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Digital video delivered over wired-to-wireless networks is expected to suffer quality degradation from both packet loss and bit
errors in the payload. In this paper, the quality degradation due to packet loss and bit errors in the payload are quantitatively evalu-
ated and their effects are assessed. We propose the use of a concatenated forward error correction (FEC) coding scheme employing
Reed-Solomon (RS) codes and rate-compatible punctured convolutional (RCPC) codes to protect the video data from packet loss
and bit errors, respectively. Furthermore, the performance of a joint source-channel coding (JSCC) approach employing this con-
catenated FEC coding scheme for video transmission is studied. Finally, we describe an improved end-to-end architecture using
an edge proxy in a mobile support station to implement differential error protection for the corresponding channel impairments
expected on the two networks. Results indicate that with an appropriate JSCC approach and the use of an edge proxy, FEC-based
error-control techniques together with passive error-recovery techniques can significantly improve the effective video throughput

and lead to acceptable video delivery quality over time-varying heterogeneous wired-to-wireless IP networks.
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1. INTRODUCTION

With the emergence of broadband wireless networks and the
increasing demand for multimedia transport over the Inter-
net, wireless multimedia services are expected to be widely
deployed in the near future. Many multimedia applications
will require video transmission over links with a wireless first
and/or last hop as illustrated in Figure 1. However, many ex-
isting wired and/or wireless networks cannot provide guar-
anteed quality of service (QoS), either because of conges-
tion, or because temporally high bit-error rates cannot be
avoided during fading periods. Channel-induced losses, in-
cluding packet losses due to congestion over wired networks
as well as packet losses and/or bit errors due to transmission
errors on a wireless network, require customized error re-
silience and channel coding strategies that add redundancy
to the coded video stream at the expense of reduced source
coding efficiency or effective source coding rates, resulting in
compromised video quality.

In this paper we quantitatively investigate the effects of
packet losses on reconstructed video quality caused by bit

errors anywhere in the packet in a wireless network if only
error-free packets are accepted, as well as the effects of resid-
ual bit errors in the payload if errored packets are accepted
instead of being discarded in the transport layer. The for-
mer corresponds to the use of the user datagram protocol
(UDP) employing a checksum mechanism while the latter
corresponds to the use of a transparent transport protocol,
such as UDP-Lite [1], together with forward error correction
(FEC) to attempt to correct transmission errors.

This work represents an extension of previous works [2,
3]. In particular, in [2] we described an approach using edge
proxies which did not address the unique FEC requirements
on the wired networks. This was followed by work reported
in [3] where a concatenated channel coding approach was
employed, but without an edge proxy, which attempted to
address the distinct FEC requirements of both the wired and
wireless networks.

A joint source-channel coding (JSCC) approach has been
well recognized as an effective and efficient strategy to pro-
vide error-resilient image (4, 5, 6, 7, 8] and video (3,9, 10, 11]
transport over time-varying networks, such as wireless IP
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FiGure 1: [llustration of heterogeneous wired-to-wireless networks.

networks. In this paper, we extend the work in [3] and
provide a quantitative evaluation of a proposed JSCC ap-
proach used with a concatenated FEC coding scheme em-
ploying Reed-Solomon (RS) block codes and RCPC codes to
actively protect the video data from the different channel-
induced impairments associated with transmission over tan-
dem wired and wireless networks. However, we demonstrate
that this approach is not optimal since the coding overhead
required on the wired link must also be carried on the wire-
less link which can have a serious negative effect on the abil-
ity of the bandwidth-limited wireless link to support high-
quality video transport.

Finally, we will present a framework for an end-to-
end solution for packet video over heterogeneous wired-to-
wireless networks using an edge proxy. Specifically, the edge
proxy serves as an agent to enable and implement selective
packet relay, error-correction transcoding, JSCC, and inter-
operation between different transport protocols for the wired
and wireless networks. Through the use of the edge proxy lo-
cated at the boundary of the wired and wireless networks,
we demonstrate the ability to avoid the serious compromise
in efficiency on the wireless link associated with the con-
catenated approach. More specifically, we employ RS codes
only on the wired network to protect against packet losses
while the RCPC codes are employed only on the wireless
network to protect against bit errors. The edge proxy pro-
vides the appropriate FEC transcoding resulting in improved
bandwidth efficiencies on the wireless network. We believe
that the value of the proposed approach, employing an edge
proxy with appropriate functionalities, lies in the fact that lit-
tle or no change needs to be provided on the existing wired
network while at the same time it addresses the distinctly dif-
ferent transport requirements for the wireless network. Fur-
thermore, it uses fairly standard FEC approaches in order to
support reliable multimedia services over the Internet with a
wireless first and/or last hop.

