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Abstract

In the perturbative QCD withV, — oo the amplitude for the collision of two heavy nuclei is expressed via dipole densities in the nuclei.
Coupled equations for these densities are derived in the configuration space. The equations are conformal invariant in absence of external sot
Passing to conformal basis and its possible truncation are discussed.

0 2005 Elsevier B.VOpen access under CC BY license.

1. Introduction

In the perturbative QCD withV. — oo, high-energy scattering of a pointlike projectile on a large nucleus is described by
a sum of fan diagrams constructed from BFKL pomerons and vertexes for their splitting in two. Summation of these diagrar
leads to the well-known BK equatidf—3], now well studied both theoretically and numerically. Generalization of these results to
nucleus—nucleus scattering requires a symmetric treatment of projectile and target and obviously involves not only the vertex
the splitting of a pomeron in two but also fusing of two pomerons in one. Such a program was realized in ouf4)apbere
we limited ourselves to the case when momenta transferred to both nuclei are negligible as compared to gluon momenta in:
pomerons, which physically corresponds to the limit of very heavy nuclei and a finite pomeron slope. As a result all pomerons we
propagating in the forward direction. This simplified the final equations considerably but their basic conformal invariance proper
remained hidden. Also written in the momentum space the equations are difficult to compare with the results following from tt
dipole picture and so-called JIMWLK approach, in which the problem of symmetric treatment of projectile and target (and als
of inclusion of pomeron loops) is lately being studied very actively (see,[6]gand references therein). For these reasons in this
Letter we rederive equations describing nucleus—nucleus scattering for a general case, when the pomerons are allowed to ct
their momenta in their interaction with the nuclei and between themselves. Our final equations are in the transverse coordir
space, so that comparison with the dipole approach will be facilitated.

It is important to stress the approximations used in the derivation. We rely on the perturbative QCD in the limit of large numb
of colours,N. — oo, and assume both nuclei to be large, with their atomic numibeBs>>> 1. This allows to take into account only
tree diagrams constructed of pomerons and their interaction vertexeSigsdefor the simplest examples). Both pomeron loops
and contributions which cannot be described in terms of pomerons (e.g., gluonic interaction between two pomerons) are neglec
since they are damped by higher powers gfland/or ¥ A, 1/ B. Obviously this approximation cannot work at superlarge energies
when the pomeron can propagate to transverse distances larger than the nuclei dimensions, which occurs a¥rapditibat
a’y > RE&,B' wherea’ is the pomeron slope. All experimental data give< 0.01 fi?, so that these rapidities seem to be well
beyond our present and predictable possibilities. The approximation of large nuclei also allows to neglect correlations betwe
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Fig. 1. Simplest tree diagrams for nucleus—nucleus scattering.

colour distributions of different nucleons and excludes diagrams in which a pomeron interacts simultaneously with two nucleons of
the target or projectile.

In our formalism the nucleus—nucleus scattering amplitude is trivially expressed via a pair of non-local pomeron fields for the
colliding nuclei. Our final result is a pair of equations for these pomeron fields, which possess full conformal invariance in absence
of external sources. The equations include terms with the interaction between the two fields. If one neglects this interaction the
equations decouple into a pair of BK equations for the projectile and target. The equations are in fact very complicated and not wel
suited for numerical studies, which are difficult already for the forward propagation case considgtedSiome simplification
seems to be possible by passing to the conformal basis and restricting to lowest conformal states, which is also discussed in tl
Letter.

2. Pomeron diagrams and effective field theory

At fixed overall impact parametérthe A B amplitude A(Y, b) can be presented as an exponential of its connected part:
A(Y,b) = 2is(1— e THD), 1)

The dimensionles¥ is an integral over two impact parametégsandb g of the collision point relative to the centers of the nuclei
A andB:

T(Y.b) = f @b d%p 52(b — b + bp)T(Y, b, bp). 0

As mentioned in the introduction, in the perturbative QCD with— oo the amplitude-T (Y, b4, bp) is given by a sum of all
connected tree diagrams constructed of BFKL pomerons and the triple pomeron vertex. More concretely, in these diagrams a lin
(“propagator”) describing propagation of a pair of gluons from rapigignd points-y andr; to rapidity y" and points-; andr;
corresponds to the BFKL Green functioh,_ (r1, r2|r}, r5) [6]:

Gy_y (ri.ralrf. 1) =0(y = ¥) Y e O™ 0, B (r. r2) EJf(r. 79). 3)

m

whereu = {n, v, ro} = {h, ro}, summation in(3) includes summation over and integrations over and transverse vecteg with
the weight(v2 + n2/4) /7% functionsE,, form the conformal basis. In the complex notatios x + iy, r* =x — iy

