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1 Introduction

Born from closed string field theory, double field theory (DFT) [1–11] is constructed by

formally doubling all spacetime coordinates of the massless sector of closed string spec-

trum. DFT manifests an O (D,D) symmetry explicitly and the dual coordinates represent

the conjugation of winding numbers. Formally, all components of closed string fields are

formulated by double coordinates φI

(

XM
)

, where XM =
(

x̃i, x
i
)

, M = 1, 2, . . . , 2D and

i = 1, 2, . . . , D. In such a formalism, xi is the usual coordinates and x̃i denotes the dual

coordinates of winding momentum. Good reviews of DFT are given by [12–15].

To build an O (D,D) invariant spacetime action, a generalized O (D,D) metric is

introduced

HMN =

(

gij −gikbkj

bikg
kj gij − bikg

klblj

)

, (1.1)

unifying the spacetime metric gij and anti-symmetric Kalb-Ramond field bij altogether.

In this metric, M is an O (D,D) index, running from 1 to 2D. The O (D,D) invariant

spacetime action is built by contraction of O (D,D) indices,

S =

∫

dDxdDx̃e−2d

(

1

8
HMN∂MHKL∂NHKL − 1

2
HMN∂NHKL∂LHMK

−∂Md∂NHMN + 4HMN∂Md∂Nd

)

, (1.2)

where d is an O (D,D) scalar dilaton, defined by the usual dilaton φ through e−2d =
√
ge−2φ. Therefore, DFT is an effective theory for three massless fields: D dimensional

spacetime metric gij , the anti-symmetric Kalb-Ramond field bij and the scalar dilaton φ.

If we compactify d dimensions of D = n + d, the continuous O (D,D) group breaks to

O (n, n)×O (d, d;Z), where O (n, n) is still a continuous group and O (d, d;Z) is T-duality

in the compactified background. To be a consistent theory, DFT is required to be invariant

under the gauge transformations

δξHMN = L̂ξHMN ≡ ξP∂PHMN +
(

∂MξP − ∂P ξ
M
)

HPN +
(

∂NξP − ∂P ξ
N
)

HMP ,
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δd = ξM∂Md− 1

2
∂MξM , (1.3)

where ξM =
(

ξ̃i, ξ
i
)

and L̂ξ is the “generalized Lie derivatives”. Since DFT is based on

closed string theory, it must satisfy the level matching condition: L0− L̄0 = −piw
i = 0 for

massless states. In the language of DFT, the level matching condition is transformed to

the weak constraint: ∂M∂MA = 0 where ∂M =
(

∂̃i, ∂i

)

and A stands for an arbitrary field.

However, the weak constraint is insufficient to guarantee the gauge invariance. In order to

make ∂̃i∂i (δξΦ) = ∂̃i∂i (ξ · Φ) = 0, a much stronger constraint is imposed: ∂M∂M (·) where
· denotes any product of fields or gauge parameters. Under this strong constraint, only

half of the coordinates survive for all fields and gauge parameters and DFT reduces to the

D dimensional traditional low energy effective theory. In addition, there are many works

to imply that the strong constraint can be relaxed on a torus background, massive type

IIA and gauged supergravity [16–20]. The detailed discussions on constraint relaxation are

summarized in [15, 21].

It is widely believed that a non-trivial dilaton potential is forbidden by the generalised

diffeomorphism in DFT [22–25]. Considering the DFT action S =
∫

dxdx̃e−2dR, it proves

that R is an O (D,D) scalar and also a gauge scalar. Moreover, since the weight of

the O(D,D) scalar e−2d equals the unity, it is a density which is invariant under the

generalised diffeomorphisms when combined with the proper volume
∫

dxdx̃. The point is

that
∫

dxdx̃e−2d is the unique multiplying factor of the dilaton that respects the generalised

diffeomorphisms and O(D,D) symmetry. This is such a strong constraint that higher loop

corrections are completely excluded! It is worth noting that the dilaton will always increase

as time goes by and it also marks the growth of the curvature. However, the growth of

the string coupling gs = exp (2φ) and the growth of the Hubble parameter H lead the

universe approaching two limits [26], or two corrections to the low energy effective action:

(1) the string curvature scale, which requires the α′ corrections to the low energy effective

action when
√
2πα′H reaches 1, and (2) the strong coupling regime, which requires the

quantum loop corrections of the form e2nφ (· · · ) for non-negative integer n, when gs ∼ 1.

