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1. Introduction

We deal with a nonlinear mixed problem having a nonlocal condition, the so-c
energy specification. The problem of parameter identification from nonstandard bou
conditions in boundary value problems, originating from various engineering discip
is of growing interest. That is, a large number of physical phenomena and many pro
in modern physics and technology can be described in terms of nonlocal problems, s
problems in partial differential equations with integral conditions. These nonlocal bo
ary conditions such as the integral condition

∫ b

a
u(x, t) dx = f (t), arise mainly when the

data on the boundary cannot be measured directly, but their average values are
More precisely, standard (Dirichlet, Neumann and Robin type) conditions which are
scribed pointwise are not always adequate as it depends on the physical context wh
can be measured at the boundary of the physical domain. In some cases it is not p
to prescribe the solutionu (pressure, temperature,. . .) pointwise, because only the avera
value of the solution can be measured along the boundary or along some part of it.
kinds of problems are very important in the transport of reactive and passive con
nates in aquifer, an area of active interdisciplinary research of mathematicians, en
and life scientists. For ample information, and for the derivation of mathematical
els and for the precise hypothesis and analysis, the reader should refer to Cushm
Ginn [8], Cushmand et al. [9]. The presence of an integral term in the boundary cond
can greatly complicate the application of standard functional or numerical methods,
to the fact that the elliptic differential operator with integral condition is no longer p
tive definite in the usual function spaces, which poses the major source of difficulty
physical significance of these conditions (total energy, total mass, mean, moment
has served as a fundamental reason for the increasing interest carried to this kind o
lems. The first work, devoted to second order partial differential equations with non
integral conditions goes back to Cannon [5]. Later, problems with integral condition
parabolic equations were treated by Kamynin [15], Ionkin [14], Yurchuk [29], Bouzian
Mesloub and Bouziani [17], Mesloub [16]. Other parabolic problems also arise in pl
physics Samarskii [24], heat conduction Cannon [5], Ionkin [14], dynamics of ground
ters, Nakhushev [21], Vodakhova [28], thermoelasticity Muravei [20], can be reduc
the nonlocal problem with integral conditions. An interesting collection of nonlocal
abolic problems in one-dimensional space is discussed in Fairweather [12]. Proble
elliptic equations with operator nonlocal conditions were considered by Scubachevsk
Paneiah [22]. Then Gordeziani and Avalishvili [13], Mesloub and Bouziani [18], Mes
and Lekrine [19], Pulkina [23], Beilin [1] devoted some papers to nonlocal problem
hyperbolic equations.

The pseudoparabolic equation and others

∂u

∂t
− k

∂∆u

∂t
− ∆u = 0, (1.1)

have been extensively investigated, and many important results concerning exi
uniqueness and other properties of solutions have been published, see, for ex
DiBenedetto [10,11], Coleman [7], Bouziani [4], and Showalter [26]. Equation (1.1) a
in various physical phenomena. It can, for example, model the diffusion of fluids in
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tured porous media: Barenblatt [2], DiBenedetto [10], Coleman [7]. It can also mod
heat conduction involving a thermodynamic temperatureT = u − k ∆u and a conductive
temperatureu, Chen and Gurtin [6], Ting [27]. Motivated by this, we study a nonlo
nonlinear mixed problem for Eq. (1.1) in the case where the Laplacian operator is re
by the Bessel operator1

x
∂
∂x

(x ∂
∂x

) and a termf (x, t, u,ux) is added to its right-hand side

2. Problem setting

In the rectangular domain

DT = Ω × (0, T ) = {
(x, t) ∈ R

2, 0< x < l, 0< t < T
}
,

we consider the equation

Lu = ∂u

∂t
− 1

x

∂

∂x

(
x

∂u

∂x

)
− 1

x

∂2

∂t∂x

(
x

∂u

∂x

)
= f

(
x, t, u,

∂u

∂x

)
, (2.1)

with the initial data

u(x,0) = u0(x), (2.2)

Neumann boundary condition

ux(l, t) = 0 (2.3)

and the nonlocal weighted boundary condition

l∫
0

xudx = 0, (2.4)

with

∂u0(l, t)

∂x
= 0,

l∫
0

xu0 dx = 0. (2.5)

Hereu0 andf are given functions.
We shall assume: there exists a positive constantd such that∣∣f (x, t, u1, v1) − f (x, t, u2, v2)

∣∣ � d
(|u1 − u2| + |v1 − v2|

)
, (A)

for all (x, t) ∈ DT .
This paper is organized as follows: In Section 3, we state and pose the linear pr

associated to (2.1)–(2.4) and introduce the function spaces used throughout the p
well. Then in Section 4, we prove the uniqueness of the solution of the linear problem
in Section 5, we show the existence of solutions. Finally, in Section 6, on the basis
results obtained in Sections 4 and 5, and on the use of an iterative process, we pr
existence and uniqueness of the solution of the nonlinear problem (2.1)–(2.4). The m
used here is a further elaboration of that in [16].
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3. Statement of the associated linear problem

Let us in this section give the position of the linear problem and introduce the diff
function spaces needed to investigate the mixed nonlocal problem given by the equ

Lu = ∂u

∂t
− 1

x

∂

∂x

(
x

∂u

∂x

)
− 1

x

∂2

∂t∂x

(
x

∂u

∂x

)
= f (x, t), (3.1)

and supplemented by conditions (2.2)–(2.4). The method used here is one of th
efficient functional analysis methods in solving partial differential equations with non
boundary conditions, the so-called a priori estimate method or the energy–integral m
This method is essentially based on the construction of suitable multiplicators for
specific given problem, which provides the a priori estimate from which it is possib
establish the solvability of the posed problem. More precisely, the proof is based
energy inequality and on the density of the range of the operator generated by the a
formulation of the stated problem.

