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Abstract

The effective mechanical behavior of an elasto-plastic matrix reinforced with a random and homogeneous distribution
of aligned elastic ellipsoids was obtained by the finite element simulation of a representative volume element (RVE) of the
microstructure and by homogenization methods. In the latter, the composite behavior was modeled by linearization of the
local behavior through the use of the tangent or secant stiffness tensors of the phases. ‘‘Quasi-exact’’ results for the tensile
deformation were attained by averaging of the stress-strain curves coming from the numerical simulation of RVEs con-
taining a few dozens of ellipsoids. These results were used as benchmarks to assess the accuracy of the homogenization
models. The best approximations to the reference numerical results were provided by the incremental and the second-order
secant methods, while the classical or first-order secant approach overestimated the composite flow stress, particularly
when the composite was deformed in the longitudinal direction. The discrepancies among the homogenization models
and the numerical results were assessed from the analysis of the stress and strain microfields provided by the numerical
simulations, which demonstrated the dominant effect of the localization of the plastic strain in the matrix on the accuracy
of the homogenization models.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Homogenization methods are powerful tools to simulate the mechanical behavior of heterogeneous mate-
rials, and in particular of composites, at a very reasonable computational cost. Better and better approxima-
tions have been developed over the years, which allow to take into account not only the volume fraction and
shape of the phases in the composite but also their spatial distribution (Nemat-Nasser and Hori, 1999; Tor-
quato, 2001), and which provide very accurate predictions for the thermo-elastic properties of linear compos-
ites (Segurado and LLorca, 2002). More problematic has been, however, the extension of these methods to the
plastic regime in which the strain localization during plastic deformation is more difficult to capture. Since the
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pioneer work of Hill (1965), many extensions of the homogenization methods to the plastic regime have been
attempted, and they were reviewed recently in various excellent papers (Ponte-Castañeda and Suquet, 1998;
Chaboche et al., 2005). Basically, these methods compute the non-linear composite response by linearization
of the local behavior through the use of the tangent (Hill, 1965; Hutchinson, 1970; Petterman et al., 2002), or
secant (Tandon and Weng, 1988; Berveiller and Zaoui, 1979; Suquet, 1997) stiffness tensors of the phases or,
more recently, by using the tangent stiffness but in a non-incremental form (the ‘‘affine’’ approximation, Mas-
son and Zaoui (1999); Masson et al. (2000)). The overall composite stiffness tensor is computed from those of
each phase through the chosen linear approximation.

It was early recognized that the incremental approaches based on the tangent stiffness tensors of the phases
overestimated the flow stress of the material, and the origin of this error was traced to the anisotropic nature
of the tangent stiffness tensor during plastic deformation. This limitation led to the development of the secant
methods, which deal with the elasto-plastic deformation within the framework of non-linear elasticity.
Although the overall response was much closer to the real behavior (Tandon and Weng, 1988; Berveiller
and Zaoui, 1979), another source of error was detected, particularly in composite materials containing one
elastic phase. The plastic strain in the matrix was determined from a reference equivalent stress computed
in the classic homogenization models from the volumetric average of the matrix stress tensor. This equivalent
stress is, however, significantly lower than the phase average of the equivalent stress because of the large stress
gradients which develop during plastic deformation, and hence the composite yield and flow stresses were
overestimated. This problem was well-known, and several attempts were made to determine the equivalent
stress from energy considerations (Qiu and Weng, 1992) or statistically-based theories (Buryachenko,
1996), which finally led to the so-called ‘‘modified’’ secant approximation (Suquet, 1995), where the reference
equivalent stress in the matrix is determined from the volumetric average of second-order moment of the stress
tensor in this phase instead of the usual first order moment. An identical theory was developed independently
by Ponte-Castañeda (1991) from a different perspective based on the variational properties of a potential
which governs the overall composite behavior.

Of course, secant approaches cannot simulate the mechanical behavior under non-proportional loading
paths (e.g. cyclic deformation), and this renewed the interest in incremental approaches based on the tangent
stiffness tensors. It was found that much better approximation of the flow stress was obtained when only the
isotropic part of the tangent stiffness tensors was used in the analyses (Gilormini, 1995; González and LLorca,
2000). More recently, Doghri and Ouaar (2003) have obtained good predictions for the elasto-plastic response
of sphere-reinforced composites by using the isotropic version of the stiffness tensor only to compute Eshelby’s
tensor, while the anisotropic version is used in all the other operations, allowing the study of non-proportional
loading paths.

