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Abstract

We show that a subgroup of the custodial symmetry O(3) that protects �ρ from radiative corrections can also protect the Zbb̄ coupling. This
allows one to build models of electroweak symmetry breaking, such as higgsless, little Higgs or 5D composite Higgs models, that are safe from
corrections to Z → bb̄. We show that when this symmetry protects Zbb̄ it cannot simultaneously protect Ztt̄ and Wtb̄. Therefore one can expect
to measure sizable deviations from the SM predictions of these couplings at future collider experiments. We also show under what circumstances
ZbRb̄R can receive corrections in the right direction to explain the anomaly in the LEP/SLD forward–backward asymmetry Ab

FB.
© 2006 Elsevier B.V. Open access under CC BY license.
1. Introduction

One of the most elegant solutions to the hierarchy problem is
to consider that the Higgs boson, the scalar field responsible for
electroweak symmetry breaking (EWSB), is not a fundamental
particle. This approach is clearly inspired by QCD, where scalar
and pseudoscalar states appear as composites of the strong dy-
namics. In recent years there has been a revival of interest in
this approach. The important new ingredient has been calcula-
bility, achieved by using either the idea of “collective breaking”
[1] or extra dimensions.

As in the old technicolor [2] or composite Higgs models
[3], the main challenge of these new scenarios is to pass suc-
cessfully all the electroweak precision tests (EWPT). This is
a non-trivial task, since in these theories deviations from the
Standard Model (SM) predictions usually arise at the tree level
due to mixing effects between SM fields and the heavy states of
the new sector. One of the main difficulties is to avoid large
deviations in the ZbLb̄L coupling, whose measured value is
in agreement with the SM prediction at the 0.25% level. This
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is difficult to overcome, since in these models the top, being
heavy, couples strongly to the new sector. Since bL is in the
same weak doublet as tL, it usually suffers from large modifi-
cations to its couplings.

In this Letter we will show that the custodial symmetry O(3),
advocated long ago to protect �ρ [4], can also protect Zbb̄. In
particular we will see that the ZbLb̄L coupling can be safe from
corrections and at the same time the SU(2)L-related couplings
ZtLt̄L and WtLb̄L can receive sizable modifications. As an ex-
ample, we will present the explicit calculations of these effects
in a 5D scenario of EWSB. The custodial symmetry can also
be used to protect the coupling of the bR to the Z. However,
the LEP and SLD experimental measurements of the forward–
backward asymmetry Ab

FB suggest that the coupling ZbRb̄R

might deviate from its SM value. We will then study the pos-
sibility of having large effects in ZbRb̄R of the right magnitude
and sign as suggested by the experimental data.

Our analysis can be useful for any scenario of EWSB that
contains a new sector beyond the SM (BSM) invariant under the
global custodial symmetry. This sector is defined to include the
Higgs field as well. Examples are the strongly interacting sec-
tor of technicolor models, the extra fields added in little Higgs
theories to avoid quadratic divergences, or the bulk of a warped
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extra dimension present in some higgsless [5] and composite
Higgs [6,7] models.

2. The coupling Zψψ̄ and the custodial symmetry

We will consider BSM sectors with the following global
symmetry breaking pattern [4]:

(1)O(4) → O(3).

This breaking is equivalent to the more familiar custodial pat-
tern SU(2)L ⊗ SU(2)R → SU(2)V together with a parity de-
fined as the interchange L ↔ R (PLR). As we will see below,
this discrete symmetry plays an important role to protect the
coupling of the Z to fermions from non-zero corrections. The
BSM sector also has to respect an SU(3)c ⊗ U(1)X symmetry
corresponding to the SM color group and an extra U(1) needed
to fit the hypercharges of the SM fields (Y = T 3

R +X). As usual
[4], we will parametrize the symmetry breaking in Eq. (1) by
a 2 × 2 unitary matrix field U transforming as a (2,2)0 under
SU(2)L ⊗ SU(2)R ⊗ U(1)X , whose VEV is given by 〈U〉 = 1.