The first expansion has been discussed in ref. [27–30]. It would be unnatural that loop

corrections totally disappear in the formalism, since beyond both limits, the universe enters

the string non-perturbative regime, and the action with these two corrections will give us

some non-perturbative signatures which should be described by the yet-to-know M-theory.

The aim of this paper is to address the higher loop quantum corrections in DFT. To

achieve this purpose, one does not really need to consider the complete loop expansion but

justification of a pure dilaton potential is sufficient. However, a simple dilaton potential

of the form V
(

ed
)

does not work, since the product e−2dV
(

ed
)

is no longer a density

and breaks the gauge invariance of the action, though it is an O (D,D) scalar. It turns

out that in order to preserve the symmetries, a non-local dilaton d∗ has to be defined

to replace the ordinary local dilaton by the similar method used in the traditional string

cosmology [31]. Since this non-local dilaton e−2d∗ includes a proper volume, it does not

break the gauge invariance under the strong constraint. Then additional potential terms of

DFT action could be any regular function of this non-local dilaton. Moreover, if we choose
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the cosmological background and the cosmic-time gauge, the non-local dilaton e−2d∗ reduces

to the usual O (D,D) scalar dilaton e−2d multiplied by a proper volume. The cosmological

implications with this non-local dilaton have been discussed in our previous works [32, 33].

Ref. [34] discussed cosmological solutions with a constant dilaton potential.

The reminder of this paper is outlined as follows. In section 2, we discuss the gauge

transformations of DFT. We define the non-local dilaton in section 4 . Section 5 is our

conclusion and discussions.

2 Generalized Lie derivatives and gauge scalar

To begin with, we give a brief review of the gauge transformations based on refs. [4–7].

The DFT action, expanded in terms of gij , bij and d, can be recasted as

S = S(0) + S(1) + S(2), (2.1)

with

S(k) =

∫

dxdx̃L(k), k = 0, 1, 2, (2.2)

where the superscript denotes the number of ∂̃ in the DFT action. The full gauge trans-

formations can be written as

δξgij = Lξgij + Lξ̃gij + 2
(

∂̃kξl − ∂̃lξk
)

(gkibjl + gkjbil) ,

δξg
ij = Lξg

ij + Lξ̃g
ij −

[(

∂̃iξk − ∂̃kξi
)

gjlblk + (i ↔ j)
]

,

δξbij = Lξbij + Lξ̃bij + ∂iξ̃j − ∂j ξ̃i + gik

(

∂̃lξk − ∂̃kξl
)

glj + bik

(

∂̃lξk − ∂̃kξl
)

blj ,

δξd =
(

ξi∂i + ξ̃i∂̃
i
)

d− 1

2

(

∂iξ
i + ∂̃iξ̃i

)

, (2.3)

where Lξ is the Lie derivatives with respect to ξ, Lξ̃ is the dual Lie derivatives with respect

to ξ̃, ξ and ξ̃ are gauge parameters. The Lie derivatives and its dual for arbitrary tensors

u
j
i can be defined as follows

Lξu
j
i = ξp∂pu

j
i + ∂iξ

pu j
p + ∂pξ

ju
p
i ,

Lξ̃u
j
i = ξ̃p∂̃

pu
j
i − ∂̃j ξ̃pu

p
i − ∂̃pξ̃iu

j
p . (2.4)

We can split it into two parts according to the number of ∂̃ acted

δξ = δ
(0)
ξ + δ

(1)
ξ . (2.5)

