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Abstract

In the perturbative QCD withNc → ∞ the amplitude for the collision of two heavy nuclei is expressed via dipole densities in the n
Coupled equations for these densities are derived in the configuration space. The equations are conformal invariant in absence of exte
Passing to conformal basis and its possible truncation are discussed.
 2005 Elsevier B.V.

1. Introduction

In the perturbative QCD withNc → ∞, high-energy scattering of a pointlike projectile on a large nucleus is describe
a sum of fan diagrams constructed from BFKL pomerons and vertexes for their splitting in two. Summation of these d
leads to the well-known BK equation[1–3], now well studied both theoretically and numerically. Generalization of these resu
nucleus–nucleus scattering requires a symmetric treatment of projectile and target and obviously involves not only the
the splitting of a pomeron in two but also fusing of two pomerons in one. Such a program was realized in our papers[4]. There
we limited ourselves to the case when momenta transferred to both nuclei are negligible as compared to gluon mome
pomerons, which physically corresponds to the limit of very heavy nuclei and a finite pomeron slope. As a result all pomer
propagating in the forward direction. This simplified the final equations considerably but their basic conformal invariance
remained hidden. Also written in the momentum space the equations are difficult to compare with the results following
dipole picture and so-called JIMWLK approach, in which the problem of symmetric treatment of projectile and target (a
of inclusion of pomeron loops) is lately being studied very actively (see, e.g.,[5] and references therein). For these reasons in
Letter we rederive equations describing nucleus–nucleus scattering for a general case, when the pomerons are allowed
their momenta in their interaction with the nuclei and between themselves. Our final equations are in the transverse c
space, so that comparison with the dipole approach will be facilitated.

It is important to stress the approximations used in the derivation. We rely on the perturbative QCD in the limit of large
of colours,Nc → ∞, and assume both nuclei to be large, with their atomic numbersA,B � 1. This allows to take into account on
tree diagrams constructed of pomerons and their interaction vertexes (seeFig. 1 for the simplest examples). Both pomeron loo
and contributions which cannot be described in terms of pomerons (e.g., gluonic interaction between two pomerons) are
since they are damped by higher powers of 1/Nc and/or 1/A, 1/B. Obviously this approximation cannot work at superlarge ener
when the pomeron can propagate to transverse distances larger than the nuclei dimensions, which occurs at rapiditiesY such that
α Y > R′ 2

A,B , whereα′ is the pomeron slope. All experimental data giveα < 0.01 fm , so that these rapidities seem to be w2

beyond our present and predictable possibilities. The approximation of large nuclei also allows to neglect correlations
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Fig. 1. Simplest tree diagrams for nucleus–nucleus scattering.

colour distributions of different nucleons and excludes diagrams in which a pomeron interacts simultaneously with two nu
the target or projectile.

In our formalism the nucleus–nucleus scattering amplitude is trivially expressed via a pair of non-local pomeron field
colliding nuclei. Our final result is a pair of equations for these pomeron fields, which possess full conformal invariance in
of external sources. The equations include terms with the interaction between the two fields. If one neglects this intera
equations decouple into a pair of BK equations for the projectile and target. The equations are in fact very complicated an
suited for numerical studies, which are difficult already for the forward propagation case considered in[4]. Some simplification
seems to be possible by passing to the conformal basis and restricting to lowest conformal states, which is also discus
Letter.

2. Pomeron diagrams and effective field theory

At fixed overall impact parameterb theAB amplitudeA(Y, b) can be presented as an exponential of its connected part:

(1)A(Y, b) = 2is
(
1− e−T (Y,b)

)
.

The dimensionlessT is an integral over two impact parametersbA andbB of the collision point relative to the centers of the nuc
A andB:

(2)T (Y, b) =
∫

d2bA d2bB δ2(b − bA + bB)T (Y, bA, bB).