Since the BSM sector is invariant under O(4), we can rotate
to a basis in which each BSM field (or operator), OBSM, has a
definite left and right isospin quantum number, TL,R , and its 3rd
component, T 3

L,R . We will assume that every SM field Φ is cou-

pled to a single BSM field (or operator): Lint = Φ†OBSM + h.c.
This assumption is always fulfilled in the BSM models that we
are interested in. It guarantees that we can univocally assign
to each SM field definite quantum numbers TL,R , T 3

LR , corre-
sponding to those of the operator OBSM to which it couples.
Notice that this does not imply that the SM fields are in com-
plete representations of SU(2)L ⊗ SU(2)R , as it is known not
to be the case.

Let us consider the implications of the custodial symmetry
O(3) = SU(2)V ⊗ PLR on the coupling Zψψ̄ , where ψ de-
notes a generic SM fermion. At zero momentum, this coupling
is given by

(2)
g

cos θW

[
Q3

L − Q sin2 θW

]
Zμψ̄γμψ,

where Q3
L and Q are respectively the 3rd-component SU(2)L

charge and the electric charge of ψ . Since the electric charge
Q is conserved, possible modifications to the coupling Zψψ̄

can only arise from corrections to Q3
L. Before EWSB we have

Q3
L = T 3

L , but this is not guaranteed anymore after EWSB. We
will be interested only in non-universal corrections induced by
the BSM fields, and we will treat the SM W 3

L field as an external
classical source which probes the left charge Q3

L. This is con-
sistent since corrections induced through the renormalization of
the Z kinetic term are universal.

We found two subgroups of the custodial symmetry
SU(2)V ⊗ PLR that can protect Q3

L. The first one is the sub-
group U(1)L ⊗ U(1)R ⊗ PLR that it is broken by 〈U〉 down to
U(1)V ⊗PLR . Although PLR is a symmetry of the BSM sector,
it is not, in general, respected by the coupling of ψ to the BSM
sector. For PLR to be a symmetry also of Lint = ψ̄Oψ + h.c.,
we must demand that ψ is an eigenstate of PLR . This implies

(3)TL = TR, T 3
R = T 3

L,

for the field ψ . If this is the case, the non-universal corrections
to the charge Q3

L of ψ are zero. The proof goes as follows. By
U(1)V invariance, we have that Q3

V = Q3
L + Q3

R is conserved,
and therefore it cannot receive corrections:

(4)δQ3
V = δQ3

L + δQ3
R = 0.

On the other hand, by PLR invariance we have that the shift in
Q3

L must be equal to the shift in Q3
R :

(5)δQ3
L = δQ3

R.

Eqs. (4) and (5) imply that δQ3
L = 0. This proves that SM fermi-

ons that fulfill the condition (3) have their coupling to the Z

protected by the subgroup U(1)V ⊗ PLR of the custodial sym-
metry.

The second example of a symmetry that can protect Q3
L

is that of the discrete transformation |TL,TR;T 3
L,T 3

R〉 →
|TL,TR;−T 3

L,−T 3
R〉, a subgroup of the custodial SU(2)V . We

will denote this symmetry by PC . Its action on 2-component
spinors is given by PC = iσ1, while SO(3) vectors transform
with PC = Diag(1,−1,−1). According to our rule then, the
SM W 3

L can be assigned an odd parity under PC :W 3
L → −W 3

L.
For ψ to be an eigenstate of this symmetry, it must have

(6)T 3
L = T 3

R = 0.

If this is the case, we have that δQ3
L = 0 at any order. Indeed,

if ψ is an eigenstate of PC , then ψ̄γ μψ is even under PC and
it cannot couple to W 3

L that is odd. Thus, the coupling of the Z

to SM fermions that fulfill Eq. (6) is protected by the subgroup
PC of the custodial symmetry.

It is important to notice that the symmetries discussed above
can only protect the coupling of the Z to fermions at zero mo-
mentum. However, momentum dependent corrections to Zψψ̄

are parametrically suppressed in strongly coupled BSM sectors.
A naive estimate gives δg/g ∼ λt/gBSM q2/Λ2

BSM, where λt is
the top Yukawa coupling and gBSM is the coupling among the
BSM particles. Therefore, δg/g can be sufficiently small for
gBSM 	 λt .