To investigate the posed problem, we introduce the needed function spaces. We
by L2

ρ(Ω) the Hilbert space of weighted square integrable functions with inner produ

(u, v)L2
ρ(Ω) = (xu, v)L2(Ω) =

∫
Ω

xuv dx,

and with associated norm

‖u‖L2
ρ(Ω) = ‖√xu‖L2(Ω) =

(∫
Ω

xu2 dx

)1/2

.

Let X be a Banach space with norm‖u‖X, and letu : (0, T ) → X be an abstract function
By ‖u(., t)‖X we denote the norm ofu(., t) ∈ X for fixed t . Let L2(0, T́ ;X) be the set of
all measurable abstract functionsu(., t) : (0, T ) → X such that

‖u‖2
L2(0,T ;X)

=
T∫

0

∥∥u(., t)
∥∥2

X
dt < ∞.

If X is a Hilbert space, thenL2(0, T́ ;X) is also a Hilbert space. LetC(0, T ;X) be the set
of all continuous functionsu : (0, T ) → X such that

‖u‖C(0,T ;X) = max
t∈[0,T ]

∥∥u(., t)
∥∥

X
< ∞.

And denote byH 1
ρ (Ω) the weighted Sobolev space with

‖u‖2
H1

ρ (Ω)
= ‖u‖2

L2
ρ(Ω)

+
∥∥∥∥∂u

∂x

∥∥∥∥
2

L2
ρ(Ω)

< ∞.

The given problem (3.1), (2.2)–(2.4), can be viewed as the problem of solving the op
equation

Lu = (f,u0), ∀u ∈ D(L), (3.2)
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whereL is the operator given byL = (L, �), andD(L) is the set of all functions

u ∈ L2(0, T́ ;H 1
ρ (Ω)

)
:

∂u

∂t
,
∂u

∂x
,
∂2u

∂x2
,

∂2u

∂t∂x
,

∂3u

∂t∂x2
∈ L2(0, T́ ;H 1

ρ (Ω)
)
,

andu satisfies conditions (2.3) and (2.4). The operatorL acts fromB to F , whereB is the
Banach space obtained by enclosing the setD(L) with respect to the finite norm

‖u‖2
B =

∥∥∥∥∂u

∂t

∥∥∥∥
2

L2(0,T ;L2
ρ(Ω))

+ ‖u‖2
C(0,T ;H1

ρ (Ω))
.

Functionsu ∈ B are continuous on[0, T ] with values inH 1
ρ (Ω). Hence the mapping

� :B � u → �u = u(x,0) ∈ H 1
ρ (Ω)

is defined and continuous onB. And F is the Hilbert spaceL2(0, T ;L2
ρ(Ω)) × H 1

ρ (Ω)

consisting of vector valued functionsF = (f,u0) for which the norm

‖F‖F = (‖f ‖2
L2(0,T ;L2

ρ(Ω))
+ ‖u0‖2

H1
ρ (Ω)

)1/2

is finite. LetL be the closure of the operatorL with domain of definitionD(L).

Definition. We call a strong solution of the problem (3.1), (2.2)–(2.4), the solution o
operator equation

Lu = F for all u ∈ D(L).

We establish an energy inequality for the operatorL, and extend the obtained estima
to the closureL, of the operatorL. Finally, we prove the density of the rangeR(L) of the
operatorL in the spaceF .

4. A priori estimate

In this section, we establish an a priori estimate for the operatorL from which we
conclude the uniqueness and continuous dependence of the solution upon the
condition (2.2) and the right-hand side of (3.1). First observe that∂

∂x
�x(f ) = f , and

∂
∂x

�0(f ) = �2
0(f ) = 0, where�x(f ) = ∫ x

0 f (ξ) dξ , and �2
x(ξf (ξ)) = �x(�ξ (ηf (η))).

By taking the inner product inL2
ρ(Ω) of Eq. (3.1) and the integro-differential opera

Mu = x ∂u
∂t

− x�2
x(ξu) and then integrating over(0, τ ), with 0� τ � T , with �x(f ) coin-

cides with�1
x(f ), we obtain

τ∫
0

∥∥∥∥∂u(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

dt −
τ∫

0

l∫
0

∂u

∂t

∂

∂x

(
x

∂u

∂x

)
dx dt

−
τ∫ l∫

x
∂u

∂t
�2

x(ξu)dx dt +
τ∫ l∫

∂

∂x

(
x

∂u

∂x

)
�2

x(ξu)dx dt
0 0 0 0
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+
τ∫

0

l∫
0

∂2

∂t∂x

(
x

∂u

∂x

)
�2

x(ξu)dx dt −
τ∫

0

l∫
0

∂u

∂t

∂2

∂t∂x

(
x

∂u

∂x

)
dx dt

=
τ∫

0

l∫
0

xf (x, t)
∂u

∂t
dx dt −

τ∫
0

l∫
0

xf (x, t)�2
x(ξu)dx dt. (4.1)

Standard integration by parts of each integral in (4.1) leads to

−
τ∫

0

l∫
0

∂u

∂t

∂

∂x

(
x

∂u

∂x

)
dx dt = 1

2

∥∥∥∥∂u(., τ )

