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Abstract

Background: Accurately predicting the binding affinities of large sets of protein-ligand complexes is a key
challenge in computational biomolecular science, with applications in drug discovery, chemical biology, and
structural biology. Since a scoring function (SF) is used to score, rank, and identify drug leads, the fidelity with
which it predicts the affinity of a ligand candidate for a protein’s binding site has a significant bearing on the
accuracy of virtual screening. Despite intense efforts in developing conventional SFs, which are either force-field
based, knowledge-based, or empirical, their limited predictive power has been a major roadblock toward cost-
effective drug discovery. Therefore, in this work, we present novel SFs employing a large ensemble of neural
networks (NN) in conjunction with a diverse set of physicochemical and geometrical features characterizing
protein-ligand complexes to predict binding affinity.

Results: We assess the scoring accuracies of two new ensemble NN SFs based on bagging (BgN-Score) and
boosting (BsN-Score), as well as those of conventional SFs in the context of the 2007 PDBbind benchmark that
encompasses a diverse set of high-quality protein families. We find that BgN-Score and BsN-Score have more than
25% better Pearson’s correlation coefficient (0.804 and 0.816 vs. 0.644) between predicted and measured binding
affinities compared to that achieved by a state-of-the-art conventional SF. In addition, these ensemble NN SFs are
also at least 19% more accurate (0.804 and 0.816 vs. 0.675) than SFs based on a single neural network that has
been traditionally used in drug discovery applications. We further find that ensemble models based on NNs surpass
SFs based on the decision-tree ensemble technique Random Forests.

Conclusions: Ensemble neural networks SFs, BgN-Score and BsN-Score, are the most accurate in predicting
binding affinity of protein-ligand complexes among the considered SFs. Moreover, their accuracies are even higher
when they are used to predict binding affinities of protein-ligand complexes that are related to their training sets.

Background
Protein-ligand binding is essential for important physio-
logical processes, such as cellular signaling, respiration,
metabolism, defense against antigens, neuronal excitation
and inhibition, hormone regulation, protein translation,
etc., and so plays a fundamental role in drug design. To

develop a new drug, first, a critical protein is identified in
the pathway of a disease of interest. Then, small drug-
like molecules called ligands are found or designed that
will bind to the target protein, modulate its activity, and
thus provide therapeutic benefit to the patient. The
strength of binding of these drug-like molecules to the
target protein is referred to as binding affinity and is
commonly characterized using the dissociation constant
between the ligand and its target macromolecule. In vitro
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determination of binding affinity is a time consuming and
laborious task, especially for a large number of ligands.
Due to prohibitive costs and delays associated with
experimental drug discovery, pharmaceutical and bio-
technology companies rely on virtual screening using
computational molecular docking [1-3]. Typically, this
involves docking tens of thousands to millions of ligand
candidates into a target protein receptor’s binding site
and using a suitable scoring function (SF) to evaluate the
binding affinity of each candidate to identify the top can-
didates as drug leads, and then to perform lead optimiza-
tion [2]; it is also used for target identification [4].
Relative ranking of large number of ligands can also be
predicted using the calculated binding affinities. Besides
drug discovery, the bioactive molecules thus identified
can be used as chemical probes to investigate the
biochemical role of a target of interest [5]. Molecular
docking also has applications in many structural bioinfor-
matics problems, such as protein structure [6] and func-
tion prediction [7]. It has become attractive because of
the ever-increasing number of available receptor protein
structures and putative ligand drug candidates in pub-
licly-accessible databases, such as the Protein Data Bank
(PDB) [8], PDBbind [9], Cambridge Structural Database
(CSD) [10], and corporate repositories.
In this work, we will build scoring functions based on

an ensemble of neural networks to accurately and
quickly predict protein-ligand binding affinity.

Related work
Existing scoring functions employed in commercial and
free molecular docking software fall in one of three
main categories: force-field-based [11], empirical [12], or
knowledge-based [13] SFs. Many comparative studies
have found that these types of SFs are not accurate
enough for reliable and successful molecular docking
and virtual screening. A recent study examined a total
of 16 popular scoring functions in their ability to repro-
duce experimental binding affinities of 195 protein-
ligand complexes that encompass 65 different protein
families [14]. Although these SFs are employed in main-
stream commercial and academic molecular docking
tools, the best performing SF achieved only mediocre
accuracy of less than 0.65 in terms of Pearson’s correla-
tion between its predictions and measured binding affi-
nities (BAs). These findings are in agreement with an
earlier work by Wang et al. in which a related bench-
mark and scoring functions were examined [15]. Several
of the evaluated SFs were empirical models derived via
fitting linear regression equations to training data, but
none were based on nonlinear modeling approaches.
Therefore, we recently proposed random forests (RF),
boosted regression trees (BRT), support vector machines
(SVM), k-nearest neighbors (kNN), and multivariate

adaptive regression splines (MARS) nonlinear scoring
functions and compared their ligand scoring and rank-
ing performances against the sixteen conventional SFs
considered by Cheng et al. on the same benchmark test
sets [16,17]. Our ML SFs, especially RF and BRT that
are based on an ensemble of decision trees, have shown
substantial improvement in binding affinity prediction
accuracy over all the sixteen traditional scoring models.
Artificial neural networks (ANNs) have been pre-

viously used in computational drug development, but
they have mostly been applied in QSAR modeling pro-
blems or in predicting the biological activity of ligands
(active or not) against a target protein [18-21]. Their
application in predicting binding affinity has been very
rare and only reported in small scale experiments in
which just a handful of protein-ligand complexes were
used for training and validation [22,23]. Neural net-
works’ poor generalization performance for higher
dimensional data is perhaps the main reason for their
limited use in scoring protein-ligand complexes in com-
mercial docking tools. In this work, we propose novel
SFs based on an ensemble of neural networks to predict
binding affinity of protein-ligand complexes character-
ized using large and diverse number of descriptors. We
train and test our models on hundreds of high-quality
protein-ligand complexes and compare their accuracies
against conventional and state-of-the-art scoring func-
tions. We show that our NN SFs are resilient to overfit-
ting and generalize well even when predicting BAs of
complexes characterized by a large number of features.