3. Corrections to ZbLb̄L in custodial invariant models

The symmetry argument given in the previous section shows
how to build higgsless or composite Higgs models in which
Zbb̄ does not receive corrections from the BSM sector. Let us
start with the ZbLb̄L coupling. In these models it has been com-
monly assumed that bL transforms as a (2,1)1/6 representation
of the SU(2)L⊗SU(2)R ⊗U(1)X group. In that case, bL has the
quantum numbers TL = 1/2, TR = 0, T 3

L = −1/2 and T 3
R = 0,

which fulfill neither the condition (3) nor (6). As a consequence,
ZbLb̄L is not protected by the custodial symmetry. Condition
(3), however, suggests us a better assignment for the bL quan-
tum numbers:

(7)TL = 1/2 = TR, and T 3
L = −1/2 = T 3

R.
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This assignment guarantees that Zb̄LbL does not receive cor-
rections from the BSM sector. Eq. (7) implies that tL, being in
the same SU(2)L doublet as bL, has to have the following as-
signments: TL = TR = 1/2 and T 3

L = −T 3
R = 1/2. Therefore,

condition (3) is not satisfied for tL and there will be corrections
to the ZtLt̄L coupling. Similarly, the custodial symmetry does
not protect WtLb̄L (see below), and one can have large modi-
fications in this coupling as well, without affecting ZbLb̄L. At
present, the couplings of the top to the gauge bosons are not ac-
curately measured. Future accelerators, however, will improve
the measurements of these couplings and will be able to test this
scenario.

3.1. Operator analysis

We give here an operator analysis for the couplings of qL =
(tL, bL) to the Z and the W based on the custodial symmetry.
For the assignment of Eq. (7), we must embed bL in a 42/3 of
O(4) ⊗ U(1)X , or, equivalently,

(8)qL ∈ (2,2)2/3 ≡ QL

under SU(2)L ⊗ SU(2)R ⊗ U(1)X . In addition to the SM dou-
blet, this representation contains an extra SU(2)L doublet q ′

L

that, not corresponding to any SM field, will play the role of a
non-dynamical spectator. We find two single-trace dimension-4
operators that can contribute to the Z couplings:

(9)L= c1 Tr
[
Q̄Lγ μQLV̂μ

] + c2 Tr
[
Q̄Lγ μVμQL

]
,

where QL = σαQα
L is a 2 × 2 matrix field,1 Vμ = (iDμU)U†,

V̂μ = (iDμU)†U , and the covariant derivative is defined as
DμU = ∂μU + igσaW

a
μU/2− ig′BμUσ3/2. By imposing PLR ,

under which U → U†, Vμ ↔ V̂μ and QL → σα †Qα
L, we obtain

c1 = c2. There is also a double-trace operator that can con-
tribute to the Z coupling to qL:

(10)L= c3 Tr
[
Q̄Lγ μiDμU

]
Tr

[
U†QL

] + h.c.

To obtain the contributions to ZbLb̄L, ZtLt̄L and WtLb̄L we
plug

QL = σ−bL + σ0tL + · · · , U = 1,

(11)DμU = igσ3

2 cos θW

Zμ + igσ+√
2

W+
μ + · · · ,

into Eqs. (9) and (10), where σ± = (σ1 ± iσ2)/2 and σ0 = (1 +
σ3)/2. This gives

g

cos θW

[
c2 − c1

2
b̄Lγ μbL − c1 + c2 + 2c3

2
t̄Lγ μtL

]
Zμ

(12)− g√
2
(c2 + c3)t̄Lγ μbLW+

μ + h.c.

As expected from the symmetry argument, the contributions to
ZbLb̄L vanish after imposing invariance under PLR (c1 = c2),

1 We use the basis σα = (1, iσ1, iσ2, iσ3) where σa , a = 1,2,3, are the Pauli
matrices.
while the contributions to the couplings of the top quark are
different from zero.