Thus, it is nowadays recognized that current secant and tangent models can deliver acceptable approxima-
tions of the overall elasto-plastic response of heterogeneous materials. Nevertheless, their accuracy and range
of validity could not be rigorously established in the absence of an ‘‘exact’’ solution, which was not available
even for the simple composite system made up of an elasto-plastic matrix reinforced with a random and homo-
geneous dispersion of elastic spheres. This limitation was recently overcome through the numerical simulation
of a Representative Volume Element (RVE) of the microstructure containing several dozens of particles (Segu-
rado et al., 2002, 2003). It was shown that the estimates of the mechanical response in different sphere real-
izations presented little scatter and that the average value gathered from the simulations was reasonably
close (by a few percent) to the exact solution. These results were used in González et al. (2004) and Pierard
et al. (2007) to assess the accuracy of the classical and modified secant methods in computing the elasto-plastic
deformation of sphere-reinforced composites. It is not clear, however, whether the conclusions of the previous
publication can be extended to other reinforcement geometries, such as ellipsoids, and this is the main aim of
this investigation. A very precise solution for the tensile response of a composite material made up of a con-
tinuous elasto-plastic matrix reinforced with aligned elastic ellipsoids was computed numerically, and the
results were compared with those obtained with the current tangent and secant homogenization methods.
The ability of each method to reproduce the actual composite behavior was assessed from the analysis of
the stress and strain microfields provided by the numerical simulations, which can be integrated over the cor-
responding volumes to obtain the average values of the field quantities. They were compared with those used
by the homogenization models to devise new modifications which can further improve their accuracy.
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Throughout the paper, bold lowercase Roman and Greek letters stand for first and second order tensors,
respectively, and bold capital letters for fourth order tensors. In addition, the different products are expressed
as (A r)ij = Aijklrlk, A :: B = AijklBlkji, and (r � r)ijkl = rijrkl. Finally, �r represents the volumetric average of r.
2. Microstructure generation

The RVE of the microstructure chosen to simulate the mechanical behavior was a rectangular prism of
dimensions aL · L · L, which contained a random and homogeneous dispersion of non-overlapping identical
ellipsoids, aligned in the longer axis of the prism. The prism and the ellipsoids had the same aspect ratio a.
Previous investigations (Hazanov and Huet, 1994; Segurado and LLorca, 2002) have demonstrated that better
approximations to the effective composite properties are obtained if periodic boundary conditions (instead of
constant forces or linear displacements) are applied to the prism faces, and thus a periodic ellipsoid distribu-
tion was generated in the RVE.

The length of the ellipsoid longitudinal and transverse semi-axes, (a · r and r, respectively) were obtained
from the volume fraction of ellipsoids in the RVE, n and the number of ellipsoids in the prism, N, as
r ¼ L
3n

4pN

� �1=3

ð1Þ
The coordinates of the ellipsoid centers were generated randomly and sequentially using the Random Sequen-
tial Adsorption Algorithm (Rintoul and Torquato, 1997). A new inclusion i was accepted if the following con-
ditions were verified:

– The minimum distance between the surface of the ellipsoid i and all the previously generated inclusions
j = 1, . . . , i � 1 has to be larger than 0.035ar to allow for an adequate finite element discretization of the
ligament between neighbor inclusions. If the surface of particle i cut any of the prism surfaces, this con-
dition was checked with the ellipsoids near the opposite surface because the microstructure of the RVE
was periodic.

– The minimum distance between the surface of the ellipsoid i and the prism faces, edges or corners has to
be larger than 0.05ar to avoid distorted elements during meshing.

If any of the above conditions was lacking, the ellipsoid was rejected and a new one was generated until the
prescribed number of ellipsoids in the prism N was attained. This strategy to generate the RVE needs an effi-
cient algorithm to determine the minimum distance between the surfaces of two non-overlapping ellipsoids
and between the ellipsoid surface and the prism faces, edges and corners. There are analytical expressions
to compute the minimum distance between an ellipsoid and a plane, and the minimum distance between
two ellipsoids is given by the iterative algorithm proposed by Lin and Han (2002). Let xk 2 X(i) and yk 2 X(j)
be two points, generated in the iteration k, which belong to the surface of ellipsoids i and j, expressed respec-
tively by X(i) and X(j). Then, two spheres tangent to xk and yk, and completely embedded in the ellipsoids i

and j, are generated (Fig. 1). The position of the sphere centers, ck
i and ck

j , and the sphere radii, rk
i and rk

j , are
given in Lin and Han (2002). If the segment ½ck

i ; c
k
j � between the two centers is entirely contained in the union

i [ j, the two ellipsoids overlap. Otherwise, the length of the segment [xk, yk] is a candidate for the minimum
distance between the ellipsoids, and it can be shown that the condition is fulfilled when the segments [xk, yk],
½ck

i ; x
k� and ½ck

j ; y
k� are parallel. If they are not, two new points xk+1 and yk+1 are generated as the intersection of
Fig. 1. Determination of the minimum distance between two ellipsoids.
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Fig. 2. (a) Coordinates of the centroid of the dispersion of ellipsoids as a function of inclusion volume fraction. (b) Moments of inertia, I,
of the aligned ellipsoid distribution in relation to the longitudinal (x) and transverse (y and z) axes as a function of the inclusion volume
fraction. The average values and the standard deviations for each volume fraction were obtained from one hundred realizations of 30
aligned ellipsoids. The density was taken equal to 1 to compute the moment of inertia.
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the line segment ½ck
i ; c

k
j � with the surfaces X(i) and X(j), respectively (Fig. 1) and the whole process is repeated.