The remainder of this paper is organized as follows. In
Section 2, we provide some technical preliminaries describ-

ing an application level framing (ALF) approach employ-
ing RTP-H.263+ packetization. In Section 3, we briefly de-
scribe the background for packet video over wireless net-
works and provide a quantitative study of packet video per-
formance over wireless networks based on the two differ-
ent transport-layer strategies as discussed above. We also de-
scribe the RCPC codes, the channel-loss model, and the as-
sumed physical channel model for the wireless networks un-
der study. In Section 4, we introduce a concatenated FEC
coding scheme for packet video transport over heteroge-
neous wired-to-wireless networks, and briefly describe the
interlaced RS codes and packetization scheme employed. In
Section 5, we present a framework for an end-to-end solu-
tion for packet video over heterogeneous wired-to-wireless
network using edge proxies and provide a comparison of the
performance achievable compared to the concatenated ap-
proach. Finally, Section 6 provides a summary and conclu-
sions.

2. PRELIMINARIES
2.1. Application-layer framing

To provide effective multimedia services over networks lack-
ing guaranteed QoS, such as IP-based wired as well as wire-
less networks, it is necessary to build network-aware appli-
cations which incorporate the varying network conditions
into the application layer instead of using the conventional
layered architecture to design network-based applications. A
possible solution is through ALF as proposed in [12]. The
principal concept of ALF is that most of the functionalities
necessary for network communications will be implemented
as part of the application. As a result, the underlying network
infrastructure provides only minimal needed functionalities.
The application is then responsible for assembling data pack-
ets, FEC coding and error recovery, as well as flow control.
The protocol of choice for IP-based packet video applica-
tions is the real-time transport protocol (RTP) [13], which is
an implementation of ALF by the internet engineering task
force (IETF). Likewise, UDP-Lite [1] is a specific instance
of ALF in the sense that the degree of transparency at the
transport layer can be tailored to the application by allow-
ing the checksum coverage to be variable, including only the
header or portions of the packet payload as well. In this pa-
per, we will consider the use of ALF-based RTP-H.263+ for
video transmission over wired and wireless IP networks with
a simplified transparent transport layer that does not require
all the functionalities of UDP-Lite.

2.2. RTP-H.263+

In order to transmit H.263+ video over IP networks, the
H.263+ bitstream must first be packetized. A payload for-
mat for H.263+ video has been defined for use with RTP
(RFC 2429) [14]. This payload format for H.263+ can also
be used with the original version of H.263. In our exper-
iments, the group of block (GOB) mode was selected for
the H.263+ coder and packetization was always performed
at GOB boundaries, that is, each RTP packet contains one
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or more complete GOBs. Since every packet begins with a
picture or GOB start code, the leading 16 zeros are omitted
in accordance with RFC 2429 [14]. The packetization over-
head then consists only of the RTP/UDP/IP headers, which
are typically 40 bytes per packet. This overhead can be signif-
icant at low bit rates for wireless network-based applications.
Itis important to improve the packetization efficiency in such
cases [15]. To minimize the packetization header overhead,
each RTP packet should be as large as possible. On the other
hand, in the presence of channel impairments, the packet size
should be kept small to minimize the effects of lost packets on
reconstructed video quality.

3. PACKET VIDEO OVER WIRELESS NETWORKS

Knowledge of the radio propagation characteristics is usually
a prerequisite for effective design and operation of a com-
munication system operating in a wireless environment. The
fading characteristics of different radio channels and their
associated effect on communication performance have been
studied extensively in the past [16]. Despite the fact that
Rayleigh fading is the most popular model, Rician fading is
observed in mobile radio channels as well as in indoor cord-
less telecommunication (CT) systems [16]. In a cellular sys-
tem, Rayleigh fading is often a feature of large cells, while
for cells of smaller diameter, the envelope fluctuations of a
received signal are observed to be closer to Rician fading. A
slow and flat Rician fading model is assumed here,! where
the duration of a symbol waveform is sufficiently short so
that the fading variations cause negligible loss of coherence
within each received symbol. At the same time, the symbol
waveform is assumed to be sufficiently narrowband (suffi-
ciently long in duration) so that frequency selectivity is negli-
gible in the fading of its spectral components. As a result, the
receiver can be designed and analyzed on the basis of optimal
symbol-by-symbol processing of the received waveform, for
example, by a sampled matched filter or other appropriate
substitute in the same manner used in the nonfading case.

3.1. Channel-induced loss models

In this work, we restrict our attention to a random loss
model, that is, the wireless channel is characterized by un-
correlated bit errors. This is a reasonable model for a fairly
benign wireless channel under the assumption of sufficient
interleaving to randomize the burst errors produced in the
decoder.