12 h r¥ h
12
E, (r1,r2) = <—> (ﬂ) ) (4)
1020 1020

whererip =r1 —rp, etc.;h = (L —n)/2+iv andh = 1 — h* are conformal weights. Functian, is the BFKL eigenvalue

a),L=wh:64|:1//(1)—Re1//<|n|2+1+iv>:|, (5)

where standardly = ;N /7. Finally

1
= ) 6
[+ D2+ 42][(1 — D2 + &7 ©)
The interaction between pomerons is realized via the triple pomeron vertex. It is non-local and not symmetric in the incoming

and outgoing pomerons. For arbitrary valuesNof the vertex for splitting of a pomeron in two was found[if]. In the limit
N, — oo its form in the coordinate space was establishe@jnThe three BFKL Green functions are connected by it as follows

(seeFig. 2a))

202N, d2r1 dzrz d2r3

siVe o T "o "oon

f 5 5 % (Gyi—y(r17r3|rlsr3)L13)Gy—yé(rlvr2|r17r2)Gy—yé(r3ar2|»r37r2)- (7)
T r1232t13

Au=2Ap
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Fig. 2. Splitting of a pomeron into two (a) and fusion of two pomerons into one (b).

Here L13is (up to a numerical factor) the quadratic Casimir operator for the conformal transformatiqresmafrs:

Liz=r3p%p3. ®)

where in the configuration spagé = —VZ. In (7) LIs is acting on the left. Note that the triple pomeron vertex is symmetric in the
gluons inside the outgoing pomerons (i.e., unde¢> rp andrz <> r2). So the outgoing pomerons have to be symmetric in their
respective gluons. The form of the vertex for the fusion of two pomerons into one is actually not known. However, the symmet
between target and projectile prompts us to assume that for the inverse prae8ss-2 the BFKL functions are to be joined as

(Fig. 2b))
20(2N fdzrldzrzdzrg

Gy (r].13lr1,r2)G . (r3. 131r3, r2)L13G _/ (r1, r3lry, r3). 9)
r 1zr 32r 13
Finally we have to describe the interaction of the pomerons with the two nuclei. The BFKL Green functions corresponding |
the external legs of the diagrams are to be integrated with the colour density of each nucleus. We take the targeBhathess, (
that is, at rapidity zero. Then each outgoing external BFKL Green function is to be transformed into

/a’zri dzré Gy(r1, r2|ri, ré)pg (ri, ré) = /dy'dzri dzré Gy_y(r1, r2|ri, ré)rg o/, ri, ré), (10)

wherepp is the colour density of the target. If we neglect correlations between the colours of the nucleons in theBucleus
r1+r2

75(y.r1.r2) = g°BTp (bB)az(bB - )pN (r12)8(y), (11)

whereTp is the profile function of the nucleud andpy is the colour density of the nucleon. Similarly each ingoing BFKL external
Green function is to be transformed into

/ dy' d®rid®rhTa(y, 11, 12) Gy (1y, ThIrL, 72), (12)

where

ta(y.r1.r2) = §2ATy (bA)sz(bA _nt rz)pN(rlz)a(y ~Y) (13)
andY is the overall rapidity. If the densitiesy andtp are symmetric in the gluons (which is true fdrl) and (13)and will be
assumed in the following) then the initial pomerons are also symmetric in the gluons inside them. Together with the mention
properties of the triple pomeron vertexes it means that only symmetric pomeron states are propagating in the two nuclei.

To find the amplitude, one has to sum over all connected diagramsWvitigoing andN outgoing lines, corresponding id
interactions with the projectile andl interactions with the target, divided 3! N!.
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It is trivial to see that this sum exactly corresponds to the sum of tree diagrams generated by an effective quantum theory of twi
pomeronic fieldsp (v, r1, r2) andqu(y, r1, rz), symmetric inr1, rp, with the action

S=S80+ S+ Sk
consisting of three terms, which correspond to free pomerons, their mutual interaction and their interaction with external source:
(nuclei), respectively.
To give the correct propagatosg has to be chosen as
So= / dydy' d?ryd?rad?r| d?ry @Y (y, 11, rz)G;_ly,(rl, ralry, )@ (', 1y, ) = (@77 e), (14)
where(]) means the integration overand both gluon coordinates. Note that the sig§gpéorresponds to the following substitution
of the conventionally defined field variablgsand®:
®—>id, ' >iopl (15)

which allows to make all terms of the action real.
According to(7) and (9)the interaction terns; is local in rapidity