Key contributions
Conventional empirical SFs rest on the hypothesis that a
linear regression function is sufficiently capable of mod-
eling protein-ligand binding affinity [12,24]. Instead of
assuming a predetermined theoretical function that
models the unknown relationship between different
energetic terms and binding affinity, an accurate non-
parametric machine-learning method inspired from sta-
tistical learning theory is introduced in this work. We
utilize a variety of features to build SFs BgN-Score and
BsN-Score by combining a large number of diverse
neural networks using bagging and boosting ensemble
techniques, respectively. We show that BgN-Score and
BsN-Score have scoring powers of 0.804 and 0.816 (in
terms of Pearson’s correlation coefficient), respectively,
compared to 0.644 for the best conventional SF for a
benchmark test set–this is a significant improvement in
predictive power. In addition to this substantial 25%
improvement, these ensemble NN SFs are also at least
19% (0.804 and 0.816 vs. 0.675) more accurate than SFs
based on a single neural network. We also compare our
proposed models to SFs based on random forests [25].
We found that our ensemble NN SFs surpass RF SFs
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(0.804 and 0.816 vs. 0.801)–the RF SFs we compare
against are better than the RF SFs presented in the past
in [16,26] because of the use of greater variety and num-
ber of features. Although NN and RF ensemble
approaches are competitive with each other, the signifi-
cance of NN ensemble SFs introduced in this work is
two-fold. First, they represent a way to overcome the
overfitting limitations of single neural network models
that have been used traditionally in drug-discovery
applications [18,19,21]. Second, neural networks have
the ability to approximate any underlying function
smoothly [27-29] in contrast to decision trees that
model functions with step changes across decision
boundaries [30].
We seek to advance structure-based drug design by

designing SFs that significantly improve upon the pro-
tein-ligand binding affinity prediction accuracy of con-
ventional SFs. Our approach is to couple the modeling
power of ensemble learning algorithms with training
datasets comprising hundreds of protein-ligand com-
plexes with known high-resolution 3D crystal structures
and experimentally-determined binding affinities and a
variety of features characterizing the complexes. We will
compare the predictive accuracies of BgN-Score, BsN-
Score, single NN SF, RF SF, and existing conventional
SFs of all three types, force-field, empirical, and knowl-
edge-based, on diverse and homogeneous sets of protein
families.
The remainder of the paper is organized as follows.

The next section describes the protein-ligand complex
database used for the comparative assessment of SFs,
the physicochemical features extracted to characterize
the complexes, the training and test datasets used, and
the proposed and conventional SFs that we study. Next,
we present results comparing the scoring powers of var-
ious SFs on diverse and homogeneous test sets of pro-
tein families. Finally, we summarize these results and
conclude our work.

Materials and methods
Protein-ligand complex database
We used the same complex database that Cheng et al.
used as a benchmark in their recent comparative assess-
ment of sixteen popular SFs [14]. They obtained a
refined set containing high-quality 3D structures of 1300
protein-ligand complexes from the 2007 version of
PDBbind [9]. From this set, the curators of PDBbind
built a test set that encompasses 65 different protein
families, each of which binds to three different ligands
to form a set of 195 unique protein-ligand complexes.
This is called the core set and is mainly intended to be
used for benchmarking docking and scoring systems. In
order to be consistent with the comparative framework
used to assess SFs in [14], we too consider the 2007

version of PDBbind. We use the core set as a test set in
this work and denote it by Cr. A primary training set,
denoted by Pr, was formed by removing all Cr com-
plexes from the total 1300 complexes in the refined set
of PDBbind. As a result, Pr contains 1105 complexes
that are completely disjoint from Cr complexes.

Protein-ligand complex characterization
For each protein-ligand complex, we extracted physico-
chemical features used in the empirical SFs X-Score [12]
(a set of 6 features denoted by X) and AffiScore [31] (a
set of 30 features denoted by A) and calculated by
GOLD [32] (a set of 14 features denoted by G), and geo-
metrical features used in the ML SF RF-Score [26] (a
36-feature set denoted by R). The software packages
that calculate X-Score, AffiScore (from SLIDE), and RF-
Score features were available to us in an open-source
form from their authors and a full list of these features
is provided in the appendix of [17]. The GOLD docking
suite provides a utility that calculates a set of general
descriptors for both molecules as separate entities and
in a complex form. The full set of these features can be
easily accessed and calculated via the Descriptors menu
in GOLD. By considering all fifteen combinations of
these four types of features (i.e., X, A, R, G, X ∪ A, X ∪
R, X ∪ G, A ∪ R, A ∪ G, R ∪ G, X ∪ A ∪ R, X ∪ A ∪ G,
X ∪ R ∪ G, A ∪ R ∪ G, and X ∪ A ∪ R ∪ G), we gener-
ated 15 versions of the Pr and Cr data sets, which we
distinguish by using apropriate subscripts identifying the
features used. For instance, PrXR denotes the version of
Pr comprising the set of features X ∪ R (referred to sim-
ply as XR) and experimentally-determined binding affi-
nity data for complexes in the Pr dataset.

Artificial neural networks
Computational methodologies inspired by networks of
biological neurons, Artificial Neural Networks (ANNs),
are employed in this work. Neural networks (NNs) have
been applied in several drug design applications for both
regression and classification problems [18,19,21]. Our
ensemble approaches are based on feed-forward-back-
propagation (FFBP) neural networks implemented in the
R language package nnet [33]. Neural networks we fit
using nnet are composed of an input layer that contains
neurons corresponding to features extracted for com-
plexes, an arbitrary number of neurons (20 in our
experiments) in the hidden layer, and an output neuron
for the output layer. These neurons are interconnected
via weighted links as shown in Figure 1. The outputs of
the input neurons are directed to all the neurons in the
hidden layer. The outputs of the hidden layer neurons
are also directed forward to the output neuron. The out-
put of a network is calculated at its output neuron
according to the formula:
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ŷ = f (xP) = O(
H∑
h=0

(wh,oS(
|P|∑
i=0

(wi,hxi)))), (1)

where xP ∈ �|P| is a feature vector representing a pro-
tein-ligand complex characterized by a feature set P,
f(xP) is the function that maps it to binding affinity ŷ, O
is the activation function of the output neuron (linear in
our case and defined simply as O(u) = u), H + 1 is the
total number of hidden neurons, S is the activation
function for the hidden-layer neurons (logistic sigmoid
in this work and expressed as S(u) = eu/(1 + eu)), wh,o

refers to the weights associated with the links connect-
ing the hidden to the output layer, wi,h represents the
weights of input-to-hidden layer links, and xi is the ith

feature characterizing the protein-ligand complex. It
should be noted that the weight variables w0,h in the wi,h

set of weights serve as bias parameters and they are
associated with an internal input variable x0 whose value
is always fixed at one (x0 = 1). We similarly followed the
same approach to absorb the bias parameter w0,o into
the hidden layer set of weights wh,o by making the sig-
moid function in Equation 1 output the value one (S(.)
= 1) when h = 0. This topology is shown in Figure 1
where the value 1 is fed directly to the top neurons of
the network’s input and hidden layers. The network
weights wi,h and wh,o are optimized such that they mini-
mize the fitting criterion E defined as:

E =
N∑
n=1

(yn − ŷn)2 + λ
∑
∀ i,j

w2
i,j, (2)

where N is the number of protein-ligand complexes in
the training data, yn and ŷn are the measured and pre-
dicted binding affinities of the nth complex, respectively,
and l is a regularization parameter. The parameter l is
also known as the weight decay and it guards against
weights converging to large values. Introducing the
weight decay parameter avoids the scenario of saturation
at the output of the hidden-layer neurons. We scaled
the input features to the range [0, 1] to effectively opti-
mize the weights when regularization is considered. The
accuracy of the network is maximized by performing
thousands of randomized training rounds (3000 epochs)
while imposing the regularization constraint on the
weights.