Convergence to the unique solution of the problem is guaranteed after a finite number of iterations (Lin and
Han, 2002). This methodology can be easily extended to compute the distance between the ellipsoid and prism
edges and corners.

Two tests were carried out to ensure that the dispersion of the ellipsoids in the RVE led to a statistically
homogeneous and transversally isotropic material. One hundred prisms containing a random dispersion of
30 aligned ellipsoids with an aspect ratio a = 3 were generated for n = 0.10, 0.15, . . . , 0.30. The average posi-
tion of the centroid (normalized by the prism length) is plotted as a function of the volume fraction of ellip-
soids in the RVE together with the corresponding standard deviation, Fig. 2(a). The centroid position is
located at the center of the prism, as in a statistically homogeneous dispersion. Moreover, the standard devi-
ation was very small and decreased with the volume fraction of inclusions. The transverse isotropy of the dis-
persion was checked through the moments of inertia in relation to three perpendicular axes with their origin at
the center of the prism. The average values (and the corresponding standard deviations) in relation to the lon-
gitudinal axis (x) and two perpendicular axes (y and z) are plotted in Fig. 2(b) as a function of the inclusion
volume fraction. The moments of inertia of a homogeneous prism whose mass was equal to the mass of all the
ellipsoids in the random arrangement are also plotted for comparison as solid lines in Fig. 2(b). The agreement
between the generated microstructures and the exact values for the homogeneous prism is indicative of the
transverse isotropy of the RVE. In addition, the differences in the moments of inertia in relation to the y

and z axes were negligible.
3. Finite element simulations

The algorithm presented in the previous section was used to create a periodic distribution of aligned ellip-
soids with an aspect ratio of 3 in a prismatic cell with the same aspect ratio. Periodic prismatic cells for the
numerical analysis were generated by splitting the ellipsoids intersecting the prism faces into the appropriate
number of parts which were copied to the opposite faces, leading to the ‘‘ellipsoids in box’’ prism in Fig. 3.
Three faces of the prism were meshed with quadratic triangles, and the meshes were copied to the opposite
sides to apply the periodic boundary conditions. The volume was meshed using NETGEN (2004) with qua-
dratic tetrahedra (Fig. 3). The standard discretization of the prisms comprised approximately 75000 elements
and 110000 nodes. Finer meshes (with over 200000 elements) provided very close results and it was assumed



Fig. 3. Periodic prismatic cell showing the ‘‘ellipsoids in box’’ morphology and the finite element discretization of the ellipsoids. The
prismatic cell contains 30 aligned ellipsoids with an aspect ratio of 3. n = 0.25.
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that the standard discretization was good enough. The finite element meshes always included at least two ele-
ments of matrix between neighbor ellipsoids. It should be mentioned that serious difficulties were found to
discretize microstructures with ellipsoids with an aspect ratio larger than 3. Of course, short fibers (with an
aspect ratio of �10) could be approximated by cylinders with hemispherical caps but they are not equal to
ellipsoids, and this difference would have hindered the comparison with Eshelby-based mean-field methods.

The model volume (matrix and inclusions) was meshed using modified 10-node tetrahedra (C3D10M in
Abaqus (2005)) with integration at four Gauss points and hourglass control. This modified tetrahedron exhib-
its minimal volumetric locking during plastic straining and captures better than the standard 10-node tetrahe-
dron the strain gradients in the matrix between the inclusions because it has three extra internal degrees of
freedom.

Periodic boundary conditions were applied to the prismatic cell as
uðx; y; 0Þ � uz ¼ uðx; y; LÞ
uðx; 0; zÞ � uy ¼ uðx; L; zÞ
uð0; y; zÞ � ux ¼ uðaL; y; zÞ

ð2Þ
where u stands for the displacement vector in the different prism faces and the vectors ux, uy and uz depend on
the particular loading applied to the cell. Tensile deformation �x along the longitudinal axis is given by
ux = (�xaL, 0,0), uy = (0, uy, 0) and uz = (0, 0,uz), in which uy and uz are computed from the conditions
Z

X
T y dX ¼ 0 on y ¼ L and

Z
X

T z dX ¼ 0 on z ¼ L ð3Þ
where Ty and Tz stand for the normal tractions acting on the prism faces contained in the transverse planes
y = L and z =L. Similar boundary conditions can be applied to compute the tensile deformation in the trans-
verse direction.