By means of FEC, some of these bit errors can be cor-
rected. Depending on the FEC code parameters and the
channel conditions, there will be residual bit errors. Gener-
ally, over existing wired IP networks, UDP is configured to
discard any packet with even a single error detected in the
entire packet including the header, although UDP itself need

'The slow and flat Rician channel model is completely described in terms
of the single parameter {? representing the ratio of specular-to-diffuse en-

ergy.

not implement this error-detecting functionality. In the wire-
less video telephony system described by Cherriman et al.
[17], such packets are also discarded without further process-
ing. In this paper, we will define two channel-induced loss
models. For the first model, we assume the same loss model
as used in wired IP networks; that is, a packet is accepted
only if there is no error in the entire packet including the
header as well as the payload, otherwise, it is considered lost.
This model corresponds to a transport scheme allowing only
error-free packets (denoted as scheme 1 in this paper). So,
for an interference-limited wireless channel, like the CDMA
radio interface, the packet losses are primarily the results of
frequent bit errors instead of congestion as in a wired net-
work. The channel-induced impairment to the video qual-
ity is in the form of these packet losses. If a packet is con-
sidered lost, the RTP sequence number enables the decoder
to identify the lost packets so that locations of the missing
GOBs are known. The missing blocks can then be concealed
by motion-compensated interpolation using the motion vec-
tor of the macroblock (MB) immediately above the lost MB
in the same frame, or else the motion vector is assumed to
be zero if this MB is missing. However, if too many packets
are lost, concealment itself is no longer effective in improving
the reconstructed video quality.

For the second model, we assume that the transport layer
is transparent to the application layer; that is, a packet with
errors only in the payload is not simply discarded in the
transport layer. Such a transparent transport layer can be
achieved by using, for example, UDP-Lite as proposed in [1].
However, UDP-Lite provides other functionalities not neces-
sary for the work here and is not widely deployed. As a result,
we employ a simplified transparent transport protocol which
limits the use of the checksum only on the RTP/UDP/IP
header and discards a packet only if there is an error detected
in the header. In this case the application layer should be able
to access the received data although such data may have one
or more bit errors. This model corresponds to a transport
scheme allowing bit errors in the payload (denoted as scheme
2 in this paper). The channel-induced impairment to the
video quality is then in the form of residual bit errors in the
video stream. It is the responsibility of the application layer to
deal with these possible bit errors. Specifically, here we make
use of the H.263+ coding scheme where, based on syntax vi-
olations, certain error patterns may be detected by the video
decoder and the use of the corresponding errored data can
be avoided by employing passive error-recovery (PER) tech-
niques.

Our intention is to quantitatively compare these two
channel-induced loss models, identify the different video
data protection requirements for wired and wireless net-
works, and describe the corresponding appropriate transport
schemes for packet video delivery over such networks.

3.2. Physical channel model

The bitstreams are modulated before being transmitted over
a wireless link. During transmission, the modulated bit-
streams typically undergo degradation due to additive white



256

EURASIP Journal on Applied Signal Processing

Gaussian noise (AWGN) and/or fading. At the receiver side,
the received waveforms are demodulated, channel decoded,
and then source decoded to form the reconstructed video
sequence. The reconstructed sequence may differ from the
original sequence due to both source coding errors and pos-
sible channel-error effects.

In this paper, the symbol transmission rate for the wire-
less links is set to be rs = 64 Ksps, such that the overall bit
rate employing QPSK modulation is constrained as Ryt =
128 Kbps. This in turn sets the upper limit for the bit rate
over the wired networks to be Ry, = 128 Kbps as well. Since
the total bit rate is limited by the wireless links, the use of RS
and/or RCPC codes will result in a decrease of source coded
bit rate proportional to the overall channel coding rates.

The transmission channel is modelled as a flat-flat Rician
channel with ratio of specular-to-diffuse energy {* = 7 dB.

3.3. RCPC channel codes

The class of FEC codes employed for the wireless IP net-
work in this work is the set of binary RCPC codes described
n [18]. With P representing the puncturing period of the
code, the rates of the codes that may be generated by punc-
turing a rate R, = 1/n mother code are R, = P/(P + j),
j = 1,2,...,(n — 1)P. Thus, it is easy to obtain a family
of codes with unequal error correcting capabilities. In this
work, a set of RCPC codes are obtained by making use of
an R, = 1/4 mother code with memory M = 10 and a corre-
sponding puncturing period P = 8. Then the available RCPC
codes are of rates, R, = 8/9,8/10,...,8/32.

3.4. Passive error recovery

If a packet is considered lost, the RTP sequence number en-
ables the decoder to identify the lost packets so that locations
of the missing data are known. The affected blocks can then
be concealed by PER techniques. In this work, we make use
of the error-detecting and recovery scheme described in Test
Model 8 [19]. The major objective of this PER scheme is to
detect the severe error patterns and prevent the use of such
errors which may substantially degrade the video quality. The
remaining undetected error patterns in the payload which
are not detected by the H.263+ decoder will result in the use
of incorrectly decoded image data which can cause quality
degradation of the reconstructed video.