Limitations of ANN models and our approach to tackling
them
Although multi-layer ANN models can theoretically
approximate any nonlinear continuous function, their
application in drug-discovery related problems has
always been complicated by several challenges. Bioinfor-
matics and cheminformatics data are typically high-
dimensional. Since ANN models cannot handle large
number of features efficiently, a pre-processing step
prior to fitting the data using an ANN model is usually
necessary. Feature subset selection using evolutionary
algorithms or dimension reduction using, say, principal
component analysis (PCA), is commonly applied to
overcome this problem. However, valuable experimental
information may be discarded when only a small subset
of features is selected to build a prediction model. The
dimensionality-reduction approach is also complicated
by the fact that the underlying data distribution is
unknown and hence making the right choice of which
dimensionality-reduction technique to apply is a tricky
problem in itself. In addition to these pre-processing
issues, training ANN models is also a challenging task
because their weights can not be guaranteed to converge
to optimal values. This causes NN models to suffer from
high variance errors which translate to unreliable SFs.
The aforementioned problems can be avoided and

state-of-the-art performance can be achieved by combin-
ing predictions of hundreds of diverse and nonlinear NN
models. We propose here ensemble methods based on
ANNs. The ensemble itself is trained on all the features,
although each network in the ensemble is fitted to only a
subset of the features. This approach relieves us from
carrying out feature subset selection or dimensionality
reduction prior to training. In fact, the performance of
the ensemble can even be improved by describing the
data with more relevant features. Moreover, it is no
longer critical to tune the weights of each network in the
ensemble to optimal values as it is the case for a single

Figure 1 Multi-layered perceptron, feed-forward neural network
used to predict the binding affinity of a protein-ligand complex
characterized by a set of features. This model represents SNN-Score,
the single neural network scoring function we build.
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NN model. Suboptimal weight tuning of individual net-
works could contribute to decreasing the inter-correla-
tion between them, which translates to a diverse
ensemble and therefore a more accurate model [25].
Our proposed NN ensemble models are inspired from

the Random Forests [25] and Boosted Regression Trees
[34] techniques in the formation of the ensembles. So
far, the focus in ensemble learning has been more or
less biased toward using decision trees as base learners
in forming ensembles. Choosing trees as base learners is
mainly due to their high flexibility and variance (low
stability). High variance decreases inter-correlation
between trees and therefore increases the overall ensem-
ble model’s accuracy. Instead of using decision trees as
base learners, we employ here multi-layered perceptron
(MLP) ANNs. ANN shares several characteristics with
prediction trees. They are nonparametric, nonlinear, and
have high variance. Moreover, both techniques are very
fast in prediction. ANNs such as MLP, however, have
the ability of modeling any arbitrary boundary smoothly
while decision trees can only learn rectangular-shaped
boundaries. Decision trees are typically pruned after
training to avoid overfitting, whereas ANN uses regular-
ization while the network weights are optimized during
learning. We next describe our two new ensemble NN
models.

BgN-Score: ensemble neural networks through bagging
Bootstrap aggregation, or bagging for short, is a popular
approach to construct an ensemble learning model. As
the name implies and as indicated in the third step of
Algorithm 1, the ensemble is composed of neural net-
works that are fitted to bootstrap samples from the
training data. To further increase the diversity of the
ensemble and decrease its training time, the inputs to
each network l are a random subset (pl) of the total P
features extracted for every protein-ligand complex (see
Step 4). Feature sampling has proven effective in build-
ing tree-based ensemble algorithms such as Random
Forests [25]. When the task is to predict the binding
affinity of a new protein-ligand complex, the output is
the aggregated average of the predictions of the com-
prising individual networks as shown in Algorithm 1
and depicted in Figure 2. This mechanism can be for-
mally expressed as:

ŷ = f (xP) =
1
L

L∑
l=1

fl(xpl) =
1
L

L∑
l=1

ŷl, (3)

where xP ∈ �|P| is a feature vector representing a pro-
tein-ligand complex characterized by a feature set P, f
(xP) is the function that maps it to binding affinity

xpl ∈ �|pl|, xpl ∈ �|pl| is the same complex but character-
ized by a random subset pl of features (|pl| < |P|), L is

the number of networks in the ensemble, and ŷl is the
prediction of each network l in the ensemble which is
calculated at the output neuron according to Equation
1. The final bagging-based ensemble SF is referred to as
BgN-Score.

BsN-Score: ensemble neural networks through boosting
Boosting is an ensemble machine-learning technique
based on a stage-wise fitting of base learners. The techni-
que attempts to minimize the overall loss by boosting the
complexes having highest predicted errors, i.e., by fitting
NNs to (accumulated) residuals made by previous net-
works in the ensemble model. There are several different
implementations of the boosting concept in the litera-
ture. The differences mainly arise from the employed loss
functions and treatment of most erroneous predictions.
Our proposed NN boosting algorithm in this work is a
modified version of the boosting strategy developed by
Cao et al. [35] and Friedman [34] in that we perform ran-
dom feature subset sampling. This approach builds a
stage-wise model as listed in Algorithm 2 and shown in
Figure 3. The algorithm starts by fitting the first network

Figure 2 BgN-Score: ensemble neural network SF using
bagging approach.
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to all training complexes. A small fraction (ν < 1) of
the first network’s predictions is used to calculate the
first iteration of residuals Yres

1 as shown in Step 3 of
Algorithm 2. Step 3 also shows that the network f1 is the
first term in the boosting additive model. In each subse-
quent stage l, a network is trained on a bootstrap sample
of the training complexes described by a random subset
pl of features (Steps 5 and 6). The values of the depen-
dent variable of the training data for the network l are
the current residuals corresponding to the sampled pro-
tein ligand complexes. The residuals for a network at
each stage are the differences between previous stage
residuals and a small fraction of its predictions. This frac-
tion is controlled by the shrinkage parameter ν < 1 to
avoid any overfitting. Network generation continues as
long as the number of networks does not exceed a prede-
fined limit L. Each network joins the ensemble with a
shrunk version of itself. In our experiments, we fixed the
shrinkage parameter to 0.001 which gave the lowest out-
of-sample error. We refer to this boosting-based ensem-
ble SF as BsN-Score.

Neural networks and Random Forests scoring functions
In order to investigate the effectiveness of ensemble NN
SFs in comparison to traditional NN models and ensem-
ble decision-tree models, we trained and tested BgN-
Score, BsN-Score, a single neural network SF referred to
as SNN-Score, and a Random Forests (RF) SF on the Pr

and Cr datasets, respectively, characterized by all fifteen
combinations of the X, A, R, and G features discussed
above. For a fair comparison of their potential, the para-
meters of these SFs were tuned in a consistent manner
to optimize the mean-squared prediction errors on vali-
dation complexes sampled without replacement from
the training set and independent of the test data. Out-
of-bag instances were used as validation complexes for
BgN-Score and RF, while a ten-fold cross-validation was
conducted for BsN-Score and SNN-Score SFs. Out-of-
bag (OOB) refers to complexes that are not sampled
from the training set when bootstrap sets are drawn to
fit individual NNs in BgN-Score models or decision
trees in RF–on average, about 34% of the training set
complexes are left out (or “out-of-bag”) when bootstrap
sets are drawn. The parameters that are tuned and their
optimized values are as follows. (1) L: the number of
base learners (neural networks in ensemble NN SFs and
decision trees in RF) was set to 3000. (2) |p|: the size of
the feature subset p randomly selected from the overall
set of features P while constructing each neural network
in ensemble NN SFs or the size of the randomly-
selected feature subset used at each node of a decision
tree to perform a binary split on the “best” feature in RF
SF. This was set to 10 for ensemble SFs, except in the
case where ensemble SFs are fitted to the 6 X-Score fea-
tures when it was set to 3. The number of input neu-
rons for SNN-Score is set to one more than the number