The finite element simulations were done with Abaqus/Standard (2005) within the framework of the small
displacements theory. The ellipsoidal inclusions behaved as elastic, isotropic solids characterized by the shear
modulus li = 166.67 GPa and the bulk modulus ki = 222.22 GPa. The matrix was modelled as an isotropic
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elasto-plastic solid following the von Mises criterion with isotropic hardening. The matrix elastic constants
were lm = 26.32 GPa and km = 68.63 GPa, and the von Mises equivalent stress, req

m , was related to the accu-
mulated plastic strain, �p

m, according to
req
m ¼ A½�p

m�
n ð4Þ
where A = 400 MPa was the strength coefficient and n the matrix strain hardening exponent. The elastic con-
stants are representative of an Al alloy reinforced with stiff ceramic (alumina, silicon carbide) particles,
whereas Eq. (4) provides a wide range of flow stresses, also sensible for aluminum and its alloys.
4. Homogenization techniques

As indicated in the introduction, secant and tangent approaches are the most common homogenization
techniques to simulate the non-linear deformation of composite materials. Their implementation in the case
of a composite material made up of an elasto-plastic matrix reinforced with elastic, aligned ellipsoids is briefly
summarized in this section, as the details of each approach will control the accuracy of the predictions.
4.1. Secant approaches

Secant approaches simulate the non-linear behavior of the composite material and of each phase within the
framework of the deformation theory of plasticity. The isotropic, linear elastic behavior of the ellipsoidal
inclusions is included as
ei ¼M iri with M i ¼
1

3ki
J þ 1

2li
K ð5Þ
where ei and ri stand for the inclusion strain and stress tensors, Mi is the elastic compliance tensor of the inclu-
sions, and J and K are the fourth-order volumetric and deviatoric projections tensors, respectively. The elasto-
plastic behavior of the matrix is introduced by means of the secant compliance tensor, M s

m, and the stresses
and strains in the matrix are related by
em ¼M s
mrm with M s

m ¼
1

3km
J þ 1

2ls
m

K ð6Þ
where ls
m is the secant shear modulus of the matrix, which is a function of the von Mises equivalent stress, req

m ,
according to
ls
m ¼

req
m lm

req
m þ 3lm�

p
m

with �p
m ¼

req
m

A

� �1=n

ð7Þ
The effective (or volume-averaged) strain and stress tensors in the composite material �e and �r are related univ-
ocally by the secant effective compliance tensor (Berveiller and Zaoui, 1979; Tandon and Weng, 1988)
�e ¼M sðreq
m Þ �r ð8Þ
where req
m is a reference equivalent stress in the matrix, which has to be computed from the first or second order

moment of the stress tensor in the matrix as indicated below.
Ms can be determined assuming linear homogenization and, in the case of a two-phase material, it is

expressed by
M s ¼ ð1� nÞM s
mBs

m þ nM iB
s
i ð9Þ
where Bs
m and Bs

i stand for the corresponding secant stress concentration tensors for the matrix and the inclu-
sions, which relate the average stress in the composite with the average stresses in each phase according to
�rm ¼ Bs
m �r and �ri ¼ Bs

i �r ð10Þ
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The stress concentration tensors can be approximated using any linear homogenization scheme, and the Mori-
Tanaka method was selected because it is easy to implement and provides accurate results for aligned ellip-
soids (Benveniste, 1987). Thus,
1 Ex
the ma
Bs
i ¼ ½I þ ð1� nÞðM s

mÞ
�1ðI � S iÞðM i �M s

mÞ�
�1 ð11Þ

Bs
m ¼

1

1� n
ðI � nBs

i Þ ð12Þ
in which Si is Eshelby’s tensor for an ellipsoidal elastic inclusion. Si depends on the inclusion aspect ratio a and
on the secant Poisson’s ratio of the matrix, ms

m, and the components of the Eshelby’s tensor are given explicitly
in Appendix A.

Eqs. (5)–(12) are a non-linear set of algebraic equations in req
m , which have to be solved for each value of the

applied stress �r to determine the secant effective compliance tensor of the composite and thus the effective
composite strain �e through Eq. (8). From the practical viewpoint, this set is solved using a fixed point algo-
rithm, which begins with a trial value of the secant compliance tensor of the matrix (the one computed in
the previous loading step).

Two variations of this method have been developed and they differ in the way the reference equivalent stress
in the matrix is computed. In the classical approach (or first order method), the reference equivalent stress in
the matrix, r̂eq

m , was determined as
r̂eq
m ¼

3

2
ðK�rmÞðK�rmÞ

� �1=2

ð13Þ
while in the modified (or second order method) it is computed from the second order moment of the effective
stress in the matrix as (Ponte-Castañeda, 1991; Suquet, 1995)
^̂req
m ¼

3

2
K :: ðrm � rmÞ

� �1=2

ð14Þ
and analytical expressions to compute ^̂req
m were given in Suquet (1997) for the case of a sphere-reinforced com-

posite. The extension to ellipsoidal inclusions is detailed in the Appendix B.