As mentioned in the introduction, in the perturbative QCD withNc → ∞ the amplitude−T (Y, bA, bB) is given by a sum of al
connected tree diagrams constructed of BFKL pomerons and the triple pomeron vertex. More concretely, in these diagra
(“propagator”) describing propagation of a pair of gluons from rapidityy and pointsr1 andr2 to rapidityy′ and pointsr ′

1 andr ′
2

corresponds to the BFKL Green functionGy−y′(r1, r2|r ′
1, r

′
2) [6]:

(3)Gy−y′(r1, r2|r ′
1, r

′
2) = θ(y − y′)

∑
µ

eωµ(y−y′)λµEµ(r1, r2)E
∗
µ(r ′

1, r
′
2),

whereµ = {n, ν, r0} ≡ {h, r0}, summation in(3) includes summation overn and integrations overν and transverse vectorr0 with
the weight(ν2 + n2/4)/π4; functionsEµ form the conformal basis. In the complex notationr = x + iy, r∗ = x − iy

(4)Eµ(r1, r2) =
(

r12

r10r20

)h( r∗
12

r∗
10r

∗
20

)h̄

,

wherer12 = r1 − r2, etc.;h = (1− n)/2+ iν andh̄ = 1− h∗ are conformal weights. Functionωµ is the BFKL eigenvalue

(5)ωµ = ωh = ᾱ

[
ψ(1) − Reψ

( |n| + 1

2
+ iν

)]
,

where standardlȳα = αsNc/π . Finally

(6)λµ = λh = 1

[(n + 1)2 + 4ν2][(n − 1)2 + 4ν2] .

The interaction between pomerons is realized via the triple pomeron vertex. It is non-local and not symmetric in the i
and outgoing pomerons. For arbitrary values ofNc the vertex for splitting of a pomeron in two was found in[7]. In the limit
Nc → ∞ its form in the coordinate space was established in[8]. The three BFKL Green functions are connected by it as foll
(seeFig. 2(a))

(7)
2α2

s Nc

π

∫
d2r1 d2r2 d2r3

r2
12r

2
32r

2
13

(
Gy′

1−y(r
′
1, r

′
3|r1, r3)L

†
13

)
Gy−y′

2
(r1, r2|r ′′

1 , r ′
2)Gy−y′

3
(r3, r2|, r ′′

3 , r ′′
2 ).
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Fig. 2. Splitting of a pomeron into two (a) and fusion of two pomerons into one (b).

HereL13 is (up to a numerical factor) the quadratic Casimir operator for the conformal transformations ofr1 andr3:

(8)L13 = r4
13p

2
1p

2
3,

where in the configuration spacep2 = −∇2. In (7) L
†
13 is acting on the left. Note that the triple pomeron vertex is symmetric in

gluons inside the outgoing pomerons (i.e., underr1 ↔ r2 andr3 ↔ r2). So the outgoing pomerons have to be symmetric in t
respective gluons. The form of the vertex for the fusion of two pomerons into one is actually not known. However, the sy
between target and projectile prompts us to assume that for the inverse process 2+ 3 → 1 the BFKL functions are to be joined a
(Fig. 2(b))

(9)
2α2

s Nc

π

∫
d2r1 d2r2 d2r3

r2
12r

2
32r

2
13

Gy′
2−y(r

′′
1 , r ′

2|r1, r2)Gy′
3−y(r

′′
3 , r ′′

2 |r3, r2)L13Gy−y′
1
(r1, r3|r ′

1, r
′
3).

Finally we have to describe the interaction of the pomerons with the two nuclei. The BFKL Green functions correspo
the external legs of the diagrams are to be integrated with the colour density of each nucleus. We take the target nucleusB) at rest,
that is, at rapidity zero. Then each outgoing external BFKL Green function is to be transformed into

(10)
∫

d2r ′
1 d2r ′

2 Gy(r1, r2|r ′
1, r

′
2)ρB(r ′

1, r
′
2) ≡

∫
dy′ d2r ′

1 d2r ′
2 Gy−y′(r1, r2|r ′

1, r
′
2)τB(y′, r ′

1, r
′
2),

whereρB is the colour density of the target. If we neglect correlations between the colours of the nucleons in the nucleusB

(11)τB(y, r1, r2) = g2BTB(bB)δ2
(

bB − r1 + r2

2

)
ρN(r12)δ(y),

whereTB is the profile function of the nucleusB andρN is the colour density of the nucleon. Similarly each ingoing BFKL exte
Green function is to be transformed into

(12)
∫

dy′ d2r ′
1 d2r ′

2 τA(y′, r ′
1, r2)Gy′−y(r

′
1, r

′
2|r1, r2),

where

(13)τA(y, r1, r2) = g2ATA(bA)δ2
(

bA − r1 + r2

2

)
ρN(r12)δ(y − Y)

andY is the overall rapidity. If the densitiesτA andτB are symmetric in the gluons (which is true for(11) and (13)and will be
assumed in the following) then the initial pomerons are also symmetric in the gluons inside them. Together with the m
properties of the triple pomeron vertexes it means that only symmetric pomeron states are propagating in the two nuclei.