∂x

∥∥∥∥
2

L2
ρ(Ω)

− 1

2

∥∥∥∥∂u0

∂x

∥∥∥∥
2

L2
ρ(Ω)

, (4.2)

−
τ∫

0

l∫
0

x
∂u

∂t
�2

x(ξu)dx dt = 1

2

∥∥�x

(
ξu(., τ )

)∥∥2
L2(Ω)

− 1

2

∥∥�x(ξu0)
∥∥2

L2(Ω)
, (4.3)

τ∫
0

l∫
0

∂

∂x

(
x

∂u

∂x

)
�2

x(ξu)dx dt = −
τ∫

0

l∫
0

x
∂u

∂x
�x(ξu)dx dt, (4.4)

τ∫
0

l∫
0

∂2

∂t∂x

(
x

∂u

∂x

)
�2

x(ξu)dx dt = −
τ∫

0

l∫
0

∂

∂t

(
x

∂u

∂x

)
�x(ξu)dx dt, (4.5)

−
τ∫

0

l∫
0

∂u

∂t

∂2

∂t∂x

(
x

∂u

∂x

)
dx dt =

τ∫
0

∥∥∥∥∂2u(., t)

∂x∂t

∥∥∥∥
2

L2
ρ(Ω)

dt. (4.6)

Substitution of (4.2)–(4.6) into (4.1) yields

τ∫
0

∥∥∥∥∂u(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

dt + 1

2

∥∥∥∥∂u(., τ )

∂x

∥∥∥∥
2

L2
ρ(Ω)

+
τ∫

0

∥∥∥∥∂2u(., t)

∂x∂t

∥∥∥∥
2

L2
ρ(Ω)

dt + 1

2

∥∥�x

(
ξu(., τ )

)∥∥2
L2(Ω)

= 1

2

∥∥∥∥∂u0

∂x

∥∥∥∥
2

L2
ρ(Ω)

+ 1

2

∥∥�x(ξu0)
∥∥2

L2(Ω)
,

τ∫
0

l∫
0

x
∂u

∂x
�x(ξu)dx dt +

τ∫
0

l∫
0

x
∂2u

∂x∂t
�x(ξu)dx dt

+
τ∫ l∫

xf (x, t)
∂u

∂t
dx dt −

τ∫ l∫
xf (x, t)�2

x(ξu)dx dt. (4.7)
0 0 0 0
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llows:
By virtue of the elementary inequalities

l∫
0

(�x(ξu)
)2

dx � l3

2

∥∥u(., t)
∥∥2

L2
ρ(Ω)

,

l∫
0

(�2
x(ξu)

)2
dx � l2

2

∥∥�x(ξu)
∥∥2

L2(Ω)
,

l∫
0

x
(�x(ξu)

)2
dx � l

∥∥�x(ξu)
∥∥2

L2(Ω)
(4.8)

(see [3]) and the Cauchy’sε-inequality

αβ � ε

2
α2 + 1

2ε
β2, (4.9)

the last four terms of the right-hand side of (4.7) can be (respectively) estimated as fo

τ∫
0

l∫
0

x
∂u

∂x
�x(ξu)dx dt

� ε1

2

τ∫
0

∥∥∥∥∂u(., t)

∂x

∥∥∥∥
2

L2
ρ(Ω)

dt + l

2ε1

τ∫
0

∥∥�x

(
ξu(., t)

)∥∥2
L2(Ω)

dt, (4.10)

τ∫
0

l∫
0

x
∂2u

∂x∂t
�x(ξu)dx dt

� ε2

2

τ∫
0

∥∥∥∥∂2u(., t)

∂x∂t

∥∥∥∥
2

L2
ρ(Ω)

dt + l

2ε2

τ∫
0

∥∥�x

(
ξu(., t)

)∥∥2
L2(Ω)

dt, (4.11)

τ∫
0

l∫
0

xf (x, t)
∂u

∂t
dx dt

� ε3

2

τ∫
0

∥∥∥∥∂u(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

dt + 1

2ε3

τ∫
0

∥∥f (., t)
∥∥2

L2
ρ(Ω)

dt, (4.12)

−
τ∫

0

l∫
0

xf (x, t)�2
x(ξu)dx dt

� l3ε4

4

τ∫ ∥∥�x

(
ξu(., t)

)∥∥2
L2(Ω)

dt + 1

2ε4

τ∫ ∥∥f (., t)
∥∥2

L2
ρ(Ω)

dt. (4.13)
0 0
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By taking ε1 = 1, ε2 = 2, ε3 = 1, ε4 = 1, and by combining (4.7) and (4.10)–(4.13),
obtain

1

2

τ∫
0

∥∥∥∥∂u(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

dt + 1

2

∥∥∥∥∂u(., τ )

∂x

∥∥∥∥
2

L2
ρ(Ω)

+ 1

2

∥∥�x

(
ξu(., τ )

)∥∥2
L2(Ω)

� 1

2

∥∥∥∥∂u0

∂x

∥∥∥∥
2

L2
ρ(Ω)

+ 1

2

∥∥�x(ξu0)
∥∥2

L2(Ω)
+ 1

2

τ∫
0

∥∥∥∥∂u(., t)

∂x

∥∥∥∥
2

L2
ρ(Ω)

dt

+
τ∫

0

∥∥f (., t)
∥∥2

L2
ρ(Ω)

dt +
(

l3

4
+ 3l

4

) τ∫
0

∥∥�x

(
ξu(., t)

)∥∥2
L2(Ω)

dt. (4.14)