4.2. Incremental approach

The incremental approach is another option to predict both the macroscopic and per-phase response of
non-linear materials. Although the numerical implementation is more complex, incremental models can take
into account rigorously the effect of the loading history on the deformation. The behavior of the material is
computed through a step-by-step incremental procedure by linearizing the local constitutive laws written in
rate-form, so homogenization models valid in linear elasticity can apply in each time interval. Given the state
of deformation at the beginning of a time step, the effective stress ðD�rÞ and strain ðD�eÞ increments during the
time interval are related by
D�r � Ltðreq
m ÞD�e ð15Þ
in which Lt stands for an instantaneous elasto-plastic tangent modulus tensor which depends on the von Mises
equivalent stress in the matrix, as computed from the volume-averaged matrix stress tensor (Eq. (13))1.

Similar to the secant approach, the effective tangent operator Lt can be obtained as
Lt ¼ ð1� nÞLt
mAt

m þ nLiA
t
i ð16Þ
where Lt
m is the consistent (or algorithmic) tangent operator which relates the stress and strain increments in

the matrix over the time interval, and At
m and At

i stand for the tangent strain concentration tensors which link
the average strain increment in the composite to those in the phases according to
tension of the incremental approaches to compute the von Mises equivalent stress in the matrix from the second order moment of
trix stress tensor is still an open subject.
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Dem ¼ At
mD�e; Dei ¼ At

iD�e ð17Þ
and they are expressed by the following equations when the Mori-Tanaka linear homogenization scheme is
used:
At
i ¼ ½I þ ð1� nÞS iðLt

mÞ
�1ðLi � Lt

mÞ�
�1 ð18Þ

At
m ¼

1

1� n
ðI � nAt

iÞ ð19Þ
The consistent tangent operator Lt
m can be computed analytically for most constitutive models. In the case of

the J2 elasto-plastic model considered here, it is given by Doghri and Ouaar (2003)
Lt
m ¼ Lep

m �
ð2lmÞ

2ðD�p
mÞ

req;tr
m

3

2
K � n� n

� �
ð20Þ
where req;tr
m a trial (elastic predictor) of the equivalent stress at the end of the considered time step, and Lep

m is
the so-called continuum elasto-plastic tangent operator ð _rm ¼ Lep

m _emÞ which is expressed as
Lep
m ¼ Lm �

4l2
m

3lm þ nA½�p
m�n�1

n� n ð21Þ
where Lm is the matrix elastic stiffness tensor, and n the normal to the yield surface in stress space
n ¼ 3

2

Krm

req
m

ð22Þ
It should be noted that Lt
m ! Lep

m for vanishingly small plastic strain increments and that both tangent oper-
ators are anisotropic during a plastic strain increment. In order to avoid the stiff response associated with
incremental models when the anisotropic form of the tangent operator is used in the analysis (Gilormini,
1995; González and LLorca, 2000), Eshelby’s tensor Si was computed with an isotropic part of Lt

m while
the anisotropic version is used in all the other operations (see Doghri and Ouaar (2003)). This approximation
provides a softer response and allows the simulation of non-proportional loading paths. Eqs. (15)–(22) stand
for a set of non-linear equations which are solved following a fixed point iterative scheme starting from a given
macroscopic strain increment over the time step.

5. Results and discussion

5.1. Accuracy of the numerical simulations

Theoretical studies have demonstrated that the critical size of the RVE to obtain a size-independent
response is small in the case of isotropic composites reinforced with randomly-oriented ellipsoidal inclusions
in the elastic regime (Monetto and Drugan, 2004): a few dozens of ellipsoids in the RVE can provide an accu-
rate estimation (up to a few percent) of the elastic constants. There are no theoretical estimations of the min-
imum RVE size for non-isotropic composites and/or non-linear materials, and the accuracy of the numerical
simulations has to be established by comparing the results obtained with RVE of various sizes or by the scatter
in the effective properties given by different dispersions of reinforcements. The former technique was used in
Gusev et al. (2000) and Hine et al. (2002) for the elastic properties of uniaxially-reinforced composites and the
latter in Segurado et al. (2002), Segurado et al. (2003), and Pierard et al. (2007) for the plastic and viscoplastic
deformation of sphere-reinforced materials. Both analyses concluded that RVE containing 25–50 particles/
fibers were large enough to limit the error in the effective properties to a few percent and this value decreased
rapidly by averaging the results of several realizations. These conclusions were checked in the case of ellipsoi-
dal reinforcements by generating four prismatic cells with homogeneous and isotropic distributions of 5, 15, 30
and 40 aligned ellipsoids with an aspect ratio of 3. The prism aspect ratio also was 3 and the ellipsoid volume
fraction was 25%. The stress–strain curve in tension was simulated along the longitudinal direction and the
average curves for each set of cells with the same number of inclusions are plotted in Fig. 4, together with
the corresponding standard deviation for the cells with 5 and 30 ellipsoids. The numerical results were prac-
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tically superimposed in the elastic region but, as it was expected, significant differences were found from the
onset of plastic deformation. Nevertheless, the average stress-strain curves obtained with 15, 30 or 40 ellip-
soids were almost superimposed and the standard deviation decreased rapidly with the number of ellipsoids
in the prismatic cell. It was just 1% in the cells with 30 ellipsoids, and it was assumed these cells were large
enough to represent the effective properties of the composite in the plastic regime.