2042NC / /d2r1d2r2d2r3

r 1zr 3213

[(L13®@ (v, r1,73)) @1 (v, r1,72) @ T (v, 73, 72) + h.c). (16)

The overall sign combines the initial factoandi 2 from the substitutiorf15).
Finally the interaction with the nuclei is local both in rapidity and coordinates:

Sg= —/dydzrldzrz (@, r1.r)TAW. 11, 72) + @1 (y, 11, 1) T8y, 11, 72) ) (7)

The minus sign comes from the initiaknd the substitutio(iL5).
The amplituder (Y, by, bp) is then expressed through a functional integral

Z =/Dq§ Do'teS. (18)
In the tree approximation, corresponding to diagrams of the type shoklig.id, keeping only connected diagrams we find
Z
T(Y,bA,b;,):—InZ—:—S{cb,qﬁT}, (19)
0

whereZo(= 1) is the value ofZ for S; = 0 and the actior$ is to be calculated fo® and® T satisfying the classical equation of
motion.

3. Equationsfor the classical pomeron fields

The classical equations of motion follow from the variation of the action with respektand® T
3S 3S

- — (20)
8P(y,r1,r2) 8P (y,r1,r2)
We find a pair of equations
o2 2
N, d r3
G oy, . r2)+ / {¢(y,rl,r3)¢>(y,r2,r3)L12+23yﬂh2(@ (y,r3,r2)L13® (y,r1,13))}
riorsirts
=15(y,71,72) (21)
and
_ 202N, d2r3
oV (y,ri,r)GH 4 = C/ 5 (T, 11,7 (y. 12, r3) L1 + 2 Symyo(@ (. 73, 72) L13® T (v, r1. 7)) }
T 1213213
=7a(y, r1,r2), (22)

where the operators1, are assumed to act on the left and Symeans symmetrization in indexes 1 and 2. These equations have
also to be supplemented by conditions

®(y,r1,r2)=0 ify<0, CDT(y, ri,r2)=0 ify>Y. (23)
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To write the equations in their final form we note that the BFKL Green fundicatisfies the equations

0 d
P%P%(@*‘H)G:(@‘FH >P1P2G 1, (24)
whereH is the BFKL Hamiltonian:
o 2 20,01 5 5 1 5 5
H= > Inpi+Iinp;+—iInry,- pT+ —Inriy- p5 — 49 (1) |. (25)
P1 P>

From this we conclude that
d d
G l=p2p2( L i g)=(2 1 gt)p2p2 26
pPips 3y + 3y + Pips (26)

Multiplying Eqgs.(21) and (22py pl_zp_2 from the left and from the right respectively we finally find

d 2N r3r12
+ H )P (y,r1, r2)+ D(y,r1,r3)P(y,r2,r3)
dy 32 13

402N, d? r3r
+ Clelf > 212Symlz(q)T(y,r3,r2)L13<1>(y,r1,r3))=TB(y,r1, r2) (27)
T r3r'13

and

0 202N, d? r3r
(—8—+H>Q>T(y,r1,r2)+ . C/ o2 ®1(y, 11, r3) @1 (3. 72, 73)
y T 39" 13

402N, 4 [ d®r3r
+ ; CL121/ ) 12 Symyo(@ (v, r3, r2) L13® (v, 1, 73)) = T4 (¥, 11, 12). (28)
r32'13

Thes-like dependence of the external sources dogether with condition&3)imply that one can drop the sources in the equations
and substitute them by the boundary conditiong &t0 andy =Y

Q(yvrla r2)y=O=pB(rlvr2)v Q)T()’yrl,rZ)):Y:pA(rl, "2)a (29)

wherep,4 p are given by(11) and (13)without thes-functions in rapidity.

From the form of equations one immediately concludes that they are conformal invariant provided the external sources poss
this invariance.

