the constraint store. This enforces a strictly monotonous view of constraints,

which has been partially relaxed in [14, 16,341 (for a similar kind of relaxation, see

also [22]). This approach does not make the distinction between two different uses

of constraints: for local problem solving and for communication (and hence for Dis-

tributed Problem Solving). By contrast, this distinction appears clearly in the CBKB

model, where communication of constraints is achieved via the global flow of mes-

sages while each individual broker agent encapsulates its own local problem solver.

Thus, our approach can also be seen as a contribution to merging the two paradigms

of Concurrent Constraint Programming and of Coordination Languages [111, where a

coordination language is seen as the layer for gluing together independent software

components to perform a global activity.

U.M. Borghoff et al. IScience of‘ Computer Programming 30 (1998) 201-225 223

An early contribution in this direction (dating well before the programming paradigms

of both Concurrent Constraint Programming and Coordination Languages) can be found

in [28], where a framework is proposed in which a set of constraints is solved by a sys-

tem of cooperative, distributed, specialized constraint solvers which exchange their rel-

evant results. This framework is based on a simple broadcast mechanism for constraint

propagation, without further investigations on refinements, variations and complexity

of this basic protocol.

6. Conclusions and future developments

In this paper, we have defined a design space of constraint-based communication

protocols for Distributed Problem Solving (DPS) by formally defining two opposite

extremes of information sharing. One extreme captures the hypothesis of minimal in-

formation reuse: all generated information is potentially made available, but can be

delivered only in response to specific requests. The opposite case is based on the idea

of maximal information reuse: all generated information is immediately broadcast to

all agents.

We have formally introduced the notion of quantity of reuse of information to ob-

tain a heuristic to decide between the two protocols, as well as a basic metric over

the space of protocols that lie in between the two extremes. These other protocols

define intermediate attitudes towards information, in between the hypotheses of min-

imal and maximal reuse, and in general will be the more usefil for most practical

applications. We need flexible ways for expressing such protocols, and for mixing

them freely in the overall solution of a problem. In addition, we need ways to guess

the right protocol, or the right melange of protocols, for specific problems. This calls

for contributions from such diverse fields as programming linguistics, learning and

simulation.

Another important area of investigation is extending the choice criterion for proto-

cols to take into account not only the type of DPS problem but also the characteristics

of the underlying system architecture. For instance, transputers seem particularly well-

suited for the request-subrequest protocol, as the cost of communication is low and

there are strong limitations on storage. By contrast, for distributed architecture based,

say, on networks of workstations, local caching would appear as the most appropriate

solution.

Acknowledgements

We would like to thank Natalie Glance and the anonymous referees for their helpful

comments on earlier versions of this paper.

224 U.M. Borghoff et al. IScience of Computer Programming 30 (1998) 201-225

References

[l] J.-M. Andreoli. U.M. Borghoff, R. Pareschi, Constraint-based knowledge brokers, in: H. Hong (Ed.),

Proc. 1st Intemat. Symp. on Parallel Symbolic Computation (PASC0’94), Hagenberg/Linz, Austria.

1994, Lecture Notes Series in Computing, Vol. 5. World Scientific, Singapore, pp. 1-l 1.
[2] J.-M. Andreoli, U.M. Borghoff, R. Pareschi, The constraint-based knowledge broker model: Semantics,

implementation and analysis, J. Symbol. Comput. 21 (4) (1996) 6355667.
[3] J.-M. Andreoli, U.M. Borghoff, R. Pareschi. J.H. Schlichter, Constraint agents for the information

age, J. Universal Comput. Sci. 1 (12) (1995) 7622789. Electronic version available at

http://www.iicm.edu/jucs.
[4] J.-M. Andreoli, R. Pareschi. Communication as fair distribution of knowledge, in: Proc. Conf. on Object-

Oriented Programming Systems, Languages and Applications (OOPSLA’91), Phoenix, AZ, November

1991. ACM SIGPLAN Notices 26 (11) 2122229.
[5] F. Arcelli, U.M. Borghoff, F. Formato. R. Pareschi. Tuning constraint-based communication in distributed

problem solving, in: Proc. 1st Intemat. Workshop on Concurrent Constraint Programming (CCP’95),

Venice, Italy, May 1995.
[6] J.-P. Banfitre, D. Le Metayer, The GAMMA m and its discipline of programming, Science of Computer