Figure 3 BsN-Score: ensemble neural network SF using boosting approach.
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of features used to characterize training and test com-
plexes. All NN SFs have one output neuron per network
that produces the binding affinity score. (3) H + 1: the
number of hidden-layer neurons in NN SFs was set to
20. (4) A total of 3000 training epochs and a decay
value (l) of 0.005 were used to optimize the weights for
each network in the ensemble and single NN SFs. The
training process of a network is terminated earlier if the
fitting criterion defined in Equation 2 falls below 0.0001
before the maximum number of training epochs is com-
pleted. This threshold is the default value for the abstol
parameter in the nnet package that we use. (5) ν: the
shrinkage parameter for BsN-Score models was set to
0.001. (6) The weights of each network were randomly
initialized in the range [-0.7,0.7]. The bounds of this
uniform distribution are the default values for the rang
parameter in the nnet package.
Algorithm 1 Algorithm for building BgN-Score: an

ensemble NN SF using bagging
1: Input: training data D = {XP, Y}, where

XP = {xP1, . . . , xPN}, Y = {y1,...,yN}, and N is the number of
training complexes.
2: for l = 1 to L do
3: Draw a bootstrap sample XP

l from XP.
4: Describe the complexes in the bootstrap sample

XP
l using a random subset pl of features: X

Pl
l .

5: From Y, draw the measured binding affinities of
the complexes in the sample XP

l : Yl.
6: Construct a new training set:Dl = {Xpl

l ,Yl}.
7: Learn the current binding affinities by training an

FFBP NN model fl on Dl.
8: end for
9: The final prediction of a protein-ligand complex xP

is: ŷ = f (xP) =
1
L

∑L

l=1
fl(xpl) =

1
L

∑L

l=1
ŷl

Algorithm 2 Algorithm for building BsN-Score: an
ensemble NN SF using boosting
1: Input: training data D = {XP, Y}, where

XP = {xP1, . . . , xPN}, Y = {y1,...,yN}, and N is the number of
training complexes.
2: Construct {D1 = {Xp1 ,Y} from XP by selecting a ran-

dom subset p1 of features.
3: Train an FFBP NN model f1 on D1 and use it to

predict BAs (Ŷ1) of the complexes Xp1 . Calculate the
residuals: Yres1 = Y − vŶ1.
4: for l = 2 to L do
5: Draw a bootstrap sample XP

l from XP.
6: Describe the complexes in the bootstrap sample

XP
l using a random subset pl of features: X

Pl
l .

7: From Yres
l−1, draw the residuals corresponding to

the complexes in the sample XP
l : Yres∗

l−1 .

8: Construct a new training set: Dl = {XPl
l ,Y

res∗
l−1}.

9: Learn the current residuals by training an FFBP
NN model fl on Dl.

10: Calculate the predictions Ŷ1 of the NN model fl
on all Xpl training complexes in the original training set
D.
11: Update the residuals: Yres1 = Yresl−1 − vŶl
12: end for
13: The final prediction of a protein-ligand complex

xP is: ŷ = f (xP) =
∑L

l=1
vfl(xpl) =

∑L

l=1
vŷl

We distinguish the various NN models we built from
each other using the notation NN model::tools used to
calculate features. For instance, BsN-Score::XA implies
that the SF is a boosted ensemble neural networks
model that is trained and tested on complex sets
described by XA features. For brevity, for each of SNN-
Score, BgN-Score, BsN-Score, and RF models, we report
results only for the feature combination (out of the fif-
teen possible) that yields the best performance on the
validation complexes sampled without replacement from
the training data and independent of the test set.

Scoring functions under comparative assessment
We compare the scoring performance of our proposed
NN models to those for sixteen scoring functions used
in popular molecular docking software. The scoring
accuracies of these sixteen SFs were computed by
Cheng et al. in a recent study on the same benchmark
we consider. The functions are listed in Table 1 which
includes five SFs implemented in Discovery Studio, five
SFs in SYBYL, three SFs in GOLD, one in Glide, and
two standalone SFs. Nine of these SFs are empirical,
four are knowledge-based, and the remaining three are
based on force fields.
Some of the scoring functions have several options or

versions, these include DrugScore, LigScore, LUDI, PLP,
and X-Score. For conciseness, we only select the version
that has the highest scoring accuracy on the PDBbind
benchmark that was considered by Cheng et al. [14]. Our
NN model selection, however, was based on the validation
complexes sampled without replacement from the training
data which is independent of the test set. Therefore, the
gap in performance between our proposed SFs and the
conventional models we report in the following sections
could in fact be even bigger if model/version selection of
conventional SFs was done based on their performance on
independent validation sets instead of the test set Cr.

Results and discussion
Evaluation of scoring functions
Scoring power of SFs quantifies their ability to accu-
rately predict protein-ligand binding affinity or repro-
duce it for complexes with known experimental BA
data. The similarity between the predicted and measured
BAs are calculated using Pearson’s (Rp) and Spearman’s
(Rs) correlation coefficients, the standard deviation (SD)
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of errors, and the root-mean square-error (RMSE). Pear-
son’s correlation coefficient measures the linear relation-
ship between two variables as follows:

Rp =

∑N
i=1 [(Ŷi − Ŷ)(Yi − Ȳ)]√∑N

i=1 (Ŷi − Ŷ)
2 ∑N

i=1 (Yi − Ȳ)
2
,

where N is the number of complexes and Ŷi and Yi are
the predicted and measured binding affinities of the ith
complex, respectively. The average values of the pre-
dicted and experimentally measured affinities for all
complexes are ¯̂Y and Ȳ , respectively. Spearman’s correla-
tion coefficient is used to evaluate the correlation
between the predicted and measured BAs in terms of
their ranks and it is defined as follows:

Rs = 1 − 6
∑N

i=1 d
2
i

N(N2 − 1)
,

where di is the difference in ranks of the predicted
and measured affinities of the ith complex.
The SF that achieves the highest correlation coefficient

(maximum is one) for some dataset is considered more
accurate than its counterparts that realize smaller Rp

and/or Rs values (minimum is negative one). Another

measure of scoring power we report here is the standard
deviation (SD) of errors between predicted and mea-
sured BAs (in − log Ki or − log Kd units). To calculate
this statistic for a given SF, a linear model that corre-
lates predicted scores Ŷ to the measured ones Y is first
evaluated: Y = β0 + β1Ŷ , where b0 and b1 are the inter-
cept and the slope of the model, respectively. The SD
statistic can then be computed as follows [15]:

SD =

√∑N
i=1 (Yi − (β0 + β1Ŷi))

2

N − 2
.