Adding the following elementary inequality

1

4

∥∥u(., τ )
∥∥2

L2
ρ(Ω)

� 1

4
‖u0‖2

L2
ρ(Ω)

+ 1

4

τ∫
0

∥∥u(., t)
∥∥2

L2
ρ(Ω)

dt + 1

4

τ∫
0

∥∥∥∥∂u(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

dt

to (4.14), and using the first inequality of (4.8), we obtain

∥∥�x

(
ξu(., τ )

)∥∥2
L2(Ω)

+ ∥∥u(., τ )
∥∥2

H1
ρ (Ω)

+
τ∫

0

∥∥∥∥∂u(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

� C

( τ∫
0

∥∥�x

(
ξu(., t)

)∥∥2
L2(Ω)

dt +
τ∫

0

∥∥u(., t)
∥∥2

H1
ρ (Ω)

dt

+ ‖u0‖2
H1

ρ (Ω)
+

τ∫
0

∥∥f (., t)
∥∥2

L2
ρ(Ω)

dt

)
, (4.15)

where

C = max
(
3l + l3,4

)
.

We now need to eliminate the sum
∫ τ

0 ‖�x(ξu(., t))‖2
L2(Ω)

dt + ∫ τ

0 ‖u(., t)‖2
H1

ρ (Ω)
dt from

the right-hand side of (4.15). To do this, we use the following version of Gronwall’s le
[19, Lemma 2.2].

Lemma 4.1. If g1(t), g2(t) and g3(t) are nonnegative functions on the interval[0, T ],
g1(t) and g2(t) are integrable on[0, T ], andg3(t) is bounded nondecreasing on[0, T ],
andC is a positive constant, then

τ∫
g1(t) dt + g2(τ ) � eCτ g3(τ ),
0
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does

nge
is a direct consequence of the inequality
τ∫

0

g1(t) dt + g2(τ ) � g3(τ ) + C

τ∫
0

g2(t) dt.

By putting in (4.15)

g1(t) =
∥∥∥∥∂u(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

,

g2(τ ) = ∥∥�x

(
ξu(., τ )

)∥∥2
L2(Ω)

+ ∥∥u(., τ )
∥∥2

H1
ρ (Ω)

,

and

g3(τ ) = C

(
‖u0‖2

H1
ρ (Ω)

+
τ∫

0

∥∥f (., t)
∥∥2

L2
ρ(Ω)

dt

)
,

we obtain

∥∥�x

(
ξu(., τ )

)∥∥2
L2(Ω)

+ ∥∥u(., τ )
∥∥2

H1
ρ (Ω)

+
τ∫

0

∥∥∥∥∂u(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

� CeCT

(
‖u0‖2

H1
ρ (Ω)

+
τ∫

0

∥∥f (., t)
∥∥2

L2
ρ(Ω)

dt

)
. (4.16)

If we discard the first term on the left-hand side of (4.16), and since its right-hand side
not depend onτ , we take the upper bound on the left-hand side with respect toτ from 0
to T , and we have the a priori estimate

∥∥u(., τ )
∥∥2

C(0,T ;H1
ρ (Ω))

+
∥∥∥∥∂u(., t)

∂t

∥∥∥∥
2

L2(0,T ;L2
ρ(Ω))

� CeCT
(‖u0‖2

H1
ρ (Ω)

+ ∥∥f (., t)
∥∥2

L2(0,T ;L2
ρ(Ω))

)
.

Thus we have established the following theorem.

Theorem 4.2. If u ∈ D(L), then we have the a priori estimate

‖u‖B � c‖Lu‖F , (4.17)

wherec is a positive constant independent ofu given by

c =
√

CeCT , with C = max
(
3l + l3,4

)
.

Since we have no information concerning the range of the operatorL, except that
R(L) ⊂ F , we must extendL so that estimate (4.17) holds for the extension and its ra
is the whole spaceF . To this end, we establish the following proposition.
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Proposition 4.3. The operatorL :E → F admits a closureL.

Proof. The proof is analogous to that in [18].�
Since points of the graph of the operatorL are limits of sequences of points of the gra

of L, then take the limit in (4.17) to obtain an a priori estimate for the operatorL, that is

‖u‖B � c‖Lu‖F ∀u ∈ D(L),

from which we conclude the results.

Corollary 4.4. A strong solution of problem(3.1), (2.2)–(2.4)is unique and depends co
tinuously on the data(f,u0) ∈ F .

Corollary 4.5. The rangeR(L) of the operatorL is closed inF and is equal to the closur
R(L) of R(L), that isR( L) = R(L).

5. Solvability of the linear problem

Now, we are in a position to state the main result for the linear problem.

Theorem 5.1. Problem(3.1), (2.2)–(2.4), has a unique strong solutionu = L−1(f,u0) =
L−1(f,u0), that depends continuously on the data, for allf ∈ L2(0, T ;L2

ρ(Ω)) andu0 ∈
H 1

ρ (Ω).

Proof. According to Corollary 4.5, we deduce that to prove the existence of the s
solution, it is sufficient to show thatR(L) = F , that isL is one to one (injective). To thi
end, we need to establish the following proposition.

Proposition 5.2. Let D0(L) be the set of allu ∈ D(L) vanishing in a neighborhood o
t = 0. If for g ∈ L2(0, T ;L2

ρ(Ω)) and for allu ∈ D0(L), we have

(Lu,g)L2(0,T ;L2
ρ(Ω)) = 0, (5.1)

then the functiong vanishes almost everywhere inDT .