Programming 15 (1990) 55-77.
[7] G. Berry, G. Boudol, The chemical abstract machine, in: Proc. 17th ACM SIGACT/SIGPLAN Annual

Symp. on Principles of Programming Languages, San Francisco, CA, 1990, pp. 81-94.
[8] U.M. Borghoff, LOKIT: A toolkit for building distributed collaborative applications, Rank Xerox

Research Centre, Grenoble Lab., France, Technical Report CT-002, May 1994.
[9] U.M. Borghoff. R. Pareschi, H. Karch, M. Niihmeier, J.H. Schlichter, Constraint-based information

gathering for a network publication system, in: B. Crabtree. N. Jennings (Eds.), Proc. 1st Intemat.

Conf. on the Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM’96),

London, UK, 1996, The Practical Application Company Ltd., Blackpool, UK, pp. 45-59.
[lo] U.M. Borghoff. J.H. Schlichter, On combining the knowledge of heterogeneous information

repositories, J. Universal Comput. Sci. 2 (7) (1996) 515-532. Electronic version available at

http://www.iicm.edu/jucs.
[l l] N. Carriero, D. Gelemter, How To Write Parallel Programs. A First Course, MIT Press, Cambridge,

MA, 1990.

[12] K.L. Clark, PARLOG and its applications, IEEE Trans. Software Engrg. 14 (12) (1988) 1792-1804.
[13] S.H. Cleatwater, B.A. Huberman, T. Hogg, Cooperative solution of constraint satisfaction problems,

Science 254 (1991) 1181-1183.

[14] P. Codognet, F. Rossi. NMCC: Constraint enforcement and retraction in CC programming, in: Proc.

12th Intemat. Conf. on Logic Programming (ICLP’95), Kanagawa, Japan, 1995. MIT Press, Cambridge,

MA.

[151 R. Davis, R.G. Smith, Negotiation as a metaphor for distributed problem solving, Artif. Intell. 20 (1)

(1983) 63-109.
[16] F.S. de Boer, J.N. Kok, C. Palamidessi, J. Rutten, Non-monotonic concurrent constraint programming,

in: D. Miller (Ed.). Proc. Intemat. Logic Programming Symp. (ILPS’93), 1993, MIT Press, Cambridge,

MA, pp. 315-334.

[17] K.S. Decker, E.H. Durfee, V.R. Lesser, The evaluation of research in cooperative distributed problem

solving, in: M.N. Huhns. L. Gasser (Eds.), Distributed Artificial Intelligence, 1989, Research Notes in

Artificial Intelligence. Vol. 2. Pitman/Morgan Kaufmann, San Mateo.
[18] E.H. Durfee, V.R. Lesser, D.D. Corkill, Trends in cooperative distributed problem solving, IEEE Trans.

on Knowledge and Data Engrg. 1 (1) (1989) 63-83.
[19] J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987) l-102.
[20] S. Haridi et al., Concurrent constraint programming at SICS with the Andorra Kernel Language, in:

P. Kanellakis, J.-L. Lassez, V. Saraswat (Ed%), Proc. 1st Workshop on Principles and Practice of

Constraint Programming, Providence, RI, 1993.
[21] P. v. Hentenryck, Constraint satisfaction in logic programming, Logic Programming Series, MIT Press.

Cambridge, MA, 1989.
[22] M. Henz, G. Smolka, J. Wiirtz, Object-oriented concurrent constraint programming in Oz, in:

P. v. Hentenryck, V. Saraswat (Eds.), Principles and Practice of Constraint Programming, MIT Press,

Cambridge, MA, 1995. pp. 27-48.

U. M. Borghoff et al. IScience of Computer Programming 30 (1998) 201-225 225

[23] J. Jaflar, J.-L. Lassez, Constraint logic programming, in: Proc. 14th ACM SIGACTSIGPLAN Annual

Symp. on Principles of Programming Languages, Munich, Germany, January 1987, ACM, New York,

pp. 111-119.

[24] S. Janson, S. Haridi, Programming paradigms of the Andorra kernel language, in: V. Saraswat,

K. Ueda (Eds.), Proc. Intemat. Logic Programming Symp. (ILPS’91), San Diega, CA, 1991, MIT

Press, Cambridge, MA.