Following these results, the four homogeneous and isotropic distributions of 30 aligned ellipsoids were used
to compute the reference effective properties of the composite. They were deformed in tension along the lon-
gitudinal and transverse directions, leading to 4 stress–strain curves in the longitudinal direction and to 8 in
the transverse one for each set of material properties. The longitudinal ones are plotted in Fig. 5(a) and those
perpendicular to the main axis of the ellipsoids in Fig. 5(b) for the composites with n = 0.05 and 0.40. All the
curves coincided until plastic flow became dominant, and it was found that the scatter in the transverse direc-
tion was higher than in the longitudinal one. The maximum differences at an applied strain of 0.05 were lim-
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deformation (b) transverse deformation.
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ited, however, to 4.8% and 1.7%. Thus, the stress-strain curves obtained on averaging the 8 simulations along
the transverse direction and the 4 simulations along the longitudinal one can be considered very close (to a few
percent) to the solution for the boundary value problem, and can be used as a benchmark to check the accu-
racy of the homogenization methods in the elasto-plastic regime.
5.2. Comparison with homogenization models

The tensile stress–strain curves in the longitudinal and transverse directions predicted by the homogeniza-
tion models are plotted in Figs. 6 and 7, respectively. They include the results of the two secant models (in
which the reference stress in the matrix is computed from the volumetric average of the first or second order
moment of the matrix stress tensor) and the incremental method as well as the reference behavior obtained by
averaging the stress–strain curves provided by the finite element simulations. Figs. 6(a) and 7(a) show the
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Fig. 8. Contour plot of the accumulated plastic strain in the matrix after tensile deformation up to 5% in the composite with n = 0.05. (a)
Longitudinal deformation (b) transverse deformation.
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curves when the matrix strain hardening coefficient was 0.05 and Figs. 6(b) and 7(b) present the results when
n = 0.40. A comparison of the secant models showed that the first order method always provided a stiffer
response, which overestimated the benchmark numerical results when the composite was deformed in the lon-
gitudinal direction. Moreover, the differences between the first and second order estimates increased as the
strain hardening exponent of the matrix decreased. It is evident that both factors (deformation axis and matrix
strain hardening exponent) influenced the deformation patterns in the matrix, which are shown in Fig. 8(a)
and (b) for the material deformed up to 5% in the longitudinal and transverse direction. The stress concentra-
tions in the matrix were maximum between the ends of elongated ellipsoids aligned in the loading direction,
and the localization of the matrix plastic deformation was higher when the composite was loaded in the lon-
gitudinal direction.

As the average value of the plastic strain in the matrix was very similar in all the models in Figs. 6 and 7, the
degree of heterogeneity in the matrix plastic strain can be assessed by the probability that the plastic strain in
the matrix does not exceed a certain value. This cumulative probability was computed from the magnitude of
the matrix plastic strain at each Gauss point in each finite element model for a far-field applied strain of 5%,
and is plotted in Fig. 9. The curves show that the widest distribution (indicative of maximum heterogeneity in
the matrix plastic strain) was found in the composite with n = 0.05 deformed in the longitudinal direction, in
perfect agreement with the contour plots in Fig. 8. The narrowest one was in the material with n = 0.40
deformed perpendicularly to the longest axis of the ellipsoids.

Homogenization methods do not have access to the local values of the stresses in the phases and cannot
compute exactly the volumetric average of the equivalent stress in the matrix. Instead they compute an
approximate value from the volumetric-average of the stress tensor or of the second order moment of the
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stress tensor. The accuracy of these predictions can be assessed from the results of the numerical simulations,
which give the exact volumetric-average of the equivalent stress in the matrix, �req

m , and the estimations pro-
vided by the first and second order approaches (r̂eq

m and ^̂req
m ). In particular, �req

m is given by
�req
m ¼

X
k

3

2
ðKrkÞðKrkÞ

� �1=2

V k

" #, X
k

V k

" #
ð23Þ
where rk and Vk stand, respectively, for the stress tensor and the volume associated to the Gauss point k in the
finite element discretization of the matrix. The volume-averaged stress tensor, �rm, and the volume-averaged
second-order moment of the stress tensor in the matrix, rm � rm, can be computed as
�rm ¼
X