These gauge transformations δ
(0)
ξ and δ

(1)
ξ are T-dual with each other. For example, to

consider the gauge transformations for dilaton δξd, we have

δ
(0)
ξ d = ξi∂id−

1

2
∂iξ

i,

δ
(1)
ξ d = ξ̃i∂̃

id− 1

2
∂̃iξ̃i. (2.6)
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In order to check the gauge invariance, we need to prove that

(

δ
(0)
ξ + δ

(1)
ξ

)(

S(0) + S(1) + S(2)
)

= 0. (2.7)

In other words, this equation requires the following conditions

δ
(0)
ξ S(0) = 0, (2.8)

δ
(1)
ξ S(2) = 0, (2.9)

δ
(0)
ξ S(1) + δ

(1)
ξ S(0) = 0, (2.10)

δ
(1)
ξ S(1) + δ

(0)
ξ S(2) = 0. (2.11)

Since equations (2.8) and (2.10) are T-dual versions of equations (2.9) and (2.11) respec-

tively, we only need to check equations (2.8) and (2.10). It is easy to see that equation (2.8)

is automatically satisfied since it is the standard gauge transformations of Einstein’s grav-

ity. One only needs to verify equation (2.10). Furthermore, since the Lie derivative terms

can be combined into total derivatives, one does not need to consider them in the cal-

culation. Because of the independence of gauge parameters ξi and ξ̃i, we can check the

gauge invariance with each of them respectively. For example, to check gauge invariance

of equation (2.10), we can set ξ̃i = 0 and ξi 6= 0, and vice versa.

In the language of O (D,D) symmetry, all gauge transformations above can be rewrit-

ten in terms of O (D,D) indices. For a tensor A N
M , the generalized Lie derivative is

defined as

L̂ξA
N

M ≡ ξP∂PA
N

M +
(

∂MξP − ∂P ξM
)

A N
P +

(

∂NξP − ∂P ξ
N
)

A P
M . (2.12)

The generalized Lie derivative also satisfies the Leibniz rule. The gauge transformation for

the generalized metric is

δξHMN = L̂ξHMN . (2.13)

For a scalar S or a generalized scalar A M
M , the generalized Lie derivative is simply

L̂ξS = ξP∂PS, L̂ξA
M

M = ξP∂PA
M

M . (2.14)

To consider the gauge transformations of any object W , we can split it into two parts

δξW = L̂ξW +△ξW, (2.15)

where △ξ also satisfies the Leibniz rule: △ξ (WV ) = (△ξW )V +W (△ξV ). The first term

of (2.15) is a Lie derivative, therefore it is covariant and we do not need to consider it as we

explained above. The second term of (2.15) transforms as a tensor. Therefore, it suffices

to check △ξW = 0 to confirm the gauge invariance of the DFT action. Now, recall the

DFT action,

S =

∫

dxdx̃e−2dR, (2.16)
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where

R =
1

8
HMN∂MHKL∂NHKL − 1

2
HMN∂NHKL∂LHMK

−∂Md∂NHMN + 4HMN∂Md∂Nd. (2.17)

We can find that

δξR = L̂ξR = ξM∂MR, (2.18)

with △ξR = 0. Therefore, R is a gauge scalar. Moreover, the dilaton term gives

δξe
−2d = L̂ξe

−2d = ∂M

(

ξMe−2d
)

, (2.19)

where L̂ξe
−2d = −2

(

L̂ξd
)

e−2d and L̂ξd = ξM∂Md− 1
2∂MξM . Since, the wight of this term

equals the unity, it is a scalar density. To calculate the weight of a density, we can use

the method introduced in refs. [35–38]. We first introduce the semi-covariant derivative,

∇C = ∂C + ΓC :

∇CTωA1A2···An
= ∂CTωA1A2···An

− ωΓB
BCTωA1A2···An

+
n
∑

i=1

Γ B
CAi

TωA1···Ai−1BAi+1···An
,

(2.20)

where TωA1A2···An
is a field and ω is the weight to identify each field. For example, consid-

ering the dilaton term e−2d, it is easy to find

∇Ce
−2d = (−2∇Cd) e

−2d = ∂Ce
−2d − ΓB

BCe
−2d, (2.21)

where ∇Cd = ∂Cd+
1
2Γ

B
BC . It implies that the dilaton potential e−2d has a weight ω = 1.