3.5. Selected simulation results

We present some selected results for a representative quar-
ter common intermediate format (QCIF) video conferencing
sequence, Susie at 7.5 frames per second (fps). These results
were obtained using a single-layer H.263+ coder in conjunc-
tion with RCPC channel codes [18] together with quadrature
phase shift keyed (QPSK) modulation. To decrease the sen-
sitivity of our results to the location of bit errors, a sequence
of Ny = 30 input frames is encoded, channel errors are sim-
ulated and the resulting distortion is averaged. Furthermore,
each simulation was run N; times. By taking empirical av-
erages with N; sufficiently large (i.e., N; = 1000), statistical
confidence in the resulting distortion can be achieved.
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FiGUure 2: Performance of RTP-H.263+ packet video with 1 or
9 GOBs/packet over a wireless channel without channel coding and
employing loss model 1; Rician channel with {? = 7 dB.

Figure 2 demonstrates results for a system without chan-
nel coding under the assumption of the first loss model.
Here, we plot the reconstructed peak signal-to-noise ratio
(PSNR) versus the channel SNR, Es/N;.? In Figure 2, we pro-
vide results for two packetization choices which packetize
either 1 or 9GOBs (i.e., 1 frame for QCIF) into a single
packet. It should be obvious that in the absence of chan-
nel impairments, the more GOBs contained in one packet,
the better the quality should be as a result of the reduced
overheads. This is clearly demonstrated in Figure 2 where for
large Es/Ny, the larger number of GOBs/packet results in im-
proved PSNR performance. However, as the channel condi-
tions degrade (i.e., the value of Es/N; decreases), a packeti-
zation scheme with fewer GOBs/packet can be expected to
be more robust in the presence of the increasing channel im-
pairments. This is because of the dependence of packet-loss
rate upon the corresponding packet size. Although the bit-
error rate remains the same, a larger packet size results in
larger packet-loss rate. This is also demonstrated in Figure 2.
It should also be noticed that under the first loss model, the
video quality is extremely sensitive to packet losses due to the
channel variation in Es/Ny.

Next, we demonstrate the performance of the system
with a transparent transport layer; that is, channel-loss
model 2. We provide corresponding results in Figure 3 for
both loss models for two packetization choices which again
packetize 1 or 9 GOBs (i.e., 1 frame for QCIF) into a sin-
gle packet. If a single GOB is packetized into a packet, the
quality of the second transport scheme degrades somewhat

2The quality Es/Nj represents the ratio of energy per symbol to the spec-
tral density of the channel noise or interference level.
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FiGure 3: Performance of RTP-H.263+ packet video with 1 or
9 GOBs/packet over a wireless channel without channel coding for
the two loss models.

more gracefully compared to the first scheme as the channel
Es/Ni decreases. The relative disadvantage of the first scheme
in this case is the result of discarding packets with even a
single bit error in the payload. Instead, the second scheme
makes use of the received data by selectively decoding those
data without severely degrading the video quality. Since the
packet size in this case is relatively small, as the bit error rate
increases as a result of decreasing Es/Nj, there is some ad-
vantage of the first scheme in the region Es/N; < 31dB be-
cause it avoids the use of error-prone packets. For scheme 2,
on the other hand, the remaining undetected errors in the
payload begin to overwhelm the PER capabilities of the de-
coder as Es/N decreases and substantially degrade the recon-
structed video quality. This is also demonstrated in Figure 3.
However, it should be noticed that in this region the video
quality is already sufficiently degraded that the relative ad-
vantage of scheme 1 in this region does not make a signif-
icant difference for video users. Furthermore, as illustrated
in Figure 3, if 9 GOBs are packetized into a packet, the qual-
ity of the second transport scheme substantially outperforms
the first scheme as the channel Eg/N; becomes smaller. As the
packet size increases, the disadvantage of the first scheme is
even more significant as a result of discarding packets with
even single bit error in the payload. Based on these observa-
tions, it would appear that it is necessary to provide a trans-
parent transport scheme for packet video over wireless net-
works. More specifically, packet video over wired and wire-
less IP networks may have to employ different transport-layer
protocols.

FEC can be used to protect the video data against chan-
nel errors to improve the video delivery performance in
the range of lower Es/Nj, although, as we demonstrate, the
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FiGure 4: Performance of RTP-H.263+ packet video with 1 or
9 GOBs/packet over a wireless channel with a fixed R, = 1/2,
M = 10 convolutional code for the two loss models.

choice of channel coding rate must be carefully made. For ex-
ample, the corresponding results for the previous two pack-
etization choices are illustrated in Figure 4 for the two loss
models where we somewhat arbitrarily employ an R, = 1/2,
M = 10 convolutional code to protect the packetized video
data. In this case, the additional channel coding overheads
force a decrease in the available source coding bit rate,® and
this results in a corresponding decrease in the video quality
in the absence of channel impairments. This can be seen if we
compare the results in Figure 4 to the corresponding values
in Figure 3 for large Es/N;. However, it should be noted that
the coded cases can maintain the video quality at acceptable
levels for considerably smaller values of Es/N; compared to
the uncoded system. This is a good indication of the neces-
sity of employing FEC coding in wireless networks.