Proof of Proposition 5.2. Assume that (5.1) holds for anyu ∈ D0(L). Using this fact, we
can express (5.1) in a special form. First define the function

ϕ(x, t) =
T∫

t

g(x, ν) dν. (5.2)

Let ∂u
∂t

be a solution of the equation

∂u + �2
x(ξu) = ϕ(x, t). (5.3)
∂t
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And let

u =
{∫ t

ν
∂u
∂τ

dτ, ν � t � T ,

0, 0� t � ν.
(5.4)

From (5.2) and (5.3), it follows that

g(x, t) = −∂2u

∂t2
− �2

x(ξut ). (5.5)

We have the following result:

Lemma 5.3. The functiong(x, t) defined by(5.5) is in L2(0, T ;L2
ρ(Ω)).

Proof. The proof can be derived as in [16].�
To continue the proof of Proposition 5.2, we replaceg(x, t) in (5.1) by its representatio

(5.5); we have

−
(

∂u

∂t
,
∂2u

∂t2

)
L2(0,T ;L2

ρ(Ω))

+
(

∂

∂x

(
x

∂u

∂x

)
,
∂2u

∂t2

)
L2(0,T ;L2

ρ(Ω))

+
(

∂2

∂x∂t

(
x

∂u

∂x

)
,
∂2u

∂t2

)
L2(0,T ;L2

ρ(Ω))

−
(

∂u

∂t
,�2

x(ξut )

)
L2(0,T ;L2

ρ(Ω))

+
(

∂

∂x

(
x

∂u

∂x

)
,�2

x(ξut )

)
L2(0,T ;L2

ρ(Ω))

+
(

∂2

∂x∂t

(
x

∂u

∂x

)
,�2

x(ξut )

)
L2(0,T ;L2

ρ(Ω))

= 0. (5.6)

Invoking (5.3), (5.4) and the boundary conditions (2.3), (2.4), and then carrying out a
priate integrations by parts of each term of (5.6), we obtain

−
(

∂u

∂t
,
∂2u

∂t2

)
L2(0,T ;L2

ρ(Ω))

= 1

2

∥∥∥∥∂u(x, ν)

∂t

∥∥∥∥
2

L2
ρ(Ω)

, (5.7)

(
∂

∂x

(
x

∂u

∂x

)
,
∂2u

∂t2

)
L2(0,T ;L2

ρ(Ω))

=
∥∥∥∥ ∂2u

∂x∂t

∥∥∥∥
2

L2(ν,T ;L2
ρ(Ω))

, (5.8)

(
∂2

∂x∂t

(
x

∂u

∂x

)
,
∂2u

∂t2

)
L2(0,T ;L2

ρ(Ω))

= 1

2

∥∥∥∥∂2u(x, ν)

∂x∂t

∥∥∥∥
2

L2
ρ(Ω)

, (5.9)

−
(

∂u

∂t
,�2

x(ξut )

)
L2(0,T ;L2

ρ(Ω))

= ∥∥�x(ξut )
∥∥2

L2(ν,T ;L2(Ω))
, (5.10)

(
∂

∂x

(
x

∂u

∂x

)
,�2

x(ξut )

)
L2(0,T ;L2

ρ(Ω))

= −
(

∂u

∂x
,�x(ξut )

)
L2(ν,T ;L2

ρ(Ω))

, (5.11)

(
∂2

∂x∂t

(
x

∂u

∂x

)
,�2

x(ξut )

)
2 2

= −
(

∂2u

∂x∂t
,�x(ξut )

)
2 2

. (5.12)

L (0,T ;Lρ(Ω)) L (ν,T ;Lρ(Ω))
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Combination of (5.7)–(5.12) and (5.6) yields

1

2

∥∥∥∥∂u(x, ν)

∂t

∥∥∥∥
2

L2
ρ(Ω)

+ 1

2

∥∥∥∥∂2u(x, ν)

∂x∂t

∥∥∥∥
2

L2
ρ(Ω)

+
∥∥∥∥ ∂2u

∂x∂t

∥∥∥∥
2

L2(ν,T ;L2
ρ(Ω))

+ ∥∥�x(ξut )
∥∥2

L2(ν,T ;L2(Ω))

=
(

∂u

∂x
,�x(ξut )

)
L2(ν,T ;L2

ρ(Ω))

+
(

∂2u

∂x∂t
,�x(ξut )

)
L2(ν,T ;L2

ρ(Ω))

. (5.13)

By virtue of inequality (4.9), we can estimate the right-hand side of (5.13) as follows(
∂u

∂x
,�x(ξut )

)
L2(ν,T ;L2

ρ(Ω))

� l

2

∥∥∥∥∂u

∂x

∥∥∥∥
2

L2(ν,T ;L2
ρ(Ω))

+ 1

2

∥∥�x(ξut )
∥∥2

L2(ν,T ;L2(Ω))
, (5.14)

(
∂2u

∂x∂t
,�x(ξut )

)
L2(ν,T ;L2

ρ(Ω))

� l

2

∥∥∥∥ ∂2u

∂x∂t

∥∥∥∥
2

L2(ν,T ;L2
ρ(Ω))

+ 1

2

∥∥�x(ξut )
∥∥2

L2(ν,T ;L2(Ω))
. (5.15)

Inserting (5.14), (5.15) and the Poincaré inequality∥∥∥∥∂u

∂x

∥∥∥∥
2

L2(ν,T ;L2
ρ(Ω))

� 24T 2
∥∥∥∥ ∂2u

∂x∂t

∥∥∥∥
2

L2(ν,T ;L2
ρ(Ω))

,

into (5.13) and omitting the third term on the left-hand side of the obtained inequalit
get ∥∥∥∥∂u(x, ν)

∂t

∥∥∥∥
2

L2
ρ(Ω)

+
∥∥∥∥∂2u(x, ν)

∂x∂t

∥∥∥∥
2

L2
ρ(Ω)

� l
(
1+ 24T 2)∥∥∥∥ ∂2u

∂x∂t

∥∥∥∥
2

L2(ν,T ;L2
ρ(Ω))

.