k

rkV k

" #,X
k

V k and rm � rm ¼
X

k

ðrk � rkÞV k

" #,X
k

V k ð24Þ
They can be used to determine r̂eq
m and ^̂req

m using Eqs. (13) and (14). The actual value of the reference stress in
the matrix together with the estimations provided by the first and second-order models are plotted in
Fig. 10(a) and (b) for the composite deformed in the longitudinal and transverse directions, respectively. They
show that the reference stress computed from the second order moment of matrix stress tensor was always
extremely close to the exact volumetric average, while the predictions of the first order method were consid-
erably lower. As expected, the maximum differences were found in the situations with maximum strain gradi-
ents, i.e. longitudinal deformation and n = 0.05. Thus, the predictions of the composite flow stress given by the
classical secant method were always stiffer because the matrix von Mises equivalent stress computed from the
volume-averaged stress tensor is always lower than that obtained from the volumetric average of the second
order moment of the stress tensor. Moreover, these findings are in agreement with the results plotted in Figs. 6
and 7, which show that the predictions of the second-order secant model were closer to the numerical results in
the composites loaded in the longitudinal direction or if the strain hardening coefficient of the matrix was low.
However, the stress concentrations formed at the end of the elongated ellipsoids when loaded in the longitu-
dinal direction increased tremendously the localization of the plastic strain in the matrix, and the predictions
of the classical secant model overestimated the benchmark numerical results.

The composite stress–strain curves obtained using the incremental method are also plotted in Figs. 6 and 7.
The incremental approach consistently led to a response in between the predictions of the first and second-
order secant models (except for transverse tension and n = 0.40—Fig. 7(b)), which was particularly close to
the numerical results when the composite was loaded in the transverse direction. The incremental method
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overestimated the flow stress in the longitudinal direction, but the differences from the numerical simulations
were only significant when the matrix strain hardening coefficient was 0.05, so both the matrix behavior and
the loading direction enhanced the strain localization in the matrix. Thus, the incremental formulation pro-
vided excellent predictions for the effective elasto-plastic properties and this result was somewhat surprising
because the reference stress in the matrix was computed using the volumetric-average of the stress tensor,
and should lead to an overestimation of the flow stress. The softer behavior predicted by the incremental
method (which leads to a response close to the reference numerical results in many cases) is related to the
use of an isotropic approximation of the (anisotropic) tangent stiffness tensor to compute the Eshelby’s tensor.

These results support the use of the incremental method to simulate the plastic deformation of composites
instead of the secant approaches because they are more general and provide the same degree of accuracy. In
particular, secant approaches serve to simulating only monotonic and proportional loadings at macro and
micro levels (cyclic loading is not possible, for instance) and the behavior of each phase should be isotropic.
This precludes the use of other plasticity formulations (Hill’s model or non-linear kinematic hardening), while
the incremental method, although more expensive computationally and more difficult to implement, is not
subject to these limitations.

It should be noted finally that the agreement in the predictions at the macroscopic level does not guarantee
that the stress and strain fields in each phase are also accurately computed by the models. The simulations
carried out in the longitudinal direction in the composite with n = 0.40, Fig. 6(b), can be used as an example
of this statement. The evolution of the average plastic strain in the matrix is plotted as a function of the
applied strain in Fig. 11(a) for this material and loading condition. The homogenization models systematically
underestimated the plastic strain in the matrix, as they cannot model adequately the strain localization in the
matrix. Underestimation of the matrix plastic strain implies that the matrix hardening rate (and thus the com-
posite flow stress) will be overestimated. This is avoided in the incremental method by using an isotropic
approximation of the matrix tangent stiffness tensor and in the secant method by using the second order
moment of the matrix stress tensor to compute the reference stress in the matrix. Both approaches reduce
the matrix strain hardening and lead to better approximations of the overall composite flow stress, but the
mechanical equilibrium condition forces the average stress in the ellipsoids to be underestimated. This is
shown in Fig. 11, in which the volumetric average of the von Mises equivalent stress in the ellipsoids is plotted
as a function of the applied strain. While the first order secant model provided an acceptable approximation to
the von Mises equivalent stress in the ellipsoids, the other two models gave erroneous predictions for the rein-
forcement stresses. Similar trends were found in the rest of the simulations but they are not detailed here for
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the sake of brevity, and it is important to realize that homogenization methods can give accurate predictions
of the effective properties but this does not guarantee the same accuracy at the phase level. This has important
consequences in modeling damage by either inclusions fracture or interface decohesion with homogenization
techniques, and so is important to validate the homogenization predictions with numerical results obtained by
computational micromechanics (LLorca and Segurado, 2004; Segurado and LLorca, 2005, 2006).

6. Conclusions

The deformation in uniaxial tension of a model composite made up of a random and homogeneous disper-
sion of aligned, elastic ellipsoids embedded in an elasto-plastic matrix was simulated by means of computa-
tional micromechanics and homogenization methods. In the first approach, the effective properties of the
composite were obtained by finite element analysis of an RVE of the microstructure. In the second approach,
the non-linear composite behavior was modeled by linearization of the local behavior through the use of the
tangent or secant stiffness tensors of the phases. The overall composite stiffness tensor was computed from
those of each phase by the Mori-Tanaka approximation.