The root-mean square-error (RMSE) of the predicted
scores is calculated as:

RMSE =

√∑N
i=1 (Yi − Ŷi)

2

N
.

SFs that yield smaller SD and RMSE values usually
realize higher Rp and Rs values, and therefore have
higher scoring power than models with large SD and
RMSE statistics.

Ensemble neural networks vs. other approaches on a
diverse test set
We trained three neural network SFs (SNN-Score, BgN-
Score, and BsN-Score) and an RF scoring model on the
primary training set Pr and evaluated their scoring per-
formance on an independent test set of 195 diverse pro-
tein-ligand complexes from 65 different protein families.
Table 2 lists the scoring powers of these models and

the same performance statistics of the sixteen SFs col-
lected by Cheng et al. on the same test set. We also
report the scoring performances of NN and RF SFs on
the training set Pr by using out-of-sample validation to
show how close the predicted BAs are to the experimen-
tally-measured ones in terms of RMSE. Therefore, this
statistic indicates whether SFs deemed accurate on train-
ing data will also be reliable scoring models on the test
set Cr. This measure was not calculated for the conven-
tional SFs (except X-Score) since we do not have access
to their training-set BA values. All the scoring power
metrics (i.e., Rp, Rs, SD, and RMSE) indicate that our pro-
posed SFs and RF are the most accurate in predicting the
binding affinities of the independent test set complexes
and out-of-sample training data. BsN-Score outperforms
the most accurate conventional SF, X-Score::HMScore,
by at least 26% in terms of Pearson’s correlation coeffi-
cients, which is 0.816 and 0.644 for both SFs, respectively.
BgN-Score also achieves excellent performance of 0.804
which is about 25% improvement over X-Score::
HMScore.
There are two main reasons for the superior perfor-

mance of ensemble SFs. First, more numerous and

Table 1 The 16 conventional scoring functions and the
molecular docking software in which they are
implemented

Scoring function
(SF)

Software Type of SF Reference

Jain Discovery
Studio

Empirical [37]

LigScore Knowledge
based

[38]

Ludi Empirical [39]

PLP Empirical [40]

PMF Knowledge
based

[41]

ChemScore SYBYL Empirical [24]

D-Score Force-field based [11]

G-Score Force-field based [32]

F-Score Empirical [42]

PMF-Score1 Knowledge
based

[41]

ASP GOLD Empirical [43]

ChemScore2 Empirical [24]

GoldScore3 Force-field based [32]

GlideScore Glide Empirical [44]

DrugScore Standalone Knowledge
based

[45]

X-Score Standalone Empirical [12]
1 SYBYL’s implementation of PMF
2 GOLD’s implementation of ChemScore
3 GOLD’s implementation of G-Score
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varied features more fully characterize protein-ligand
interactions. Thus we find that BsN-Score and BgN-
Score SFs employing all four features types considered
(X, A, R, and G features) are more accurate than the
same SFs employing fewer features. Second, and more
important, the learning model of ensemble SFs is non-
linear and flexible and can exploit a large number of fea-
tures while being resilient to overfitting. Thus we find
that SNN-Score::X (for which Rp = 0.675) is more accu-
rate compared to the versions of SNN-Score employing
one of A, R, or G features only as well as SNN-Score::
XARG (for which Rp = 0.517) because single neural net-
work models overfit the training complexes when charac-
terized by a large number of features. We attempted to
decrease the effect of overfitting by conducting feature
reduction using PCA which helped increase the perfor-
mance of SNN-Score::XARG to Rp = 0.667. However, the

predictions of SNN-Score::XARG are still substantially
less accurate than those of BsN-Score::XARG and BgN-
Score::XARG even though the first 10 principle compo-
nents we used to calculate the 10 new features explain
more than 0.997 of the total variance in the raw XARG
features. Further, the significance of the ensemble model-
ing approach can be gauged from the fact that even with
a single type of feature, BsN-Score::A and BgN-Score::A
yield accuracies of Rp = 0.780 and 0.775, respectively,
which are within ∼ 4% of the accuracies of BsN-Score::
XARG and BgN-Score::XARG.
Table 2 also shows that the ensemble NNs SFs BsN-

Score::XARG and BgN-Score::XARG are more accurate
than the decision-trees-based ensemble SF RF::XARG,
though the latter comes a close third (0.816 and 0.804
vs. 0.801); note that RF::XARG is considered here since
it was found to have superior accuracy compared to RF::
R presented in [26] and RF::A presented in [16]. We
believe this difference in performance, although small, is
mainly attributable to the way the base learners of these
ensemble models approximate the unknown function.
Decision trees model the unknown function by parti-
tioning training data into smaller subsets from which a
prediction is calculated. Such a procedure creates a ser-
ies of non-overlapping regions with axis-parallel decision
boundaries. The numerical values associated with each
region are typically the average BA of the training data
subset belonging to that partition which could be signifi-
cantly different from the neighboring regions. This
could create a rough and abrupt approximation of the
unknown function. On the other hand, NNs with hidden
units can closely and smoothly model any nonlinear
continuous function. In addition, hidden neurons may
create new important features that would otherwise be
impossible to extract directly from protein-ligand com-
plexes. These two factors minimize the bias error of NN
models, but may lead to increased variance or instability
as in the case of single neural network SFs. The pro-
posed boosting and bagging ensemble learning
approaches greatly reduce the variance error. Such
simultaneous reduction in bias and variance errors
makes the ensemble NN SFs the most accurate BA pre-
dictors compared to the other 18 scoring functions
listed in Table 2.

Ensemble neural networks vs. other approaches on
homogeneous test sets
It has been observed that around 92% of existing drug
targets are similar to proteins already present in the Pro-
tein Data Bank, which is the primary source of our train-
ing and validation complexes [36]. Based on this finding
and the similar overlap relationship between training and
test set proteins in the previous experiment, we believe
that the scoring performance of the SFs listed in Table 2

Table 2 Comparison of the scoring powers of BsN-Score,
BgN-Score, SNN-Score, Random Forests (RF), and 16
conventional SFs on the core test set Cr