To find the amplitude, one has to sum over all connected diagrams withM ingoing andN outgoing lines, corresponding toM
interactions with the projectile andN interactions with the target, divided byM!N !.
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It is trivial to see that this sum exactly corresponds to the sum of tree diagrams generated by an effective quantum the
pomeronic fieldsΦ(y, r1, r2) andΦ†(y, r1, r2), symmetric inr1, r2, with the action

S = S0 + SI + SE

consisting of three terms, which correspond to free pomerons, their mutual interaction and their interaction with externa
(nuclei), respectively.

To give the correct propagatorsS0 has to be chosen as

(14)S0 =
∫

dy dy′ d2r1 d2r2 d2r ′
1 d2r ′

2 Φ†(y, r1, r2)G
−1
y−y′(r1, r2|r ′

1, r
′
2)Φ(y′, r ′

1, r
′
2) ≡ 〈

Φ†
∣∣G−1|Φ〉,

where〈|〉 means the integration overy and both gluon coordinates. Note that the sign ofS0 corresponds to the following substitutio
of the conventionally defined field variablesΦ andΦ†:

(15)Φ → iΦ, Φ† → iΦ†,

which allows to make all terms of the action real.
According to(7) and (9)the interaction termSI is local in rapidity

(16)SI = 2α2
s Nc

π

∫
dy

∫
d2r1 d2r2 d2r3

r2
12r

2
32r

2
13

{(
L13Φ(y, r1, r3)

)
Φ†(y, r1, r2)Φ

†(y, r3, r2) + h.c.
}
.

The overall sign combines the initial factori andi3 from the substitution(15).
Finally the interaction with the nuclei is local both in rapidity and coordinates:

(17)SE = −
∫

dy d2r1 d2r2
{
Φ(y, r1, r2)τA(y, r1, r2) + Φ†(y, r1, r2)τB(y, r1, r2)

}
.

The minus sign comes from the initiali and the substitution(15).
The amplitudeT (Y, bA, bB) is then expressed through a functional integral

(18)Z =
∫

DΦ DΦ† eS.

In the tree approximation, corresponding to diagrams of the type shown inFig. 1, keeping only connected diagrams we find

(19)T (Y, bA, bb) = − ln
Z

Z0
= −S

{
Φ,Φ†},

whereZ0(= 1) is the value ofZ for SE = 0 and the actionS is to be calculated forΦ andΦ† satisfying the classical equation
motion.

3. Equations for the classical pomeron fields

The classical equations of motion follow from the variation of the action with respect toΦ andΦ†:

(20)
δS

δΦ(y, r1, r2)
= δS

δΦ†(y, r1, r2)
= 0.

We find a pair of equations

G−1Φ(y, r1, r2) + 2α2
s Nc

π

∫
d2r3

r2
12r

2
32r

2
13

{
Φ(y, r1, r3)Φ(y, r2, r3)L12 + 2 Sym12

(
Φ†(y, r3, r2)L13Φ(y, r1, r3)

)}

(21)= τB(y, r1, r2)

and

Φ†(y, r1, r2)G
−1 + 2α2

s Nc

π

∫
d2r3

r2
12r

2
32r

2
13

{
Φ†(y, r1, r3)Φ

†(y, r2, r3)L12 + 2 Sym12
(
Φ(y, r3, r2)L13Φ

†(y, r1, r3)
)}

(22)= τA(y, r1, r2),

where the operatorsL12 are assumed to act on the left and Sym12 means symmetrization in indexes 1 and 2. These equations
also to be supplemented by conditions

(23)Φ(y, r1, r2) = 0 if y < 0, Φ†(y, r1, r2) = 0 if y > Y.
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To write the equations in their final form we note that the BFKL Green functionG satisfies the equations

(24)p2
1p

2
2

(
∂

∂y
+ H

)
G =

(
∂

∂y
+ H †

)
p2

1p
2
2G = 1,

whereH is the BFKL Hamiltonian:

(25)H = ᾱ

2

(
lnp2

1 + lnp2
2 + 1

p2
1

ln r2
12 · p2

1 + 1

p2
2

ln r2
12 · p2

2 − 4ψ(1)

)
.

From this we conclude that

(26)G−1 = p2
1p

2
2

(
∂

∂y
+ H

)
=

(
∂

∂y
+ H †

)
p2

1p
2
2.