[25] D.E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd ed., Addison-

Wesley, Reading. MA, 1973.

[26] S. Lander, V.R. Lesser, Customizing distributed search among agents with heterogeneous knowledge,

in: T.W. Finin, C.K. Nicholas, Y. Yesha (Eds.). Proc. 1st Intemat. Conf. on Information and Knowledge

Management, Baltimore, MD, November 1992, Springer, Berlin.

[27] J. Meseguer. A logical theory of concurrent objects and its realization in the Maude language, in:

G.A. Agha, A. Yonezawa, P. Wegner (Eds.), Research Directions in Concurrent Object Oriented

Programming, MIT Press, Cambridge, MA, 1992, pp. 314-390.

[28] G. Nelson, D.C. Oppen, Simplification by cooperating decision procedures, ACM Trans. Programming

Languages Systems 1 (2) (1979) 245-257.

[29] T. Oates, M.V.N. Prasad, V.R. Lesser, Cooperative information gathering: A distributed problem solving

approach, Dept. Computer Science, Univ. Massachusetts, Amherst, MA, Technical Report TR-94-66,

1994.

[30] F.C.N. Pereira, D.H.D. Warren, Parsing as deduction, Proc. 21st Annual Meeting of the Association for

Computational Linguistics, MIT, Cambridge, MA, 1983.

[31] G.-C. Roman, H.C. Cunningham. Mixed programming metaphors in a shared dataspace model of

concurrency, IEEE Trans. Software Engrg. 16 (12) (1990) 1361-1373.

[32] V.A. Saraswat, Concurrent constraint programming languages, PhD thesis, Carnegie-Mellon University,

Pittsburg, PA, 1989.

[33] V.A. Saraswat, R. Jagadeesan, V. Gupta, Foundations of timed concurrent constraint programming,

Proc. 9th IEEE Symp. on Logic in Computer Science, Paris, France, 1994, IEEE Comp. Sot. Press,

Los Alamitos, CA, pp. 71-80.

[34] V.A. Saraswat, P. Lincoln, Higher order linear concurrent constraint programming, Technical Report,

Xerox Palo Alto Research Center, Palo Alto, CA, 1992.

[35] V.A. Saraswat, M. Rinard, P. Panangaden, Semantic foundations of concurrent constraint programming,

in: Proc. 18th ACM SIGACTSIGPLAN Annual Symp. on Principles of Programming Languages,

Orlando, FL. January 1991, ACM, New York, pp. 333-352.

[36] M.P. Schtitzenberger. Sur une variante des fonctions sequentielles, Theoret. Comput. Sci. 4 (1977).

[37] M.P. Schiitzenberger, The critical factorization theorem, in: M. Lothaire (Ed.), Combinatorics on Words,

Encyclopedia of Mathematics and its Applications. Vol. 17, Addison-Wesley, Reading, MA, 1983.

[38] E. Shapiro, The family of concurrent logic programming languages, ACM Comput. Surveys 21 (3)

(1989) 413-510.

[39] R.G. Smith, The contract net protocol: High-level communication and control in a distributed problem

solver, IEEE Trans. Comput. C-29 (12) (1980) 1104-1113.

[40] K. Ueda. Guarded horn clauses, in: E. Wada (Ed.), Logic Programming, 1986, Lecture Notes in

Computer Science, Vol. 221, Springer, Berlin, pp. 168-179.

[41] L. Vielle, Recursive axioms in deductive databases: The query-subquery approach, in: L. Kerschberg

(Ed.), Proc. 1st Conf. on Expert Database Systems, Benjamin/Cummings, Menlo Park, CA, April 1986.

[42] J.-M. Andreoli, U.M. Borghoff. R. Pareschi, Signed feature constraint solving, Proc. 3rd Intemat. Conf.

on the Practical Application of Constraint Technology (PACT’97), London, UK, April 1997, The

Practical Application Company Ltd., Blackpool, UK.

[43] U.M. Borghoff, P.-Y. Chevalier, J. Willamowski. Adaptive refinement of search patterns for distributed

information gathering, in: A. Verbraeck (Ed.), Proc. Internat. Conf. EuroMedia/WEBTEC ‘96, London,

UK. December 1996, The Society for Computer Simulation, San Diego, CA, pp. 5-12.