The embedding of tR in a multiplet of SU(2)L ⊗ SU(2)R ⊗
U(1)X is determined by the top mass operator q̄LUtR . There
are two possible invariant operators:

(a) (2,2)2/3(2,2)0(1,1)2/3, or

(13)(b) (2,2)2/3(2,2)0(1,3)2/3,

implying respectively the two following embeddings for tR :

(a) tR ∈ (1,1)2/3, or

(14)(b) tR ∈ (1,3)2/3 ⊕ (3,1)2/3,

which correspond respectively to a 12/3 and a 62/3 multiplet of
O(4) ⊗ U(1)X . In both cases tR has T 3

L = T 3
R = 0, fulfilling the

condition (6). Therefore, its coupling to the Z is protected by
the PC symmetry.2 We can also perform an operator analysis
for the Z coupling to tR . For the case (a), no invariant opera-
tor can be written since Tr[Vμ] = Tr[V̂μ] = 0. For the case (b),
we have that tR corresponds to the T 3

L = T 3
R = 0 component of

(1,3)2/3 ≡ UR . There are two dimension-4 operators that can
contribute to the Z coupling to tR :

(15)L= c4 Tr
[
ŪRγ μURV̂μ

] + c5 Tr
[
ŪRγ μV̂μUR

]
.

Using UR = σ3tR + · · · we find that, as expected, the contribu-
tion to ZtRt̄R vanishes.

In theories in which the Higgs arises as a pseudo-Goldstone
boson (PGB) from the symmetry breaking SO(5) → O(4), one
has to embed the fermion multiplets into SO(5) representations.
We find two very simple options. For the case (a) we can use a
52/3 of SO(5) ⊗ U(1)X , that decomposes as

(16)52/3 = (2,2)2/3 ⊕ (1,1)2/3

under SU(2)L ⊗ SU(2)R ⊗ U(1)X , and contains the multiplets
of Eqs. (8) and (14). For the case (b) we can embed the top in a
102/3:

(17)102/3 = (2,2)2/3 ⊕ (1,3)2/3 ⊕ (3,1)2/3.

In the composite Higgs model of Ref. [7] the SM fermions
were embedded in spinorial representations of SO(5) (4’s of
SO(5)), and the shift in the ZbLb̄L coupling implied severe
bounds on the masses of the new particles [8]. By simply em-
bedding the SM fields in either of the representations (16), (17),
one can avoid large corrections to ZbLb̄L and build successful
composite Higgs models with a much lighter spectrum of new
particles [9].

3.2. Explicit calculations in 5D models of EWSB

In this section we focus on 5D composite Higgs models re-
alized in AdS5 space–time [6,7], and compute the correction to
Zψψ̄ induced by the first Kaluza–Klein (KK) mode. In these

2 For the case (a) it is interesting to notice that tR is a singlet of the custo-
dial symmetry and therefore loop effects involving this field will not generate
corrections to �ρ.
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theories the EWSB scale is given by v = εfπ , where fπ is the
analog of the pion decay constant and ε is a model-dependent
parameter bounded to be 0 < ε � 1. The experimental con-
straint from the Peskin–Takeuchi S parameter generically re-
quires ε � 0.5. Our result for Zψψ̄ will also apply to the class
of higgsless models in AdS5 [5] after setting ε = 1.

Let us denote with c the fermion 5D bulk mass in units of
the AdS curvature. We will assume −1/2 < c < 1/2, since for
|c| > 1/2 the fermion zero modes are quite decoupled from the
5D bulk and non-universal corrections to Zψψ̄ from the ex-
change of KK modes are exponentially suppressed (this is the
case for the first and second generation fermions). There are two
types of diagrams contributing to Zψψ̄ , one involving the ex-
change of gauge KKs, the other involving fermionic KKs. The
contribution from the tower of SU(2)L ⊗ SU(2)R gauge KKs
is, at the tree level and at zero momentum:

(18)δg � (
T 3

R − T 3
L

) 1 − 2c

2
√

2(3 − 2c)
ε2,

where δg(g/ cos θW )ψ̄γ μψZμ gives the non-universal correc-
tion to the SM vertex.3 Effects from the fermion KKs are of the
form

(19)δg =
∑
KK

sin2 θKK
(
T 3KK

L − T 3
L

)
,

where θKK is the mixing angle between the KK and ψ .
This mixing occurs after EWSB and it is of order sin θKK ∼
ε
√

1/2 − c.4 Although the sum in Eq. (19) is over all the KK
tower, a good approximation is obtained by considering only
the lowest mode.