Scoring function N1 Rp
2 Rs

3 SD4 RMSEtest
5 RMSEtrain

6

BsN-Score::XARG 195 0.816 0.799 1.38 1.386 1.366

BgN-Score::XARG 195 0.804 0.798 1.42 1.449 1.403

RF::XARG 195 0.801 0.790 1.43 1.498 1.442

SNN-Score::X 195 0.675 0.685 1.76 1.760 1.704

X-Score::HMScore 195 0.644 0.705 1.83 1.865 1.730

DrugScoreCSD 195 0.569 0.627 1.96 - -

SYBYL::ChemScore 195 0.555 0.585 1.98 - -

DS::PLP1 195 0.545 0.588 2.00 - -

GOLD::ASP 195 0.534 0.577 2.02 - -

SYBYL::G-Score 195 0.492 0.536 2.08 - -

DS::LUDI3 195 0.487 0.478 2.09 - -

DS::LigScore2 193 0.464 0.507 2.12 - -

GlidScore-XP 178 0.457 0.435 2.14 - -

DS::PMF 193 0.445 0.448 2.14 - -

GOLD::ChemScore 178 0.441 0.452 2.15 - -

SYBYL::D-Score 195 0.392 0.447 2.19 - -

DS::Jain 189 0.316 0.346 2.24 - -

GOLD::GoldScore 169 0.295 0.322 2.29 - -

SYBYL::PMF-Score 190 0.268 0.273 2.29 - -

SYBYL::F-Score 185 0.216 0.243 2.35 - -
1 Number of complexes in Cr with positive (favorable) binding scores using
this SF [14].
2 Rp is the Pearson correlation coefficient between predicted and measured
BA values of complexes in Cr.
3 Rs is the Spearman correlation coefficient between predicted and measured
BA values of complexes in Cr.
4 SD is the standard deviation of errors between predicted and measured BA
values of complexes in Cr based on Equation 3 in [15].
5 RMSE is the root-mean-square of errors between predicted and measured
BA values of the test complexes in Cr. Test RMSE is not available for
conventional SFs except for X-Score::HMScore that we have re-constructed.
6 RMSE is the root-mean-square of errors between predicted and measured
BA values of out-of-sample complexes in the training set Pr. Training RMSE is
not available for conventional SFs except for X-Score::HMScore that we have
re-constructed.
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should be expected in typical molecular docking and vir-
tual screening campaigns. For each protein family in that
experiment’s test set, there is at least one protein family
in the training set of our proposed NN and RF SFs, but
the two sets share no protein-ligand complexes when
these pairs of compounds are considered as whole biolo-
gical units. We describe here a more stringent experi-
ment to assess the generalization of the NN and RF SFs
when they are applied to score ligands for novel drug tar-
gets. In this experiment, we evaluate the BA predictive
accuracy of the NN SFs on four protein families not pre-
sent in their training set. These protein families are the
most frequent in our data and include 112 HIV protease,
73 trypsin, 44 carbonic anhydrase, and 38 thrombin com-
plexes. A test set for each of these protein families was

constructed by sampling all complexes formed by that
protein from the training (Pr ) and the test (Cr ) sets.
The training complexes corresponding to each of these
four test sets are the remaining protein-ligand pairs in Pr.
For each protein family, we fitted the proposed NN and
RF models to the corresponding independent training
complexes and validated them on the test set complexes
that are formed between that type of protein and a
unique set of co-crystallized ligands. The prediction
accuracy of our proposed models and the top four con-
ventional scoring functions on complexes formed by the
four protein types are shown in Table 3.
Examining the upper portion of the table for the four

families where the test and training sets are disjoint for
the NN and RF SFs, we notice that the predictive

Table 3 Comparison of the scoring powers of BsN-Score, BgN-Score, SNN-Score, Random Forests (RF), and the four top
performing conventional SFs on four protein-family-specific tests sets

HIV protease (N = 112) Trypsin (N = 73)

Scoring function Rp
1 Rs

2 SD3 RMSE4 D5 Scoring function Rp
1 Rs

2 SD3 RMSE4 D5

X-Score::HPScore 0.341 0.339 1.54 1.509 N SYBYL::ChemScore 0.829 0.773 0.95 - U

BsN::XARG 0.290 0.230 1.56 1.705 Y DS::Ludi2 0.823 0.791 0.96 - U

RF::XARG 0.289 0.219 1.519 1.719 Y X-Score::HSScore 0.817 0.824 0.97 1.401 N

BgN-Score::XARG 0.287 0.209 1.58 1.860 Y DS::PLP2 0.797 0.774 1.02 - U

SYBYL::ChemScore 0.255 0.228 1.58 - U BgN-Score::XAR 0.776 0.719 1.06 1.070 Y

DrugScore::PairSurf 0.225 0.170 1.59 - U RF::XAR 0.774 0.753 1.07 1.133 Y

DS::PMF04 0.183 0.200 1.61 - U BsN-Score::AR 0.766 0.709 1.08 1.119 Y

SNN-Score::X 0.039 0.048 1.64 2.255 Y SNN-Score::X 0.735 0.672 1.14 1.209 Y

RF::XARG 0.964 0.975 0.44 0.588 N BsN-Score::XARG 0.937 0.920 0.59 0.678 N

BsN-Score::XARG 0.918 0.922 0.64 0.710 N RF::XARG 0.934 0.08 0.60 0.657 N

BgN-Score::XARG 0.848 0.808 1.02 1.024 N BgN-Score::XARG 0.892 0.848 0.76 0.805 N

SNN-Score::X 0.748 0.716 1.08 1.085 N SNN-Score::X 0.829 0.789 0.940 0.957 N

Carbonic anhydrase (N = 44) Thrombin (N = 38)

Scoring function Rp
1 Rs

2 SD3 RMSE4 D5 Scoring function Rp
1 Rs

2 SD3 RMSE4 D5

DS::PLP2 0.800 0.772 0.84 - U SNN-Score::X 0.756 0.704 1.38 1.433 Y

SYBYL::G-Score 0.706 0.646 0.99 - U BgN-Score::XARG 0.722 0.726 1.48 1.552 Y

SYBYL::ChemScore 0.699 0.631 1.00 - U BsN-Score::XARG 0.699 0.637 1.58 1.603 Y

BsN-Score::X 0.674 0.434 1.03 3.418 Y RF::XARG 0.697 0.693 1.52 1.674 Y

SNN-Score::X 0.631 0.451 1.08 3.561 Y DS::PLP1 0.667 0.672 1.58 - U

SYBYL::PMF-Score 0.627 0.618 1.09 - U SYBYL::G-Score 0.667 0.626 1.58 - U

BgN-Score::XA 0.625 0.423 1.09 3.642 Y X-Score::HSScore 0.666 0.586 1.58 1.737 N

RF::XARG 0.601 0.374 1.11 3.393 Y DrugScore::Pair 0.651 0.622 1.61 - U

BsN-Score::XARG 0.948 0.921 0.44 1.004 N BsN-Score::XARG 0.913 0.938 0.86 1.155 N

RF::XARG 0.910 0.860 0.57 1.140 N RF::XARG 0.910 0.934 0.86 1.125 N

BgN-Score::XARG 0.884 0.766 0.65 1.320 N BgN-Score::XARG 0.858 0.876 1.08 1.320 N