In summary, the action is gauge invariant under the strong constraint. However, if we

introduce a dilaton potential, say, V (d) = e8d, we will get a term

∫

dxdx̃e−2dV (d) =

∫

dxdx̃e6d. (2.22)

The weight of this term is not the unity, thus it is not a scalar density and breaks the

gauge invariance. In the next section, we will solve this problem by redefining the dilaton,

a generalisation of the results in the traditional string cosmology [31].

3 Non-local dilaton potential in DFT

We would like to emphasize again that the strong constraint ∂M∂M (·) is necessary to make

the DFT action (2.16) gauge invariant. Therefore, we are not trying to construct a gauge

invariant potential without imposing the strong constraint, though it must be O(D,D)

invariant at the first place. We define a non-local O(D,D) invariant dilaton d∗(x, x̃) as

e−2d∗(x,x̃) ≡
∫

dDx′dDx̃′e−2d(x′,x̃′)

[

2
√

−∂µφ (x′, x̃′) ∂µφ (x′, x̃′)δ
(

φ (x, x̃)− φ
(

x′, x̃′
))

+2

√

−∂̃µφ̃ (x′, x̃′) ∂̃µφ̃ (x′, x̃′)δ
(

φ̃ (x, x̃)− φ̃
(

x′, x̃′
)

)

]

, (3.1)
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where g̃µν = gµν , d(x′, x̃′) = φ̃ + 1
4 ln (−g) = φ − 1

4 ln (−g) to preserve the O (D,D)

symmetry. To check the gauge invariance of this non-local dilaton d∗(x, x̃) under the

strong constraint, we first write it in the form

d∗(x, x̃) = V(0)
∗ (x, x̃) + V(2)

∗ (x, x̃), (3.2)

where the superscript is the number of ∂̃ derivatives and V(0)
∗ , V(2)

∗ are T-dual with each

other,

V(0)
∗ (x, x̃)≡

∫

dDx′dDx̃′e−2d(x′,x̃′)2
√

−∂µφ (x′, x̃′) ∂µφ (x′, x̃′) δ
(

φ (x, x̃)− φ
(

x′, x̃′
))

,

V(2)
∗ (x, x̃)≡

∫

dDx′dDx̃′e−2d(x′,x̃′)2

√

−∂̃µφ̃ (x′, x̃′) ∂̃µφ̃ (x′, x̃′) δ
(

φ̃ (x, x̃)− φ̃
(

x′, x̃′
)

)

. (3.3)

It has no harm to include a V(1)
∗ term in the definition (3.1), nevertheless it will be killed

by the strong constraint. To respect the gauge symmetry, under the strong constraint,

equation (3.2) must satisfy

(

δ
(0)
ξ + δ

(1)
ξ

)(

V(0)
∗ + V(2)

∗

)

= 0. (3.4)

We know that δ
(0)
ξ V(0)

∗ = 0 is the standard gauge invariance of the traditional string cos-

mology, and δ
(1)
ξ V(2)

∗ = 0 is the T-dual version of it. Since δ
(0)
ξ V(2)

∗ is the T-dual of δ
(1)
ξ V(0)

∗ ,

we only need to check δ
(1)
ξ V(0)

∗ = 0 by setting ξi non-zero or ξ̃i non-zero respectively. Bear

in mind that imposing the strong constraint is equivalent to setting all fields having de-

pendence on only half of the doubled coordinates. Even the first term in equation (3.1),

the original DFT action, is not gauge invariant without imposing the strong constraint.

Therefore, when check the gauge invariance of d∗(x, x̃), we can assume all field to depend

on only one set of coordinates. Looking back at equation (3.3), it implies that to get a

nonvanishing V(0)
∗ , we have ∂̃ ·A = 0 for an arbitrary field or parameter A.