Multiplying Eqs.(21) and (22)by p−2
1 p−2

2 from the left and from the right respectively we finally find
(

∂

∂y
+ H

)
Φ(y, r1, r2) + 2α2

s Nc

π

∫
d2r3 r2

12

r2
32r

2
13

Φ(y, r1, r3)Φ(y, r2, r3)

(27)+ 4α2
s Nc

π
L−1

12

∫
d2r3 r2

12

r2
32r

2
13

Sym12
(
Φ†(y, r3, r2)L13Φ(y, r1, r3)

) = τB(y, r1, r2)

and (
− ∂

∂y
+ H

)
Φ†(y, r1, r2) + 2α2

s Nc

π

∫
d2r3 r2

12

r2
32r

2
13

Φ†(y, r1, r3)Φ
†(y, r2, r3)

(28)+ 4α2
s Nc

π
L−1

12

∫
d2r3 r2

12

r2
32r

2
13

Sym12

(
Φ(y, r3, r2)L13Φ

†(y, r1, r3)
) = τA(y, r1, r2).

Theδ-like dependence of the external sources ony together with conditions(23)imply that one can drop the sources in the equati
and substitute them by the boundary conditions aty = 0 andy = Y :

(29)Φ(y, r1, r2)y=0 = ρB(r1, r2), Φ†(y, r1, r2)y=Y = ρA(r1, r2),

whereρA,B are given by(11) and (13)without theδ-functions in rapidity.
From the form of equations one immediately concludes that they are conformal invariant provided the external source

this invariance.
These equations can be also written in the form which allows an easy comparison with the BK equation for non-forw

diagrams. To this aim one rescales the fields putting

(30)Φ(r1, r2) = N(r1, r2)

4παs

, Φ†(r1, r2) = N†(r1, r2)

4παs

and uses a representation for the HamiltonianH [9]

(31)Hf (r1, r2) = ᾱ

2π

∫
d2r3 r2

12

r2
23r

2
13

(
f (r1, r2) − f (r1, r3) − f (r2, r3)

)
.

Then our equations take the form

∂N(r1, r2)

∂y
= − ᾱ

2π

∫
d2r3 r2

12

r2
23r

2
13

{
N(r1, r2) − N(r1, r3) − N(r2, r3) + N(r1, r3)N(r2, r3)

(32)+ L−1
12

(
N†(r3, r2)L13N(r1, r3) + N†(r3, r1)L23N(r2, r3)

)} + 4παsτB(y, r1, r2)

and

∂N†(r1, r2)

∂y
= ᾱ

2π

∫
d2r3 r2

12

r2
23r

2
13

{
N†(r1, r2) − N†(r1, r3) − N†(r2, r3) + N†(r1, r3)N

†(r2, r3)

(33)+ L−1
12

(
N(r3, r2)L13N

†(r1, r3) + N(r3, r1)L23N
†(r2, r3)

)} − 4παsτA(y, r1, r2)

with the boundary conditions which follow from(29)after rescaling(30).
If one neglects the last terms of the integrand on the r.h.s. in both equations and thus decouplesN andN† the equations turn

into a pair of independent BK equations for dipole scattering amplitudes off the nucleiA andB evolving in opposite direction
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in rapidity and corresponding to the sum of two sets of fan diagrams starting from the projectile or target. This may be
give a physical interpretation to pomeronic fields as scattering amplitudes for dipoles from one nucleus off the other one
terms in the integrand introduce interaction between these two sets of fans and correspond to diagrams which contain bo
and fusion of pomerons. The structure of this interaction is rather complicated in both configuration and momentum spac
non-locality of the inverse operatorL−1. One expects it to be simplified in the conformal basis, which will be the subject o
next section.

Meanwhile, using the equations of motion one can simplify the expression for the actionS calculated on their solution. Indee
multiplying Eqs.(21) and (22)by Φ†(y, r1, r2) andΦ(y, r1, r2), integrating overy, r1, r2 and summing the results one obtain
relation

(34)2S0 + 3SI + SE = 0.

This can be used to exclude one of the parts of the action when calculating the amplitudeT . Recalling that the fields are disconti
uous at the boundaries we obtain from(34)

(35)T (Y, bA, bB) = 1

3
(SE − S0) = 1

2
(SI − SE).