SNN-Score::X 0.652 0.310 1.05 1.687 N SNN-Score::X 0.761 0.756 1.37 1.374 N
1 Rp is the Pearson correlation coefficient between predicted and measured BA values of complexes in this protein-family-specific test set.
2 Rs is the Spearman correlation coefficient between predicted and measured BA values of complexes in this protein-family-specific test set.
3 SD is the standard deviation of errors between predicted and measured BA values of complexes in this protein-family-specific test set.
4 RMSE is the root-mean-square of errors between predicted and measured BA values of the test complexes in in this protein-family-specific test set. Test RMSE is
not available for conventional SFs except for X-Score that we have re-constructed. Training RMSE is not reported in this table because the values are very similar
to RMSEtrain in Table 1 due to the overlap between the training data sets of the two experiments.
5 This indicates whether the test set complexes are disjoint from (D = Y) or overlap with (D = N) the training set complexes for NN and RF models. Any overlap
between the training and test data of the conventional SFs is unknown (D = U) to us.
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accuracy of all SFs varies from poor to good depending
on the protein family. All SFs have failed to reproduce
the experimental binding affinities for the ligands that
bind to HIV protease proteins. The highest Pearson’s
correlation value between predicted and true BAs is less
than 0.35, which is the case for the scoring function X-
Score::HPScore. Improper characterization of enthalpic
and entropic forces for HIV protease complexes could be
the main reason for these erroneous predictions [14].
The significant conformational changes observed during
binding as well as the lack of similar proteins in the train-
ing set could also result in such inaccurate estimations
for BA. The scoring accuracy on the other three protein
families is substantially better. The binding affinities for
ligands bound to trypsin were predicted with an accuracy
of at least Rp = 0.735. Discovery Studio’s empirical SF
PLP2 shows the highest accuracy on the carbonic anhy-
drase dataset with a linear correlation value of 0.800. The
most accurate models on the thrombin test set are the
NN SFs and RF with Rp values of 0.697 and better, fol-
lowed by the conventional scoring functions.
It can be observed that the SF based on a single NN,

SNN-Score, performs relatively poorly overall, except in
one case. In some of these test sets, a few conventional
SFs perform better than the ensemble NN SFs. This beha-
vior can be attributed to the possibility of some overlap
between the training complexes of the conventional
approaches and the four family-specific test sets. As dis-
cussed earlier, the protein families of training and test
complexes for the NN and RF models do not overlap and
they are completely disjoint. When we retrain ensemble
NN and RF SFs on the original training set (Pr ), which
overlaps with the family-specific test sets, and assess their
scoring power on the four homogeneous test sets, we
notice that the predictions of the proposed SFs and RF are
near perfect as listed in the lower portion of Table 3.
The results listed in Tables 2 and 3 show the perfor-

mance of the proposed and conventional SFs on target
proteins when they are partially or fully encountered in
their training sets, or completely novel for them. There-
fore, we believe that these results are very useful in esti-
mating the accuracy of our scoring models given the
number of solved structures of the drug target with
other ligands and the availability of their binding data.

Conclusion
Our experiments have shown that the proposed neural
networks SFs, BsN-Score and BgN-Score, achieved the
best results in reproducing experimental binding affinity
for large and diverse number of protein-ligand complexes.
We further found that ensemble models based on NNs
surpass SFs based on the decision-tree ensemble technique
Random Forests. SFs that were trained on a single neural
network, which have traditionally been used in drug-

discovery applications, showed linear correlation (Rp) of
only 0.675 between observed and predicted binding affi-
nities. On the other hand, BsN-Score and BgN-Score
along with RF-Score far outperform the best of existing
conventional knowledge-based, force-field-based, and
empirical SFs (Rp = 0.816 and 0.804 vs. 0.644, respectively)
and those based on a single neural network. The accura-
cies of ensemble NN SFs are even higher when they pre-
dict binding affinities for protein-ligand complexes that
are related to their training sets. The high predictive accu-
racy of ensemble SFs BsN-Score and BgN-Score is due to
the following three factors: (i) the low bias error of the
highly-nonlinear neural network base learners, (ii) the low
variance error achieved using bagging and boosting, and
(iii) the employed diverse set of features we extract for
protein-ligand complexes. We aim to improve the scoring
powers of BsN-Score and BgN-Score even further in the
future. We will periodically update the training data to
include larger number of complexes with more protein
families and ligands. We will analyze the effect of includ-
ing more training complexes on the gain in predictive
accuracy of NN SFs. We will also systemically examine
their improvement patterns upon scoring ligands of speci-
fic protein families when complexes formed by those
families have varying degrees of presence in the training
data. Furthermore, we will develop new tools to extract a
diverse and large number of physiochemical descriptors
about the protein, the ligand, and the complex as a whole.
We believe the suggested enhancement approaches will
make the NN SFs even more useful for accurate molecular
docking and scoring.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Devised the comparison techniques and experiments: N.M. and H.A.
Implemented the techniques and carried out the experiments: H.A. Analyzed
the results: N.M. and H.A. Wrote the paper and revised it: H.A. and N.M.

Acknowledgements
This material is based upon work supported by the National Science
Foundation under Grant No. 1117900.

Declarations
The publication costs for this article were sourced from the National Science
Foundation under Grant No. 1117900.
This article has been published as part of BMC Bioinformatics Volume 16
Supplement 4, 2015: Selected articles from the 9th IAPR conference on
Pattern Recognition in Bioinformatics. The full contents of the supplement
are available online at http://www.biomedcentral.com/bmcbioinformatics/
supplements/16/S4.

Published: 23 February 2015

References
1. Fradera X, Mestress J: Guided docking approaches to structure-based

design and screening. Current Topics in Medicinal Chemistry 2004,
4:687-700.

Ashtawy and Mahapatra BMC Bioinformatics 2015, 16(Suppl 4):S8
http://www.biomedcentral.com/1471-2105/16/S4/S8

Page 11 of 12

http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S4
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S4


2. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT,
Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS:
Glide: A new approach for rapid, accurate docking and scoring. 1.
method and assessment of docking accuracy. Journal of medicinal
chemistry 2004, 47(7):1739-1749.

3. Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH,
Lindavall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM,
Peishoff CE, Head MS: A critical assessment of docking programs and
scoring functions. Journal of medicinal chemistry 2005.

4. Cases M, Mestres J: A chemogenomic approach to drug discovery: focus
on cardiovascular diseases. Drug discovery today 2009, 14(9-10):479-485.

5. Xu X, Kasembeli MM, Jiang X, Tweardy BJ, Tweardy DJ: Chemical probes that
competitively and selectively inhibit Stat3 activation. PLoS One 2009, 4(3).

6. Simons KT, Bonneau R, Ruczinski I, Baker D: Ab initio protein structure
prediction of CASP III targets using ROSETTA. Proteins: Structure, Function,
and Genetics 1999, 37(S3):171-176.

7. Favia AD, Nobeli I, Glaser F, Thornton JM: Molecular docking for substrate
identification: The short-chain dehydrogenases/reductases. Journal of
Molecular Biology 2008, 375(3):855-874.

8. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE: The protein data bank. Nucleic Acids Research
2000, 28(1):235-242.

9. Wang R, Fang X, Lu Y, Wang S: The PDBbind database: Collection of
binding affinities for protein-ligand complexes with known three-
dimensional structures. Journal of Medicinal Chemistry 2004,
47(12):2977-2980, PMID: 15163179.

10. Allen FH, Kennard O: Cambridge Structural Database (CSD). Chemical
Design Automation News 1993, 8:1-31.

11. Ewing TJA, Makino S, Skillman AG, Kuntz ID: DOCK 4.0: Search strategies
for automated molecular docking of flexible molecule databases. Journal
of Computer-Aided Molecular Design 2001, 15(5):411-428.

12. Wang R, Lai L, Wang S: Further development and validation of empirical
scoring functions for structure-based binding affinity prediction. Journal of
Computer-Aided Molecular Design 2002, 16:11-26, 10.1023/A:1016357811882.

13. Gohlke H, Hendlich M, Klebe G: Knowledge-based scoring function to
predict protein-ligand interactions. Journal of Molecular Biology 2000,
295(2):337-356.