It should also be observed in Figure 4, compared to the
uncoded case illustrated in Figure 3, that the second loss
model consistently and substantially outperforms the first
loss model. For example, there is over 6 dB performance gain
of the second model over the first model at Es/N; = 4 dB for
the case of 9 GOBs/packet. This suggests the advisability of
using FEC coding to constrain the bit-error rate in wireless
networks together with the use of a transparent transport-
layer scheme to provide acceptable packet video services.
This provides further illustration that packet video transport
over wireless IP networks may require a different transport-
layer protocol from conventional wired networks in order to
obtain more desirable error-resilient quality.

3Recall that we are holding the total transmitted bit budget at Rior =
128 Kbps.
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4. PACKET VIDEO OVER WIRED-TO-WIRELESS
IP NETWORKS

Many evolving multimedia applications will require video
transmission over a wired-to-wireless link such as in wire-
less IP applications where a mobile terminal communicates
with an IP server through a wired IP network in tandem with
a wireless network as illustrated in Figure 1. We intend to ad-
dress an end-to-end solution for video transmission over a
heterogeneous network such as the UMTS third-generation
(3G) wireless system, which provides the flexibility at the
physical layer to introduce service-specific channel coding as
well as the necessary bit rate required for high-quality video
up to 384 Kbps.

Video quality should degrade gracefully in the presence
of either packet losses due to congestion on the wired net-
work, or bit errors due to fading conditions on the wireless
channel. Due to the difference in channel conditions and loss
patterns between the wired and wireless networks, to be ef-
ficient and effective the error-control schemes should be tai-
lored to the specific characteristics of the loss patterns asso-
ciated with each network. Furthermore, the corresponding
error-control schemes for each network should not be de-
signed and implemented separately, but jointly in order to
optimize the quality of the delivered video.

Here, we present a possible end-to-end solution which
employs an adaptive concatenated FEC coding scheme to
provide error-resilient video service over tandem wired-to-
wireless IP networks as illustrated in Figure 5. An H.263+
source coder encodes the input video which is applied to a
concatenated channel encoder employing an RS block outer
encoder and an RCPC inner encoder. The RS outer code op-
erates in an erasure-decoding mode and provides protection
against packet loss due to congestion in the wired IP net-
work while the RCPC inner code provides protection against
bit errors due to fading and interference on the wireless net-
work. The RS coding rates can be selected adaptively accord-
ing to the prevailing network conditions, specifically, packet-
loss rate for the wired IP network. This channel rate match-
ing is achieved by employing a set of RS codes with different
erasure-correcting capabilities. The RCPC coding rates can
also be selected adaptively to provide different levels of bit-

error-correcting capability according to the prevailing wire-
less network conditions, specifically, Es/N; for the wireless
channels.* This end-to-end approach avoids the system com-
plexities associated with transcoding in edge proxies located
at the boundaries between the wired and wireless networks
as treated in [2], for example. However, we will see that this
reduction in complexity is at the expense of a considerable
performance penalty.

4.1. Packet-level FEC scheme for wired IP networks

Packet loss is inevitable even in wired IP networks, and can
substantially degrade reconstructed video quality which is
annoying for users. Thus, it is desirable that a video stream
be robust to packet loss. Regarding the tight delay con-
straints for real-time video applications, FEC should be ap-
plied to achieve error recovery when packet losses occur. For
a wired IP network, packet loss is caused primarily by con-
gestion, and channel coding is typically used at the packet-
level [20, 21] to recover from such losses. Specifically, a video
stream is first chopped into segments each of which is pack-
etized into k packets, and then for each segment, a block
code is applied to the k packets to generate an n-packet
block, where n > k. To perfectly recover a segment, a user
only needs to receive any k packets in the n-packet block. To
avoid additional congestion problems due to channel-coding
overheads, a JSCC approach to optimize the rate allocation
between source and channel coding is necessary. One such
approach employing interlaced RS coding with packet-loss-
recovery capability has been described in [22].

In this paper, we will apply a form of concatenated
FEC coding employing interlaced RS codes as illustrated in
Figure 6, where FEC codes are applied across IP packets.
Specifically, each packet is partitioned into successive m-bit
symbols to form an encoding array, and individual symbols
are aligned vertically to form RS codewords of block length
n over GF(2™). As illustrated in Figure 6, each IP packet con-
sists of w successive rows of m-bit symbols, then, the decoded
packet-loss probabilities can be readily determined assuming
erasure-only decoding.