(5.16)

If we denote the integral term on the right-hand side of (5.16) byθ(ν), then we have

− d

dν

(
θ(ν)exp

(
l
(
1+ 24T 2)ν))

� 0. (5.17)

Taking into account thatθ(T ) = 0, (5.17) gives

θ(ν)exp
(
l
(
1+ 24T 2))ν � 0. (5.18)

It follows from (5.18) thatg = 0 a.e. inDT −ν = Ω × [T − ν,T ]. Proceeding in this wa
step by step along the cylinders of heightν, we prove thatg = 0 a.e. inDT . This completes
the proof of Proposition 5.2. �
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To complete the proof of Theorem 5.1, we suppose that for some elementG = (g, g0) ∈
R(L)⊥,

(Lu,g)L2(0,T ;L2
ρ(Ω)) + (�u,g0)H1

ρ (Ω) = 0. (5.19)

We must prove thatG = 0. If we putu ∈ D0(L) into (5.19), we have

(Lu,g)L2(0,T ;L2
ρ(Ω)) = 0, u ∈ D0(L). (5.20)

Applying Proposition 5.2 to (5.20), it follows thatg = 0. Thus (5.19) takes the form

(�u,g0)H1
ρ (Ω) = 0. (5.21)

But since the setR(�) is everywhere dense in the spaceH 1
ρ (Ω), then relation (5.21) implie

thatg0 = 0. ConsequentlyG = 0, and Theorem 5.1 follows.�

6. The nonlinear problem

This section is consecrated to the proof of the existence, uniqueness and con
dependence of the solution on the data of the problem (2.1)–(2.4). Let us consid
following auxiliary problem with homogeneous equation:

Lu = ∂U

∂t
− 1

x

∂

∂x

(
x

∂U

∂x

)
− 1

x

∂2

∂t∂x

(
x

∂U

∂x

)
= 0, (6.1)

�U = U(x,0) = u0(x), (6.2)
∂U

∂x
(l, t) = 0, (6.3)

l∫
0

xU dx = 0. (6.4)

If u is a solution of problem (2.1)–(2.4) andU is a solution of problem (6.1)–(6.4), the
w = u − U satisfies

Lw = ∂w

∂t
− 1

x

∂

∂x

(
x

∂w

∂x

)
− 1

x

∂2

∂t∂x

(
x

∂w

∂x

)
= F

(
x, t,w,

∂w

∂x

)
, (6.5)

w(x,0) = 0, (6.6)
∂w

∂x
(l, t) = 0, (6.7)

l∫
0

xw dx = 0, (6.8)

whereF(x, t,w, ∂w
∂x

) = f (x, t,w + U, ∂w
∂x

+ ∂U
∂x

). The functionF satisfies the condition∣∣F(x, t, u1, v1) − F(x, t, u2, v2)
∣∣ � d

(|u1 − u2| + |v1 − v2|
)
, (B)

for all (x, t) ∈ DT .
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According to Theorem 5.1, problem (6.1)–(6.4) has a unique solution that depend
tinuously onu0 ∈ H 1

ρ (Ω). It remains to solve the problem (6.5)–(6.8). We shall prove
problem (6.5)–(6.8) has a unique weak solution.

First let

C̃1(DT ) =
{
υ ∈ C1(DT ), such that

∂2υ

∂t∂x
∈ C(DT )

}
.

Assume thatυ andw ∈ C̃1(DT ), υ(x,T ) = 0, w(x,0) = 0,
∫ l

0 xw dx = ∫ l

0 xυ dx = 0. For
υ ∈ C̃1(DT ), we have

−(
Lw,�x(ξυ)

)
L2(0,T ;L2

ρ(Ω))

= −
(

∂w

∂t
,�x(ξυ)

)
L2(0,T ;L2

ρ(Ω))

+
(

∂

∂x

(
x

∂w

∂x

)
,�x(ξυ)

)
L2(DT )

+
(

∂2

∂x∂t

(
x

∂w

∂x

)
,�x(ξυ)

)
L2(DT )

. (6.9)

By using conditions onw andυ, a quick computation of each term on the right- and l
hand side of (6.9), gives

−
(

∂w

∂t
,�x(ξυ)

)
L2(0,T ;L2

ρ(Ω))

= −
(

∂υ

∂t
,�x(ξw)

)
L2(0,T ;L2

ρ(Ω))

, (6.10)

(
∂

∂x

(
x

∂w

∂x

)
,�x(ξυ)

)
L2(DT )

= −
(

x
∂w

∂x
,υ

)
L2(0,T ;L2

ρ(Ω))

, (6.11)

(
∂2

∂x∂t

(
x

∂w

∂x

)
,�x(ξυ)

)
L2(DT )

=
(

x
∂w

∂x
,
∂υ

∂t

)
L2(0,T ;L2

ρ(Ω))

, (6.12)

−(
Lw,�x(ξυ)