These equations can be also written in the form which allows an easy comparison with the BK equation for non-forward fe
diagrams. To this aim one rescales the fields putting
N(r1,r2) NY(r1, r2)

ot L)
p— (r1,r2) 4, (30)

and uses a representation for the Hamiltorfafe]

Hf1r2) = 5 / e
23"13

Then our equations take the form

D(ri,1r2) =

d? r3 r12

(fGr1.r2) — f(r1.r3) — f(r2.r3)). (31)

ON(r1, d?rar?
Nt r2) _ S22 (N1 r2) = NG rs) = N2,ra) + Now )N (2. r)
dy 2” 2313

+ L3 (NT(r3,r2)L1aN (r1, r3) + NT(r3, 1)) LosN (r2, r3)) } + 4 T (v, 11, 12) (32)

and

INT(ry, a2
AN (r1.r2) _ 271/ r3r12{NT(r1,r2)—NT(rl,r3)—NT(rz,r3)+NT(r1,r3)NT(r2,r3)

dy r 23r 13
+ L1} (N(r3, r2)L1aN T (r1, 73) + N (r3, 1) L2sN T (2, 73)) } — 4masta (v, 11, 12) (33)

with the boundary conditions which follow frof29) after rescaling30).
If one neglects the last terms of the integrand on the r.h.s. in both equations and thus deoaptes T the equations turn
into a pair of independent BK equations for dipole scattering amplitudes off the rucaid B evolving in opposite directions
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in rapidity and corresponding to the sum of two sets of fan diagrams starting from the projectile or target. This may be used to
give a physical interpretation to pomeronic fields as scattering amplitudes for dipoles from one nucleus off the other one. The las
terms in the integrand introduce interaction between these two sets of fans and correspond to diagrams which contain both splittir
and fusion of pomerons. The structure of this interaction is rather complicated in both configuration and momentum spaces due t
non-locality of the inverse operatdr—!. One expects it to be simplified in the conformal basis, which will be the subject of the
next section.

Meanwhile, using the equations of motion one can simplify the expression for the dat&loulated on their solution. Indeed
multiplying Egs.(21) and (22by ®T(y, r1, r2) and@(y, r1, ro), integrating overy, r1, r» and summing the results one obtains a
relation

250438+ Sg=0. (34)

This can be used to exclude one of the parts of the action when calculating the amplifRdealling that the fields are discontin-
uous at the boundaries we obtain fr¢84)

1 1
T(Y,ba,bp)= é(SE - So) = E(SI - SE). (35)

4. Equationsin the conformal basis

One may hope that the equations for the pomeron fields may be somewhat simplified in the conformal basis formed by function:
E, (r1,72). To this end we present

By, r1,r2) =Y Eu(r, r2) @, (). (36)
"

The orthonormalization properties &f,(r1, r2) [6] allow to invert this relation and find

d?rid®ry
2,00 = [ FHREL 1m0 ). 37)
12
Sinceu = {n, v, rp}, transition to the conformal basis by itself does not change the number of variables (three). However it drasti-
cally simplifies the operatork in the mixing term of our equations.

Indeed the mixing term of Eq27) can be written as

2 2
Iy, = HNe 1 [T 6 SN Gt (100, (AES (.72 Epy 1. 7). (38)
ry, r2) = T 12 r§2r123 yrn_I_Z ni Y)Pu, Ly 2 /Ll r3, r2)L,\r1, r3
M1, 12

where we have used that

L13E, (r1.r3) = A, VE (1, 73). (39)
Expanding the integral oveg considered as a function ef andr; in the conformal basis we get
T™(r1,r2) = Y T E,(r1,72), (40)
n

where according t¢39)

4a2N d2r1d2r2 d?r r3r _
T = - c/ . E*(rl,rz)lef 5 125 Yy Y @) (NP, (1A E (73,12 Epy (11, 73). (41)
T12 32r13 LLuh2

We integrate by parts transforming actionquzl onEj (r1,r2)/ rf'z and use

1
r 12L12 ris =L (42)

to appIyLI2 directly onE, (r1, r2) which gives a factok . So in the end we get

M ES(rL 1) Sy Y @ ()@, (DAL ER (r3.72) Ey (r1. 73)

i 42N, derle r?d%rs
r 12’ 32’” 13 L1 h2

2
N, _

“ Ay Symi 2 : Vi Ml@;q(y)@uz()’) (43)
11,12
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whereV,, ., ., is the triple pomeron vertex in the conformal basis

2, 12.2 12
Vi = / DTS (11, 12) By 3, 72) B (11, 73) (44)
F12"32"13
andjt corresponds to the complex conjugate basis functiom=i {/, ro} thenji = {1 — &, ro} (and alwaysh = 1 — h*).
A similar transformation of the first integral term in H§7)is straightforward and leads to the result which is different f(d8)
by the absence of conjugad®'s and factorsi.. So we find the first equation in the conformal basis as (suppressing the common
argumenty and dropping the source term)

b, 202N, A +
By op®p — ;r - Sym, Z Py, (Vﬂ,ul,m(bm + ZA_ Vi inna Py |- (45)
1112 K2

The second equation can be obtained by reversing the direction of propagation in rapidity and passing to conjugate fields:
L