4. Equations in the conformal basis

One may hope that the equations for the pomeron fields may be somewhat simplified in the conformal basis formed by
Eµ(r1, r2). To this end we present

(36)Φ(y, r1, r2) =
∑
µ

Eµ(r1, r2)Φµ(y).

The orthonormalization properties ofEµ(r1, r2) [6] allow to invert this relation and find

(37)Φµ(y) =
∫

d2r1 d2r2

r4
12

E∗
µ(r1, r2)Φ(y, r1, r2).

Sinceµ = {n, ν, r0}, transition to the conformal basis by itself does not change the number of variables (three). However i
cally simplifies the operatorsL in the mixing term of our equations.

Indeed the mixing term of Eq.(27)can be written as

(38)T mix(r1, r2) = 4α2
s Nc

π
L−1

12

∫
d2r3 r2

12

r2
32r

2
13

Sym12

∑
µ1,µ2

Φ†
µ1

(y)Φµ2(y)λ−1
µ2

E∗
µ1

(r3, r2)Eµ2(r1, r3),

where we have used that

(39)L13Eµ(r1, r3) = λ−1
µ Eµ(r1, r3).

Expanding the integral overr3 considered as a function ofr1 andr2 in the conformal basis we get

(40)T mix(r1, r2) =
∑
µ

T mix
µ Eµ(r1, r2),

where according to(39)

(41)T mix
µ = 4α2

s Nc

π

∫
d2r1 d2r2

r4
12

E∗
µ(r1, r2)L

−1
12

∫
d2r3 r2

12

r2
32r

2
13

Sym12

∑
µ1,µ2

Φ†
µ1

(y)Φµ2(y)λ−1
µ2

E∗
µ1

(r3, r2)Eµ2(r1, r3).

We integrate by parts transforming action ofL−1
12 onE∗

µ(r1, r2)/r4
12 and use

(42)r4
12L

−1†
12 r−4

12 = L−1
12

to applyL−1
12 directly onEµ(r1, r2) which gives a factorλµ. So in the end we get

T mix
µ = 4α2

s Nc

π

∫
d2r1 d2r2 d2r3

r2
12r

2
32r

2
13

λµE∗
µ(r1, r2)Sym12

∑
µ1,µ2

Φ†
µ1

(y)Φµ2(y)λ−1
µ2

E∗
µ1

(r3, r2)Eµ2(r1, r3)

(43)= 4α2
s Nc

π
λµ Sym12

∑
µ1,µ2

Vµ̃,µ̃1,µ2λ
−1
µ2

Φ†
µ1

(y)Φµ2(y),
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whereVµ,µ1,µ2 is the triple pomeron vertex in the conformal basis

(44)Vµ,µ1,µ2 =
∫

d2r1 d2r2 d2r3

r2
12r

2
32r

2
13

Eµ(r1, r2)Eµ1(r3, r2)Eµ2(r1, r3)

andµ̃ corresponds to the complex conjugate basis function: ifµ = {h, r0} thenµ̃ = {1− h, r0} (and always̄h = 1− h∗).
A similar transformation of the first integral term in Eq.(27) is straightforward and leads to the result which is different from(43)

by the absence of conjugateΦ ’s and factorsλ. So we find the first equation in the conformal basis as (suppressing the co
argumenty and dropping the source term)

(45)
∂Φµ

∂y
= ωµΦµ − 2α2

s Nc

π
Sym12

∑
µ1,µ2

Φµ2

(
Vµ̃,µ1,µ2Φµ1 + 2

λµ

λµ2

Vµ̃,µ̃1,µ2Φ
†
µ1

)
.

The second equation can be obtained by reversing the direction of propagation in rapidity and passing to conjugate fields

(46)
∂Φ†

µ

∂y
= −ωµΦ†

µ + 2α2
s Nc

π
Sym12

∑
µ1,µ2

Φ†
µ2

(
Vµ,µ̃1,µ̃2Φ

†
µ1

+ 2
λµ

λµ2

Vµ,µ1,µ̃2Φµ1

)
.