4.2. Packetization for the interlaced RS
coded video data

To quantitatively compare the performance between a coded
system and an uncoded system, we have to maintain the same
packet-generation rate. Specifically, for the QCIF video stud-
ied in this paper, in the uncoded system, each GOB is pack-
etized into a single packet, resulting in 9 packets per video
frame. For the coded system, network packets are obtained
by concatenating successive rows of the encoding array illus-
trated in Figure 6. We maintain identical packet rate in the
coded system as in the uncoded system. Specifically, with the
use of RS(63, k) codes, this results in packing 7 (i.e., w = 7
in Figure 6) coded symbols from the same RS codeword into
the same packet together with other RS coded symbols from

4The RCPC rates should also depend on the Rician channel parameter
(% which for purposes of this work we will assume is fixed and known.
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the same video frame. As a result, both systems will generate
9 packets per frame.

4.3. Packet-loss correction using RS codes

Consider an RS(n, k) code over GF(2™) applied in an inter-
laced fashion across the IP packets as described above and
illustrated in Figure 6. Here, k symbols of m bits each are en-
coded into n m-bit symbols with d the minimum distance of
the RS code given by
d=n—-k+1 (1)
For the proposed concatenated FEC scheme, it is possi-
ble that there are residual bit errors that cannot be corrected
through the use of the inner RCPC codes. These residual bit
errors may degrade the erasure-correction capability of the
RS codes employing erasure decoding which attempts to cor-
rect the packet-loss-induced symbol erasures over the wired
IP network. However, the probability of symbol errors for
the RS coded symbols resulting from such residual bit er-
rors will be very small compared to the symbol-erasure rate
with appropriate choices of inner RCPC codes which main-
tain the residual bit-error rate low. For example, consider-
ing an RS(63, k) code with a symbol size of 6 bits, a resid-
ual bit-error rate of 107> will result in a symbol-error rate
of 6 x 107> which will have a negligible effect on the erasure
correcting performance of the RS codes in a system where
packet-loss-induced erasures are dominant. So, in this paper
we assume the use of erasure-only decoding of RS codes with
full erasure-correcting capability.

For an RS code with erasure decoding, e < d — 1 era-
sures can be corrected. Consider that w m-bit symbols from
an RS codeword are packed into the same packet. A packet
loss under this packetization scheme will result in w erasures
for the corresponding RS coded symbols. Assume the symbol
erasures are independent. For the coded system, the resulting
packet-loss rate for the above specified packetization scheme
then becomes

9
p= > (?)m -, 2)

i=W

where A is the corresponding uncoded packet-loss rate, and
W is the maximum number of allowable packet losses that
can be recovered through the use of RS codes, and is given by

W = [e/w]. (3)

It should be noted that a lost packet in the uncoded sys-
tem as described above will result in a loss of 1 GOB. How-
ever, for the coded system, if there is a packet loss that cannot
be recovered through the erasure-correcting capability of the
corresponding RS codes, the whole frame, that is 9 GOBs,
will be affected due to the interlaced RS coding scheme. In
such a situation, PER, as will be described in Section 4.4, will
be applied to conceal the errors.

4.4. Channel-induced loss models

In the previous section, we have shown the advantage of a
transparent transport layer for video transmission over noisy
wireless channels. In what follows, we will again assume that
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FiGure 7: Performance of RTP-H.263+ packet video over wired IP
networks using RS coding alone.

the transport layer is transparent to the application layer, that
is, a packet with errors in the payload is not simply discarded
in the transport layer. Instead, the application layer should
be able to access the received data although such data may
have one or more bit errors. It is the responsibility of the ap-
plication layer to deal with the possible residual bit errors as
described previously in Section 3.1.

4.5. JSCCapproach

As has been demonstrated in the previous section, in order
to protect against the channel impairments, some form of
FEC coding must be employed. Since an arbitrarily chosen
FEC design can lead to a prohibitive amount of overhead for
highly time-varying error conditions over wireless channels,
a JSCC approach for image or video transmission is neces-
sary. The objective of JSCC is to jointly select the source and
channel coding rates to optimize the overall performance due
to both source coding loss and channel-error effects subject
to a constraint on the overall transmission bit rate budget.

In [9, 10], it was shown that much of the computational
complexity involved in solving this optimal rate allocation
problem may be avoided through the use of universal dis-
tortion rate characteristics. Given a family of universal dis-
tortion rate characteristics for a specified source coder, to-
gether with appropriate bounds on bit-error probability Py
for a particular modulation/coding scheme as a function of
channel parameters, the corresponding optimal distortion
rate characteristics for a video sequence can be determined
through the following procedure: for a specified channel
SNR, Es/Np, we can find the associated Pj, through the corre-
sponding bit-error probability bounds for a selected mod-
ulation/coding scheme as discussed earlier. Then, for each
choice of source coding rate R; of interest, use the resulting
Py, to find the corresponding overall PSNR from the universal
distortion rate characteristics. This procedure is described in
more detail in [9, 10].

Es/Nj (dB)

FIGURE 8: Performance of H.263+ coded video delivery over a wire-
less Rician fading channel with {* = 7 dB using JSCC approach with
RCPC coding only and employing perfect CSI. Performance results
for a set of fixed channel coding rate schemes are also shown.