— T
W = —a)uébu +

202N,
b

Au
Symy, Z (plz <V/L.,;11,/12¢Zl + ZT V/L,ul,;lz¢u1)~ (46)
142 H2
The triple pomeron verteX,, ,., ., was studied irff10]. It depends on three conformal weiglits:; andh, and three center-
of-mass vectorsrg, ro1, ro2} = {00, p1, p2}. The dependence on the letters is determined by the conformal invariance, so that (in
complex notation)

—Ajj —Ajj
Vieus.uz = $2n.hy.ho l_[ Pij I,O;kj 7y (47)

i<j

wherei =0, 1,2, Agr = ho + h1 — ho, Ao1 = ho + h1 — h», etc. The part of the vertex depending on conformal weighis, i,

was found in10] for arbitrary conformal weights in terms of the Meijer functiGdf{. The complicated form of the vertex together
with the use of complex variables make E¢5), (46)for the pomeron fields in the general case not very suitable for practical
calculations, in spite of the simplification for the action of operatbrddowever they may serve as a starting point for further
simplifications realized by truncating the equations by certain low values of conformal weights. In the next section we considel
most drastic example of such a truncation.

5. Lowest conformal weights

As well known from the study of the linear BFKL equation in the high-energy limit, the leading contribution comes from the
minimal conformal weight in the expansi¢®6), namelys = h = 1/2, which corresponds o= 0 andv = 0. So the simplest case
which may be of interest for our problem is to put 0 in all places anad = 0 whenever this is allowed by the equations, that is in
D, qﬁ:ﬂ ands$2y »,n,- Then one finds for the triple pomeron coupliig]

21/2.1/2.1/2 = 20 = 27 "4 F3(1/2)6 F5(1/2) = 7766679 (48)

The unknown fieldsp,, and qﬁ,j become functions of rapidity and center-of-mass vectpp (actually ofpg due to rotational
invariance). Two Eqg45) and (46implify to

0P (po) a?N, d?p1d?py 01 02
PO — A®(po) — 2 / PLE 2257 (1n 2o (1n —2%2— ) (1) (@ (02) + 20" (p2) (49)
ay 8r £01002 £02012 001012
and
99T (po) t afNe [ d?prd®p2 (- P01 \ o\ P02 ot i
——— =—A®(po) + 0 8"(In—— 8" In—— | @"(p1) (@ " (p2) + 2@ (p2)), (50)
dy 8 £01002 £02012 001012

whereA = w,—0,,=0 iS the BFKL intercept. We have taken into account that due to the presencesefithetions we have, =1
(in the chosen scale, determined by the sources).

From the assumed independence of the fields ibfollows that the boundary conditions for these equations have to belong to
the class of functions of the form

2
flr1ro) = / rizd ’36”(In f12 )g(r3>, (51)

ri12ri3 r13r23

whereg(r) is an arbitrary function. Obviously this restricts the sources to be of a very special sort, with the dependence on tv
vectorsr; andro and thus on three variabler%, r22 andr1r2 determined by a function of a single variabga So any practical use
of the thus simplified system of equations is questionable. At most it may serve to study the qualitative features of the solution
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the limit of high energies, when one may hope that the influence of the choice of the boundary conditions becomes negligible (a:
it happens with the BK equation). Still even E¢49) and (50)do not look easily solvable. We reserve their study for a separate
publication.

6. Conclusions

We have derived a pair of equations for the pomeron fields in two heavy nuclei, which describe nucleus—nucleus scattering ir
the perturbative QCD with a large number of colours. The equations contain mixing terms which are both non-linear and non-local
In absence of mixing the equations decouple into a pair of BK equations for the projectile and target.

In contrast to thé A case the equations are to be solved with given boundary conditions at rapidities of the projectile and target,
which complicates their solution enormously. The equations themselves are conformal invariant. This invariance is naturally broker
by the sources. However use of the conformal basis may open ways for various simplifications of the equations, which may facilitate
their solution, if only on the qualitative level.

Our equations have been obtained as a result of classical approximation to an effective non-local quantum field theory constructe
to give rise to all Feynman diagrams for propagating and interacting pomerons. This approximation contains both splitting and
merging vertexes for transition of one pomeron into two but it does not contain pomeron loops. To include loops one has to
consider our effective field theory as a full-fledged quantum theory. Then one has to deal with an infinite system of equations for
pomeron Green functions rather than with a pair of equations derived in this Letter. This raises the complexity of the problem to ar
incomparable level. The author intends to discuss some aspects of taking pomeron loops into account in a forthcoming publicatior
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