The triple pomeron vertexVµ,µ1,µ2 was studied in[10]. It depends on three conformal weightsh,h1 andh2 and three center
of-mass vectors{r0, r01, r02} ≡ {ρ0, ρ1, ρ2}. The dependence on the letters is determined by the conformal invariance, so t
complex notation)

(47)Vµ,µ1,µ2 = Ωh,h1,h2

∏
i<j

ρ
−∆ij

ij ρ∗
ij

−∆̄ij ,

wherei = 0,1,2, ∆01 = h0 + h1 − h2, ∆̄01 = h̄0 + h̄1 − h̄2, etc. The part of the vertex depending on conformal weightsΩh,h1,h2

was found in[10] for arbitrary conformal weights in terms of the Meijer functionG
pq

44 . The complicated form of the vertex togeth
with the use of complex variables make Eqs.(45), (46)for the pomeron fields in the general case not very suitable for prac
calculations, in spite of the simplification for the action of operatorsL. However they may serve as a starting point for furt
simplifications realized by truncating the equations by certain low values of conformal weights. In the next section we co
most drastic example of such a truncation.

5. Lowest conformal weights

As well known from the study of the linear BFKL equation in the high-energy limit, the leading contribution comes fro
minimal conformal weight in the expansion(36), namelyh = h̄ = 1/2, which corresponds ton = 0 andν = 0. So the simplest cas
which may be of interest for our problem is to putn = 0 in all places andν = 0 whenever this is allowed by the equations, that i
Φµ, Φ†

µ andΩh,h1h2. Then one finds for the triple pomeron coupling[10]

(48)Ω1/2,1/2,1/2 ≡ Ω0 = 2π7
4F3(1/2)6F5(1/2) = 7766.679.

The unknown fieldsΦµ andΦ†
µ become functions of rapidityy and center-of-mass vectorρ0 (actually ofρ2

0 due to rotationa
invariance). Two Eqs.(45) and (46)simplify to

(49)
∂Φ(ρ0)

∂y
= �Φ(ρ0) − α2

s Nc

8π7 Ω0

∫
d2ρ1 d2ρ2

ρ01ρ02
δ′′

(
ln

ρ01

ρ02ρ12

)
δ′′

(
ln

ρ02

ρ01ρ12

)
Φ(ρ1)

(
Φ(ρ2) + 2Φ†(ρ2)

)

and

(50)
∂Φ†(ρ0)

∂y
= −�Φ†(ρ0) + α2

s Nc

8π7 Ω0

∫
d2ρ1 d2ρ2

ρ01ρ02
δ′′

(
ln

ρ01

ρ02ρ12

)
δ′′

(
ln

ρ02

ρ01ρ12

)
Φ†(ρ1)

(
Φ†(ρ2) + 2Φ(ρ2)

)
,

where� = ωn=0,ν=0 is the BFKL intercept. We have taken into account that due to the presence of theδ-functions we haveρ12 = 1
(in the chosen scale, determined by the sources).

From the assumed independence of the fields ofν it follows that the boundary conditions for these equations have to belo
the class of functions of the form

(51)f (r1, r2) =
∫

r12d2r3

r12r13
δ′′

(
ln

r12

r13r23

)
g(r3),

whereg(r) is an arbitrary function. Obviously this restricts the sources to be of a very special sort, with the dependence
vectorsr1 andr2 and thus on three variablesr2

1, r2
2 andr1r2 determined by a function of a single variabler2

3. So any practical us
of the thus simplified system of equations is questionable. At most it may serve to study the qualitative features of the so
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the limit of high energies, when one may hope that the influence of the choice of the boundary conditions becomes neg
it happens with the BK equation). Still even Eqs.(49) and (50)do not look easily solvable. We reserve their study for a sepa
publication.

6. Conclusions

We have derived a pair of equations for the pomeron fields in two heavy nuclei, which describe nucleus–nucleus sca
the perturbative QCD with a large number of colours. The equations contain mixing terms which are both non-linear and n
In absence of mixing the equations decouple into a pair of BK equations for the projectile and target.

In contrast to thehA case the equations are to be solved with given boundary conditions at rapidities of the projectile an
which complicates their solution enormously. The equations themselves are conformal invariant. This invariance is natura
by the sources. However use of the conformal basis may open ways for various simplifications of the equations, which may
their solution, if only on the qualitative level.

Our equations have been obtained as a result of classical approximation to an effective non-local quantum field theory co
to give rise to all Feynman diagrams for propagating and interacting pomerons. This approximation contains both spli
merging vertexes for transition of one pomeron into two but it does not contain pomeron loops. To include loops on
consider our effective field theory as a full-fledged quantum theory. Then one has to deal with an infinite system of equa
pomeron Green functions rather than with a pair of equations derived in this Letter. This raises the complexity of the prob
incomparable level. The author intends to discuss some aspects of taking pomeron loops into account in a forthcoming pu
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