14. Cheng T, Li X, Li Y, Liu Z, Wang R: Comparative assessment of scoring
functions on a diverse test set. Journal of Chemical Information and
Modeling 2009, 49(4):1079-1093.

15. Wang R, Lu Y, Fang X, Wang S: An extensive test of 14 scoring functions
using the PDBbind refined set of 800 protein-ligand complexes. Journal
of Chemical Information and Computer Sciences 2004, 44(6):2114-2125, PMID:
15554682.

16. Ashtawy HM, Mahapatra NR: A comparative assessment of conventional
and machine-learning-based scoring functions in predicting binding
affinities of protein-ligand complexes. Bioinformatics and Biomedicine
(BIBM), 2011 IEEE International Conference On IEEE 2011, 627-630.

17. Ashtawy HM, Mahapatra NR: A comparative assessment of ranking
accuracies of conventional and machine-learning-based scoring functions
for protein-ligand binding affinity prediction. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB) 2012, 9(5):1301-1313.

18. Schneider G, Wrede P: Artificial neural networks for computer-based
molecular design. Progress in Biophysics and Molecular Biology 1998,
70(3):175-222.

19. Douali L, Villemin D, Zyad A, Cherqaoui D: Artificial neural networks: Non-
linear QSAR studies of HEPT derivatives as HIV-1 reverse transcriptase
inhibitors. Molecular Diversity 2004, 8(1):1-8.

20. Winkler D: Neural networks as robust tools in drug lead discovery and
development. Molecular Biotechnology 2004, 27:139-167, 10.1385/
MB:27:2:139.

21. Durrant JD, McCammon JA: NNScore: A neural-network-based scoring
function for the characterization of protein-ligand complexes. Journal of
Chemical Information and Modeling 2010, 50(10):1865-1871.

22. Head RD, Smythe ML, Oprea TI, Waller CL, Green SM, Marshall GR: Validate:
A new method for the receptor-based prediction of binding affinities of
novel ligands. Journal of the American Chemical Society 1996,
118(16):3959-3969.

23. So S, Karplus M: A comparative study of ligand-receptor complex binding
affinity prediction methods based on glycogen phosphorylase inhibitors.
Journal of computer-aided molecular design 1999, 13(3):243-258.

24. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP: Empirical scoring
functions: I. The development of a fast empirical scoring function to
estimate the binding affinity of ligands in receptor complexes. Journal of
Computer-Aided Molecular Design 1997, 11:425-445, 10.1023/
A:1007996124545.

25. Breiman L: Random forests. Machine Learning 2001, 45:5-32.
26. Ballester PJ, Mitchell JBO: A machine learning approach to predicting

protein-ligand binding affinity with applications to molecular docking.
Bioinformatics 2010, 26(9):1169.

27. Cybenko G: Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems 1989, 2(4):303-314.

28. Hornik K, Stinchcombe M, White H: Multilayer feedforward networks are
universal approximators. Neural networks 1989, 2(5):359-366.

29. Stinchcombe M, White H: Approximating and learning unknown
mappings using multilayer feedforward networks with bounded
weights. Neural Networks, 1990., 1990 IJCNN International Joint Conference
On IEEE 1990, 7-16.

30. Steinberg D, Colla P: CART: classification and regression trees. The Top Ten
Algorithms in Data Mining 2009, 9:179.

31. Schnecke V, Kuhn LA: Virtual screening with solvation and ligand-induced
complementarity. Perspectives in Drug Discovery and Design 2000,
20(1):171-190.

32. Jones G, Willett P, Glen RC, Leach AR, Taylor R: Development and
validation of a genetic algorithm for flexible docking. Journal of Molecular
Biology 1997, 267(3):727-748.

33. Ripley B: nnet: Feed-forward neural networks and multinomial log-linear
models. R package version 2011, 7(5).

34. Friedman JH: Stochastic gradient boosting. Computational Statistics & Data
Analysis 2002, 38(4):367-378.

35. Cao D-S, Xu Q-S, Liang Y-Z, Zhang L-X, Li H-D: The boosting: A new idea
of building models. Chemometrics and Intelligent Laboratory Systems 2010,
100(1):1-11.

36. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are
there? Nature Reviews Drug Discovery 2006, 5(12):993-996.

37. Jain AN: Scoring noncovalent protein-ligand interactions: A continuous
differentiable function tuned to compute binding affinities. Journal of
Computer-Aided Molecular Design 1996, 10:427-440.

38. Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M:
LigScore: A novel scoring function for predicting binding affinities.
Journal of Molecular Graphics and Modelling 2005, 23(5):395-407.

39. Bohm HJ: The development of a simple empirical scoring function to
estimate the binding constant for a protein-ligand complex of known
three-dimensional structure. Journal of Computer-Aided Molecular Design
1994, 8(3):243-256.

40. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DR, Fogel LJ,
Freer ST: Molecular recognition of the inhibitor ag-1343 by HIV-1
protease: Conformationally flexible docking by evolutionary
programming. Chemistry & Biology 1995, 2(5):317-324.

41. Muegge I: Effect of ligand volume correction on PMF scoring. Journal of
Computational Chemistry 2001, 22(4):418-425.

42. Tripos Inc: The SYBYL Software. 1699 South Hanley Rd., St. Louis, Missouri,
63144, USA 2006, version 7.2.

43. Mooij W, Verdonk M: General and targeted statistical potentials for
protein-ligand interactions. Proteins 2005, 61(2):272.

44. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT,
Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS:
Glide: A new approach for rapid, accurate docking and scoring. 1.
Method and assessment of docking accuracy. Journal of Medicinal
Chemistry 2004, 47(7):1739-1749, PMID: 15027865.

45. Velec HFG, Gohlke H, Klebe G: DrugScore CSD - Knowledge-based scoring
function derived from small molecule crystal data with superior
recognition rate of near-native ligand poses and better affinity
prediction. Journal of Medicinal Chemistry 2005, 48(20):6296-6303.

doi:10.1186/1471-2105-16-S4-S8
Cite this article as: Ashtawy and Mahapatra: BgN-Score and BsN-Score:
Bagging and boosting based ensemble neural networks scoring
functions for accurate binding affinity prediction of protein-ligand
complexes. BMC Bioinformatics 2015 16(Suppl 4):S8.

Ashtawy and Mahapatra BMC Bioinformatics 2015, 16(Suppl 4):S8
http://www.biomedcentral.com/1471-2105/16/S4/S8

Page 12 of 12


	Abstract
	Background
	Results
	Conclusions

	Background
	Related work
	Key contributions
	Materials and methods
	Protein-ligand complex database
	Protein-ligand complex characterization
	Artificial neural networks
	Limitations of ANN models and our approach to tackling them
	BgN-Score: ensemble neural networks through bagging
	BsN-Score: ensemble neural networks through boosting
	Neural networks and Random Forests scoring functions
	Scoring functions under comparative assessment

	Results and discussion
	Evaluation of scoring functions
	Ensemble neural networks vs. other approaches on a diverse test set
	Ensemble neural networks vs. other approaches on homogeneous test sets

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References