In the case in which qL belongs to a (2,2)2/3 of SU(2)L ⊗
SU(2)R ⊗ U(1)X , only fermionic KKs in the representations
(1,1)2/3, (1,3)2/3 ⊕ (3,1)2/3 and (3,3)2/3 can mix with bL or
tL at order ε. The coefficients of the operators in Eqs. (9) and
(10) then read

c1 = c2 � 1 − 2cq

2
√

2(3 − 2cq)
ε2 + 1

2
sin2 θ

(1,1)
KK + 1

2
sin2 θ

(3,1)
KK

− 3

4
sin2 θ

(3,3)
KK ,

(20)c3 = 0.

Here θ
(1,1)
KK is the mixing angle between tL and the KK in the

(1,1)2/3 representation, and θ
(3,1)
KK (θ(3,3)

KK ) is the mixing angle
between bL and the KK in the (3,1)2/3 ((3,3)2/3) represen-
tation. In the case of a composite Higgs model where qL is
embedded in a 52/3 of SO(5), the result is that of Eq. (20) with
only the gauge and (1,1)2/3 fermionic contributions turned on.
Eq. (12) together with Eq. (20) give us the tree-level correc-
tion to the couplings of the Z and the W to the SM fermions

3 Eq. (18) is valid for −1/2 � c < 1/2. In the limit c → 1/2 the same formula
applies with (1 − 2c) → 1/(πkR), where πR is the proper length of the extra
dimension and k is the curvature of AdS5.

4 This holds if all the KKs have similar masses of order ΛBSM. If the KK
state mixing with ψ has a smaller mass m � ΛBSM, then sin θKK is larger by
a factor (ΛBSM/m).
bL, tL. Corrections of order ∼ ε2 ∼ 10–20% are thus possi-
ble if qL is strongly coupled to the 5D bulk dynamics (i.e., for
−1/2 < c � 0), and they could be observed in future experi-
ments that probe the couplings of the top quark.

4. The coupling ZbRb̄R

The small ratio mb/mt can be naturally explained in the
class of models under consideration by assuming that the SM
bR couples weakly to the BSM sector. The shift in the cou-
pling of bR to the Z due to the BSM sector, δgRb, will then be
small. This is the case, for example, when qL ∈ (2,2)2/3 and
both bR and tR couple to the same BSM operator transforming
as a (1,3)2/3 ⊕ (3,1)2/3, case (b) of Eq. (13).

It is however interesting to consider the possibility that bR

couples more strongly to the BSM sector, since a positive shift
δgRb ∼ +0.02 would explain the 3σ anomaly in the forward–
backward asymmetry Ab

FB measured by the LEP and SLD ex-
periments (see [10]).5

If, for example, bR and tR couple to two different BSM
operators, possibly with the same SU(2)L ⊗ SU(2)R ⊗ U(1)X
quantum numbers, then mb � mt could follow from hierarchies
in the couplings of the BSM sector. In the case of the 5D mod-
els of Section 3.2 one can use Eqs. (18) and (19) to calculate
δgRb. For bR ∈ (1,3)2/3, only KK fermions in a (2,2)2/3 and
(2,4)2/3 can mix with bR at order ε. This gives, for |cb| < 1/2,

(21)δgRb � − 1 − 2cb

2
√

2(3 − 2cb)
ε2 − 1

2
sin2 θ

(2,2)
KK + sin2 θ

(2,4)
KK .