4.6. Selected simulation results

We first consider the case where no channel error is intro-
duced over the wireless links; that is, only the packet loss over
the wired network will degrade the video quality. Figure 7
demonstrates the performance using a family of RS(63,k)
codes® with JSCC for RTP-H.263+ packet video over wired
IP networks experiencing random packet loss. Here we illus-
trate PSNR results as a function of packet-loss rate A for dif-
ferent values of source coding rate with the RS codes chosen
to achieve the overall bit rate budget Ryt = 128 Kbps. In par-
ticular, the smaller values of R, allow the use of more power-
ful low-rate RS codes resulting in improved performance for
larger packet-loss rate. On the other hand, for small packet-
loss rate performance, improvements can be obtained using
larger values of R, together with less powerful high-rate RS
codes. The optimum JSCC procedure selects the convex hull
of all such operating points as illustrated schematically in
Figure 7. Clearly, compared to the system without using RS
coding where video quality is substantially degraded with in-
creasing packet-loss rate, the JSCC approach with RS coding
provides an effective means to maintain the video quality as
network-induced packet-loss rate increases.

Consider another case where now bit errors over the
wireless links instead of packet loss over the wired network
are dominant, and a JSCC approach using RCPC codes is em-
ployed. The results are illustrated in Figure 8 where we now
plot PSNR versus Es/N;.® Again, as can be observed, the JSCC
approach with RCPC coding alone clearly demonstrates sig-
nificant performance improvements over either the uncoded
case or the case where the channel coding rate is fixed at

>RS(63, k) codes are used throughout the remainder of this paper.
©Observe the decreasing values of Es/Ny used in plotting Figure 8.
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FIGURE 9: Performance of H.263+ coded video delivery over het-
erogeneous wired-to-wireless IP networks using JSCC employing
concatenated RS and RCPC coding.

an arbitrarily chosen value.” The use of JSCC can provide a
more graceful pattern of quality degradation by keeping the
video quality at an acceptable level for a much wider range of
Es/Np. This is achieved by jointly selecting the channel and
source coding rates based on the prevailing channel condi-
tions, here represented by Es/Nj.

In more general cases, packet loss due to congestion in
the wired network and bit errors due to fading effects on
the wireless networks coexist. We propose to jointly select
the source coding rate, the RS coding rate, and the RCPC
coding rate such that optimal end-to-end performance can
be achieved with this concatenated coding scheme. Here,
we demonstrate PSNR results for reconstructed video as a
function of the wireless channel Eg/N; for a set of packet-
loss rates over the wired IP network with the RS codes and
RCPC codes chosen to achieve the overall bit rate budget
Riot = Ry/(RRCPC . RRS) = 128 Kbps [3]. In Figure 9, for
a given packet-loss rate A in the wired network, the opti-
mal performance obtainable is demonstrated under the con-
straint of a fixed wireless transmission rate. It is clear that the
RS coding rate has to be adaptively selected with the variation
in the corresponding packet-loss rate. Meanwhile, the RCPC
coding has to adapt to the change in the wireless link con-
ditions, Es/Ny in this case. Clearly, as shown by the dashed
lines in Figure 9, for the system employing only adaptive RS
codes selected according to the packet-loss rate on the wired
network but no RCPC codes on the wireless network, video
quality is substantially degraded with increasing bit errors as
Es/N; decreases. In contrast, the JSCC approach with con-
catenated RS and RCPC coding provides an effective means

“For example, the arbitrary choice of R, = 1/2 illustrated in Figure 4
would fall between the curves labelled R, = 8/15 and R, = 8/17 in Figure 8.

Edge proxy

—— e —

Wireless LAN

FIGURE 10: An end-to-end approach using an edge proxy.

to maintain the video quality as network-induced packet-loss
and/or bit-error rate increase.

5. PACKET VIDEO OVER WIRED-TO-WIRELESS
IP NETWORK USING AN EDGE PROXY

In the previous section, we investigated a JSCC approach
used with a concatenated FEC coding scheme employing in-
terlaced RS block codes and RCPC codes to actively protect
the video data from different channel-induced impairments
over tandem wired and wireless networks. However, this ap-
proach is not optimal since, as noted previously, the coding
overhead required on the wired link must also be carried on
the wireless link.