When ξ̃i is non-zero, we have

δ(1)gij = Lξ̃gij , δ(1)bij = Lξ̃bij , δ(1)d = ξ̃i∂̃
id− 1

2
∂̃iξ̃i. (3.5)

We thus obtain

δ(1)V(0)
∗ =

∫

dDx′dDx̃′∂̃i
(

ξ̃ie
−2d
)

2
√

−∂µφ (x′, x̃′) ∂µφ (x′, x̃′)δ
(

φ (x, x̃)− φ
(

x′, x̃′
))

(3.6)

+

∫

dDx′dDx̃′e−2d(x′,x̃′)2

(

δ(1)
√

−∂µφ (x′, x̃′) ∂µφ (x′, x̃′)

)

δ
(

φ (x, x̃)−φ
(

x′, x̃′
))

,

where we used δ(1)e−2d = ∂̃i
(

ξ̃ie
−2d
)

to get the first term on the r.h.s. Since under the

strong constraint, δ(1)φ = ξ̃i∂̃
iφ+ ∂̃iξ̃i = 0, the second term on the r.h.s. vanishes and the

first term is a total derivative. Therefore, we have δ(1)V(0)
∗ = 0. On the other hand, when

ξi is non-zero, the gauge variations are

δ(1)gij = 2
(

∂̃kξl − ∂̃lξk
)

gk(i b j)l,

– 6 –
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δ(1)gij = −
(

∂̃iξk − ∂̃kξi
)

gjlblk + (i ↔ j) ,

δ(1)bij = gik

(

∂̃lξk − ∂̃kξl
)

glj + bik

(

∂̃lξk − ∂̃kξl
)

blj , (3.7)

and we have

δ(1)V(0)
∗ =δ(1)

∫

dDx′dDx̃′e−2d(x′,x̃′)2
√

−∂µφ (x′, x̃′) ∂µφ (x′, x̃′)δ
(

φ (x, x̃)− φ
(

x′, x̃′
))

.

(3.8)

Since ξ̃i = 0, we have δ(1)d = ξ̃i∂̃
id− 1

2 ∂̃
iξ̃i = 0. After applying the strong constraint, it is

easy to see δ(1)φ = ξ̃i∂̃
iφ+ ∂̃iξ̃i = 0. We thus conclude δ(1)V(0)

∗ = 0 for both cases and then

d∗(x, x̃) is a gauge scalar under the strong constraint. Moreover, since the definition of the

non-local dilaton (3.1) is independent of b-field, we do not need to consider the C-bracket,1

and the closure of the Lie algebra is preserved [4–7].

Given d∗(x, x̃) is a gauge scalar, phenomenologically, any regular function of d∗(x, x̃)

could serve as a non-trivial dilaton potential in the DFT action

S =

∫

dxdx̃e−2d
[

R− V
(

d∗(x, x̃)
)

]

. (3.9)

Nevertheless, it is possible to derive a more realistic dilaton potential from loop corrections.

To fulfill this purpose, one needs first to show that in DFT, the n-th loop correction Sn

can be organized in the form

Sn =

∫

dxdx̃e−2de2nd∗(· · · ), n ≥ 1, (3.10)

where (· · · ) denotes gauge and O(D,D) scalars. Then, loop by loop, dilaton potentials can

be obtained by solving the equations of motion.

We claim that if the fields have only one single coordinate dependence, the non-local

dilaton (3.1) reduces to the ordinary one. Let us choose the cosmological background with

the cosmic-time gauge (g00 = −1), the non-local dilaton (3.1) becomes

d∗ (t) = −1

2
lnVd

∫

dφ
(

t′
)
√

−g (t′)e−2φ(t′)δ
(

φ (t)− φ
(

t′
))

= d (t)− 1

2
lnVd, (3.11)

or

d∗
(

t̃
)

= −1

2
ln Ṽd

∫

dφ̃
(

t̃′
)

√

−g̃
(

t̃′
)

e−2φ̃(t̃′)δ
(

φ̃
(

t̃
)

− φ̃
(

t̃′
)

)

= d
(

t̃
)

− 1

2
ln Ṽd, (3.12)

where Vd =
∫

ddx′dDx̃′ and Ṽd =
∫

dDx′ddx̃′. In the previous work [33], we have shown

that the DFT action can be simplified in the cosmological background:

S = −
∫

dtdt̃e−2d

[

1

8
Tr

(

∂M

∂t̃

∂M−1

∂t̃

)

+ 4

(

∂d

∂t̃

)2

+
1

8
Tr

(

∂M

∂t

∂M−1

∂t

)

+ 4

(

∂d

∂t

)2
]

,

(3.13)

1We thank C. Ma for reminding us of this.
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with

M =

(

G−1 −G−1B

BG−1 G−BG−1B

)

, (3.14)

where G and B are spatial parts of gij (t) and bij (t). To obtain regular solutions which

smoothly connect the pre- and post- big bangs, we set the dilaton potential to take a special

form

V
(

t, t̃
)

= V0e
8d∗(t,t̃). (3.15)

where V0 is a function of Vd and Ṽd, With this non-local dilaton potential, we find

S = −
∫

dtdt̃e−2d

[

1

8
Tr

(

∂M

∂t̃

∂M−1

∂t̃

)

+ 4

(

∂d

∂t̃

)2

+
1

8
Tr

(

∂M

∂t

∂M−1

∂t

)

+ 4

(

∂d

∂t

)2

− V0e
8d∗(t,t̃)

]

. (3.16)

To calculate the EOM of this action, the strong constraint oughts to be imposed and then

all fields depend on only one temporal direction. Therefore, the dilaton and the redefined

non-local dilaton coincide as d (t) or d
(

t̃
)

. Two optional actions are given as follows:

S = −
∫

dtdt̃e−2d

[

1

8
Tr

(

∂M

∂t̃

∂M−1

∂t̃

)

+ 4

(

∂d

∂t̃

)2

− V0e
8d

]

, (3.17)

or

S = −
∫

dtdt̃e−2d

[

1

8
Tr

(

∂M

∂t

∂M−1

∂t

)

+ 4

(

∂d

∂t

)2

− V0e
8d

]

. (3.18)

The solutions of these two actions and their physical implications are given in refs. [32, 33].

4 Conclusion

In literature, it was believed that DFT only admits trivial dilaton potentials. In this paper,

after presenting the gauge transformations of DFT, we introduced a non-local O(D,D) in-

variant dilaton in the DFT formalism. We showed that this non-local dilaton is a consistent

gauge invariant under the strong constraint. It is therefore possible to include loop correc-

tions in the formalism of DFT. Our construction reduces to the ordinary dilaton when the

fields depend on one single coordinate. It is of interest to extend the construction to more

general backgrounds. The strong constraint is crucial in our construction. There may exist

some weaker conditional results. Moreover, it is also significant to consider the dilaton po-

tential combined with α′ corrections, where the gauge transformations are slightly modified.

Acknowledgments

This work is supported in part by the NSFC (Grant No. 11175039 and 11375121) and

SiChuan Province Science Foundation for Youths (Grant No. 2012JQ0039).

– 8 –



J
H
E
P
1
0
(
2
0
1
4
)
1
2
9

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] W. Siegel, Two vierbein formalism for string inspired axionic gravity,

Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

[2] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826

[hep-th/9305073] [INSPIRE].

[3] W. Siegel, Manifest duality in low-energy superstrings, in Proceedings, Strings ’93, Berkeley

U.S.A. (1993), pg. 353 and State U. New York Stony Brook preprint ITP-SB-93-050

[hep-th/9308133] [INSPIRE].

[4] C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664]

[INSPIRE].

[5] C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets,

JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

[6] O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory,

JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

[7] O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory,

JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

[8] A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics,

Phys. Lett. B 242 (1990) 163 [INSPIRE].

[9] A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars,

Nucl. Phys. B 350 (1991) 395 [INSPIRE].

[10] M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].

[11] M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394

[INSPIRE].

[12] B. Zwiebach, Double field theory, T-duality and Courant brackets,

Lect. Notes Phys. 851 (2012) 265 [arXiv:1109.1782] [INSPIRE].
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