Here and in the following, θ
(r,s)
KK denotes the mixing angle be-

tween bR and the KK state with electric charge −1/3 in a (r, s)
representation of SU(2)L ⊗ SU(2)R (if the representation (r, s)
contains more than one state with electric charge −1/3, then
θ

(r,s)
KK will refer to the KK with T 3

L = −1/2). Thus, one can ob-
tain a positive δgRb from the mixing of bR with the KKs in the
(2,4)2/3, as needed to explain the Ab

FB anomaly.
A different possibility is that the SM qL itself couples to two

different BSM operators: the first responsible for generating the
top mass, the second for generating the bottom mass.6 The cou-
pling to this latter operator will in general violate the custodial
symmetry subgroup protecting gLb , but it is natural to assume
that its coefficient is small, in order to reproduce the small ratio
mb/mt . The resulting δgLb will also be small, allowing at the
same time a large coupling of bR to the BSM sector. There are
many choices for embedding bR in SU(2)L ⊗SU(2)R ⊗U(1)X ,
giving δgRb of either sign. The simplest choice is

(22)bR ∈ (1,1)−1/3,

which can be embedded in a 5 of SO(5). In this case the BSM
operator coupled to qL responsible for the bottom mass has to

5 A larger and negative shift, δgRb ∼ −0.17 would also explain the data [11],
but to obtain such a large shift would require a very light spectrum of new
particles. We do not consider here this possibility.

6 An explicit realization of this scenario in the context of a 5D composite
Higgs model will be given in [9].
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Table 1
Several possible embeddings of bR in SU(2)L ⊗ SU(2)R ⊗ U(1)X and cor-
responding contributions to δgRb from the first KK modes in 5D models of
EWSB: gauge contribution (size and sign as given by the bR axial charge

QA = T 3
L

− T 3
R

, where we have defined �g = 1−2cb
2
√

2(3−2cb)
ε2), and fermionic

contribution

bR δgRb|gauge/�g = −QA δgRb|fermionic

(1,3)2/3 −1 − 1
2 sin2 θ

(2,2)
KK + sin2 θ

(2,4)
KK

(1,1)−1/3 0 0

(1,3)−1/3 0 0

(1,2)1/6 −1/2 − 1
2 sin2 θ

(2,1)
KK + 1

2 sin2 θ
(2,3)
KK

(1,2)−5/6 +1/2 1
2 sin2 θ

(2,1)
KK − 1

4 sin2 θ
(2,3)
KK

(1,3)−4/3 +1 1
2 sin2 θ

(2,2)
KK − 1

3 sin2 θ
(2,4)
KK

transform as a (2,2)−1/3. Since however T 3
L,R = 0 for bR , the

PC symmetry argument of Section 2 implies δgRb = 0 for both
gauge and fermionic contributions. Another possible choice is

(23)bR ∈ (1,2)1/6,

which can be embedded into a 4 of SO(5). In this case the BSM
operator coupled to qL can transform as either a (2,1)1/6 or a
(2,3)1/6. At order ε, bR can mix with KKs in (2,1)1/6 and
(2,3)1/6. We find

(24)δgRb � − 1 − 2cb

4
√

2(3 − 2cb)
ε2 − 1

2
sin2 θ

(2,1)
KK + 1

2
sin2 θ

(2,3)
KK .

Thus, one has δgRb > 0 from mixing with KKs in the (2,3)1/6,
as needed to explain the Ab

FB anomaly. A few other examples
with 1 Higgs insertion are indicated in Table 1.

5. Conclusions

In models where the electroweak symmetry breaking is in-
duced by a new (strongly interacting) sector coupled to the SM
fields, it is crucial for the new sector to respect a custodial sym-
metry in order to prevent large corrections to �ρ. We have
shown that the custodial symmetry O(3) can also protect the
ZbLb̄L coupling from corrections. This suggests that the custo-
dial invariance might be a key ingredient to build natural models
of electroweak symmetry breaking with a relatively light spec-
trum of new fermions, as required by naturalness arguments.
A way to test this scenario is to look for modifications in the
couplings Ztt̄ , Wtb̄, which cannot be protected at the same
time by the custodial symmetry and can receive potentially
large shifts. Finally, we investigated the possibility of a mod-
ification of the ZbRb̄R coupling, showing that a positive shift,
as required to explain the anomaly in the LEP/SLD forward–
backward asymmetry Ab

FB, is possible for certain choices of the
bR custodial quantum numbers.
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