As an alternative to the concatenated approach, we
present an end-to-end solution with the use of an edge proxy
operating at the boundary of the two networks as demon-
strated in Figure 10. This end-to-end solution employs the
edge proxy to enable the use of distinctly different error-
control schemes on the wired and wireless networks. Specif-
ically, we employ the interlaced RS codes alone on the wired
network and the RCPC codes alone on the wireless network
to provide error-resilient video service over tandem wired-
to-wireless IP networks. As a result, under the constraint of
a total bitrate budget Ry, the effective video data through-
put is given as Ry = min{Ryr + RES, Ryt - RROPC}) where
RRS and RRCPC are the channel coding rates for the RS and
RCPC codes, respectively. In contrast, without the use of an
edge proxy, these two codes have to work as a concatenated
FEC scheme as described in the preceding section in order to
provide sufficient protection against both congestion-caused
packet loss in the wired network and fading-caused bit errors
in the wireless network. The corresponding effective video
data throughput in this case is then R; = Ry - RRS - RRCPC
and, because of the need to carry both overheads on both
networks, this causes a serious reduction in achievable video
quality. It is clear then that the reconstructed video quality
can be improved through the use of an edge proxy. We will
quantitatively investigate the resulting improvement for in-
teractive video coding and transmission in what follows.
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5.1. Edge proxy

To accommodate the differential error-control schemes as
well as differential transport protocols for packet video over
wired and wireless networks, appropriate middleware has to
be employed to operate between the wired and wireless net-
work to support the application layer solutions for video ap-
plications. Thus, we define an edge proxy here to accom-
plish these functionalities. The edge proxy should be imple-
mented as part of a mobile support station. Furthermore,
it should be application-specific; in our case it is video-
oriented.

The use of edge proxies at the boundaries of dissimilar
networks for a variety of functions have been used extensively
in the networking community [23]. The uniqueness of the
approach proposed here using edge proxies at the boundary
between wired and wireless networks for video transport ap-
plications lies in its specific functionalities as defined above.
Specifically, it serves as an agent to enable and implement

(1) selective packet relay,

(2) error-control transcoding,

(3) JSCC control,

(4) interoperation between different possible transport
protocols for the wired and wireless network.

For the interactive applications we consider here, there
exists two-way traffic including wired-to-wireless as well as
wireless-to-wired. We assume that RS codes are employed to
combat packet loss due to congestion in a wired network, and
RCPC codes are used on the wireless network to combat bit
errors. It is necessary for the edge proxy to do error-control
transcoding if such a scheme is used.

Furthermore, the edge proxy should support the JSCC
control scheme to adaptively adjust the source and chan-
nel coding rates. To avoid computation and time-expensive
video transcoding in the edge proxy, an end-to-end adaptive
coding control strategy is suggested here. The channel con-
ditions including those for both the wired and wireless net-
works are collected in the edge proxy, and based on the pre-
vailing channel conditions, video coding rates are adjusted
accordingly using JSCC. For the wired network, the major
channel condition parameter is the packet-loss rate, while for
the wireless network, channel SNR as well as the fading pa-
rameters are used.

The edge proxy is also responsible for the interoperation
between different possible transport protocols for the wired
and wireless network. For a wireless network, the error-
control scheme is implemented in the application layer, and
erroneous packets should be delivered to the end user. How-
ever, for conventional wired networks, such as existing IP
networks, no error is allowed. In this case, to achieve interop-
eration, the edge proxy has to repacketize the packet accord-
ing to the appropriate transport protocol before relaying the
packet in either direction.

5.2. Selected simulation results

Now we consider the system with the use of an edge proxy
between the wired and wireless IP networks, such that error-
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FiGUure 12: Relative performance improvement with and without
the use of an edge proxy.

control transcoding can be done between the two heteroge-
neous networks each supporting different error-control ap-
proaches as described previously. With the use of an edge
proxy, the corresponding optimal performance obtainable is
demonstrated in Figure 11 under the constraint of the same
fixed wireless transmission rate of 128 Kbps.

For comparison, we also present in Figure 12 the results
for the systems with or without the use of an edge proxy
under the same transmission rate limit, which have been
shown previously in Figures 11 and 9, respectively. It clearly
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demonstrates the substantial improvement using an edge
proxy. For example, in the case that packet-loss rate over
the wired IP network is A = 5%, there is a gain of over
6 dB in wireless channel Es/N; for a specified video quality
of PSNR = 34dB. This improvement is primarily due to
the increase of effective video data throughput due to the
error-control transcoding in the edge proxy. As a result, to
meet the same error protection requirement for both wired
and wireless network conditions, a larger effective video data
throughput can be achieved through the use of an edge proxy
compared to the case without an edge proxy.

6. SUMMARY AND CONCLUSIONS

We quantitatively demonstrate the requirements for differ-
ent transport-layer schemes for packet video over wireless
networks from the requirements for conventional wired net-
works. Then we described the possible end-to-end solutions
with and without an edge proxy operating between the wired
and wireless network for packetized H.263+ video over het-
erogeneous wired-to-wireless IP networks. A JSCC approach
employing RS block codes and RCPC codes is studied for
the two proposed architectures. The results quantitatively
demonstrate the requirement for a joint design approach to
address the special needs of error recovery for packet video
over the wireless and wired network for acceptable end-to-
end quality while exhibiting a graceful pattern of quality
degradation in the face of dynamically changing network
conditions. Furthermore, the results clearly demonstrate the
advantage of using an edge proxy with clearly defined func-
tionalities in heterogeneous wired-to-wireless IP networks
for improved video quality.
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