Numerical simulations carried out with RVEs of different sizes (and thus with different numbers of ellip-
soids) showed that a ‘‘quasi-exact’’ result could be obtained by averaging the stress-strain curves of RVEs con-
taining a few dozen ellipsoids. This technique was used to determine the effective elasto-plastic response of a
composite containing 25% of ellipsoids in the longitudinal and transverse directions for two different values of
the matrix strain hardening exponent (0.05 and 0.40). These results were used as benchmarks to show the accu-
racy of the predictions of the homogenization methods for composites reinforced with ellipsoids with a mod-
erate aspect ratio of 3. Moreover, the ability of the tangent and secant approaches to reproduce the actual
composite behavior was assessed at a deeper level from the analysis of the stress and strain microfields pro-
vided by the numerical simulations, which can be integrated over the corresponding volumes to obtain the
average values of the field quantities. Overall, the best approximations to the numerical results were provided
by the incremental (Doghri and Ouaar, 2003) and the second order secant (Ponte-Castañeda, 1991; Suquet,
1995) methods, while the first order secant method provided a very stiff response. The incremental method
led to accurate stress-strain curves in most cases, and tended to overestimate the composite flow stress when
the localization of the plastic strain in the matrix was maximum (longitudinal deformation with matrix strain
hardening exponent of 0.05). The results of the second order secant method underestimated the reference
numerical stress–strain curve only if the localization of the plastic strain in the matrix was minimum (trans-
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verse loading and matrix strain hardening exponent of 0.40), giving very good estimations in all other situa-
tions. In addition, comparison of the volumetric-average fields in each phase showed that accurate predictions
of the effective properties by the homogenization methods did not guarantee the same accuracy at the phase
level. The origin of these discrepancies and the modifications of the homogenization methods to improve the
predictions in the behavior of each phase will be studied in future. Finally, it should be noted that the results of
this paper and of previous investigations (González et al., 2004) seem to indicate that predictions of first-order
homogenization models (both incremental and secant formulations) become less accurate as the aspect ratio
increases. Nevertheless, definitive conclusions cannot be obtained because of the lack of data for oblate ellip-
soids as well as prolate ellipsoids with longer aspect ratio.
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the FNRS for a FRIA scholarship and of the Communauté française de Belgique for a three month stay grant
at the Polytechnic University of Madrid.

Appendix A. Eshelby’s tensor

The components of Eshelby’s tensor for an elastic ellipsoidal inclusion of aspect ratio a = a/b with the axis
of length 2a parallel to the 1 axis embedded in an isotropic elastic matrix are (Eshelby, 1957)
S1111 ¼
1

2ð1� mmÞ
4a2 � 2

a2 � 1
� 2mm � gðaÞ 1� 2mm þ

3a2

a2 � 1

� �� �
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where g(a) is a function given by
gðaÞ ¼ a

ða2 � 1Þ3=2
½aða2 � 1Þ1=2 � cosh�1a� ðA:2Þ
for prolate ellipsoidal inclusions (a > 1) and by
gðaÞ ¼ a

ð1� a2Þ3=2
½cos�1 a� að1� a2Þ1=2� ðA:3Þ
for oblate ones (a < 1). The Eshelby’s tensor has the minor symmetries; all other components are nil. mm stands
for the Poisson’s ratio of the elastic and isotropic matrix, which is replaced by the secant Poisson’s ratio, ms

m, in
the secant approach to compute the nonlinear deformation of the composite. ms

m can be computed from the
matrix bulk modulus, km and the secant shear modulus, ls

m, as
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ms
m ¼

3km � 2ls
m

6km þ 2ls
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ðA:4Þ
The partial derivatives of the components of Eshelby’s tensor with respect to mm are given by
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Appendix B. Determination of the von Mises equivalent stress in the second order method

Kreher (1990) and Buryachenko (1996) demonstrated that ^̂req
m can be computed directly from the secant

compliance tensor of the composite according to
^̂req
m ¼
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1� n
�r

oM s

oð1=ls
mÞ

�r
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The secant compliance tensor of a two phase composite is given by
M s ¼M s
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and its derivative in relation to the secant shear compliance of the matrix can be expressed as
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in terms of the derivatives of the secant compliance tensor of the matrix and of the secant stress concentration
tensor of the inclusion. Assuming that Bs

i is given by the Mori-Tanaka method (Eq. (11)), the derivative in
relation to the secant shear modulus of the matrix is
oBs
i

ols
m

¼ �ð1� nÞBs
i 2KðI � Ss

mÞ � Ls
m

oSs
m

ols
m

� �
ðM i �M s

mÞ þ Ls
mðI � Ss

mÞ
1

2ls
m

� �2

K

( )
Bs

i ðB:4Þ
where Ls
m ¼ ðM s

mÞ
�1 and the derivative of Eshelby’s tensor in relation to ls

m is given by
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where the partial derivatives of Eshelby’s tensor in relation to ms
m can be found in Appendix A. Eqs. (B.4) and

(B.5) are introduced in Eq. (B.1) to obtain the von Mises equivalent stress in the matrix.
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