)
L2(0,T ;L2

ρ(Ω))
= (

υ,�x(ξF )
)
L2(0,T ;L2

ρ(Ω))
. (6.13)

Insertion of (6.10)–(6.13) into (6.9) yields

H(w,υ) = (
υ,�x(ξF )

)
L2(0,T ;L2

ρ(Ω))
, (6.14)

where

H(w,υ) =
(

x
∂w

∂x
,
∂υ

∂t

)
L2(0,T ;L2

ρ(Ω))

−
(

∂υ

∂t
,�x(ξw)

)
L2(0,T ;L2

ρ(Ω))

−
(

x
∂w

∂x
,υ

)
L2(0,T ;L2

ρ(Ω))

. (6.15)

Definition 6.1. A function w ∈ L2(0, T́ ;H 1
ρ (Ω)) is called a weak solution of problem

(6.5)–(6.8) if (6.7) and (6.14) hold.

Let us construct an iteration sequence in the following way. Starting withw(0) = 0, the
sequence(w(n))

n∈Ń
is defined as follows: given the elementw(n−1), then forn = 1,2, . . .

solve the problem:
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m

∂w(n)

∂t
− 1

x

∂

∂x

(
x

∂w(n)

∂x

)
− 1

x

∂2

∂t∂x

(
x

∂w(n)

∂x

)

= F

(
x, t,w(n−1),

∂w(n−1)

∂x

)
, (6.16)

w(n)(x,0) = 0, (6.17)

∂w(n)

∂x
(l, t) = 0, (6.18)

l∫
0

xw(n)(x, t) dx = 0. (6.19)

Theorem 5.1 asserts that for fixedn, each problem (6.16)–(6.19) has a unique solu
w(n)(x, t). If we setV (n)(x, t) = w(n+1)(x, t) − w(n)(x, t), then we have the new proble

∂V (n)

∂t
− 1

x

∂

∂x

(
x

∂V (n)

∂x

)
− 1

x

∂2

∂t∂x

(
x

∂V (n)

∂x

)
= σ (n−1)(x, t), (6.20)

V (n)(x,0) = 0, (6.21)

∂V (n)

∂x
(l, t) = 0, (6.22)

l∫
0

xV (n)(x, t) dx = 0, (6.23)

where

σ (n−1)(x, t) = F

(
x, t,w(n),

∂w(n)

∂x

)
− F

(
x, t,w(n−1),

∂w(n−1)

∂x

)
.

Lemma 6.2. Assume that condition(B) holds, then for the linearized problem(6.20)–
(6.23), we have the a priori estimate∥∥V (n)

∥∥
L2(0,T́ ;H1

ρ (Ω))
� K

∥∥V (n−1)
∥∥

L2(0,T́ ;H1
ρ (Ω))

, (6.24)

whereK is a positive constant given by

K = 2
√

T deK1T/2, with K1 = max

(
1,

3l + l3

2

)
.

Proof. Taking the inner product inL2(0, τ ;L2
ρ(Ω)), with 0 � τ � T , of Eq. (6.20) and

the integro-differential operator

MV = x
∂V (n)

∂t
− x�2

x

(
ξV (n)

)
,

we have
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τ∫
0

∥∥∥∥∂V (n)(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

dt −
τ∫

0

l∫
0

∂V (n)

∂t

∂

∂x

(
x

∂V (n)

∂x

)
dx dt

−
τ∫

0

l∫
0

x
∂V (n)

∂t
�2

x

(
ξV (n)

)
dx dt +

τ∫
0

l∫
0

∂

∂x

(
x

∂V (n)

∂x

)
�2

x

(
ξV (n)

)
dx dt

+
τ∫

0

l∫
0

∂2

∂t∂x

(
x

∂V (n)

∂x

)
�2

x

(
ξV (n)

)
dx dt −

τ∫
0

l∫
0

∂V (n)

∂t

∂2

∂t∂x

(
x

∂V (n)

∂x

)
dx dt

=
τ∫

0

l∫
0

x
∂V (n)

∂t
σ (n−1)(x, t) dx dt −

τ∫
0

l∫
0

xσ (n−1)(x, t)�2
x

(
ξV (n)

)
dx dt. (6.25)

In light of conditions (6.22) and (6.23), successive integrations by parts of each te
(6.25) leads to

τ∫
0

∥∥∥∥∂V (n)(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

dt + 1

2

∥∥∥∥∂V (n)(., τ )

∂x

∥∥∥∥
2

L2
ρ(Ω)

+
τ∫

0

∥∥∥∥∂2V (n)(., t)

∂x∂t

∥∥∥∥
2

L2
ρ(Ω)

dt + 1

2

∥∥�x

(
ξV (n)(., τ )

)∥∥2
L2(Ω)

=
(

∂V (n)

∂x
,�x(ξV (n))

)
L2(0,T ;L2

ρ(Ω))

+
(

∂2V (n)

∂x∂t
,�x

(
ξV (n)

))
L2(0,T ;L2

ρ(Ω))

+
(

σ (n−1),
∂V (n)

∂t

)
L2(0,T ;L2

ρ(Ω))

− (
σ (n−1),�2

x

(
ξV (n)

))
L2(0,T ;L2

ρ(Ω))
. (6.26)

By using inequality (4.9), each term on the right-hand side of (6.26), can be respec
controlled by

τ∫
0

∥∥∥∥∂V (n)(., t)

∂x

∥∥∥∥
2

L2
ρ(Ω)

dt + l

4

τ∫
0

∥∥�x

(
ξV (n)

)∥∥2
L2(Ω)

dt, (6.27)

τ∫
0

∥∥∥∥∂2V (n)(., t)

∂x∂t

∥∥∥∥
2

L2
ρ(Ω)

dt + l

4

τ∫
0

∥∥�x

(
ξV (n)

)∥∥2
L2(Ω)

dt, (6.28)

d2

( T∫
0

∥∥V (n−1)
∥∥2

L2
ρ(Ω)

+
T∫

0

∥∥∥∥∂V (n−1)(., t)

∂x

∥∥∥∥
2

L2
ρ(Ω)

)

+ 1

2

τ∫ ∥∥∥∥∂V (n)(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

dt, (6.29)
0
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sulted
d2

( T∫
0

∥∥V (n−1)
∥∥2

L2
ρ(Ω)

dt +
T∫

0

∥∥∥∥∂V (n−1)(., t)

∂x

∥∥∥∥
2

L2
ρ(Ω)

dt

)

+ l3

4

τ∫
0

∥∥�x

(
ξV (n)

)∥∥2
L2(Ω)

dt. (6.30)

It is obvious that

1

2

∥∥V (n)(., τ )
∥∥2

L2
ρ(Ω)

� 1

2

τ∫
0

∥∥V (n)
∥∥2

L2
ρ(Ω)

dt + 1

2

τ∫
0

∥∥∥∥∂V (n)(., t)

∂t

∥∥∥∥
2

L2
ρ(Ω)

dt. (6.31)

Combining (6.26)–(6.30) and adding side-to-side the resulted inequality and (6.31),
lows that∥∥V (n)(., τ )

∥∥2
H1

ρ (Ω)
+ ∥∥�x

(
ξV (n)(., τ )

)∥∥2
L2(Ω)

� K1

( τ∫
0

∥∥�x

(
ξV (n)

)∥∥2
L2(Ω)

dt +
τ∫

0

∥∥V (n)
∥∥2

H1
ρ (Ω)

dt

)

+ 4d2

τ∫
0

∥∥V (n−1)
∥∥2

H1
ρ (Ω)

dt, (6.32)

where

K1 = max

(
1,

3l + l3

2

)
.

We now apply Lemma 4.1 to (6.32) to get∥∥V (n)(., τ )
∥∥2

H1
ρ (Ω)

+ ∥∥�x

(
ξV (n)(., τ )

)∥∥2
L2(Ω)

� 4d2eK1T

T∫
0

∥∥V (n−1)
∥∥2

H1
ρ (Ω)

dt. (6.33)

After discarding the second term on the left-hand side of (6.33) and integrating the re
inequality over the interval(0, T ), we obtain the desired a priori estimate (6.24), that is∥∥V (n)

∥∥2
L2(0,T ;H1

ρ (Ω))
� 4T d2eK1T

∥∥V (n−1)
∥∥2

L2(0,T ;H1
ρ (Ω))

.

From the criteria of convergence of series, we see that the series
∑∞

n=1 V (n) converges if
4T d2eK1T < 1, that is ifd < 1

2
√

T
e−K1T/2. SinceV (n)(x, t) = w(n+1)(x, t) − w(n)(x, t),

then it follows that the sequence(w(n))n∈N defined by
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on
ni-

ns on
w(n)(x, t) =
n−1∑
k=1

V (k) + w(0)(x, t)

=
n−1∑
k=1

(
w(k+1)(x, t) − w(k)(x, t)

) + w(0)(x, t), k = 1,2, . . .

converges to an elementw ∈ L2(0, T ;H 1
ρ (Ω)).

Now to prove that this limit functionw is a solution of problem under considerati
(6.20)–(6.23), we should show thatw satisfies (6.7) and (6.14) as mentioned in Defi
tion 6.1.

For problem (6.16)–(6.19), we have

H
(
w(n), υ

) =
(

υ,�x

(
ξF

(
ξ, t,w(n−1),

∂w(n−1)

∂ξ

)))
L2(0,T ;L2

ρ(Ω))

. (6.34)

From (6.34), we have

H
(
w(n) − w,υ

) + H(w,υ)

=
(

υ,�x

(
ξF

(
ξ, t,w(n−1),

∂w(n−1)

∂ξ

))

− �x

(
ξF

(
ξ, t,w,

∂w

∂ξ

)))
L2(0,T ;L2

ρ(Ω))

+
(

υ,�x

(
ξF

(
ξ, t,w,

∂w

∂ξ

)))
L2(0,T ;L2

ρ(Ω))

. (6.35)

From the partial differential equation (6.16), we have(
υ,

∂

∂t
�x

(
ξ
(
w(n) − w

)))
L2(0,T ;L2

ρ(Ω))

−
(

υ,�x

(
∂

∂ξ

(
ξ

∂

∂ξ

(
w(n) − w

))))
L2(0,T ;L2

ρ(Ω))

−
(

υ,
∂

∂t
�x

(
∂

∂ξ

(
ξ

∂

∂ξ

(
w(n) − w

))))
L2(0,T ;L2

ρ(Ω))

= H
(
w(n) − w,υ

)
. (6.36)

Integration by parts of each term on the left-hand side of (6.36), and use of conditio
υ andw transform (6.36) to

−
(

∂υ

∂t
,�x

(
ξ
(
w(n) − w

)))
L2(0,T ;L2

ρ(Ω))

−
(

xυ,
∂

∂ξ

(
w(n) − w

))
L2(0,T ;L2

ρ(Ω))

+
(

x
∂υ

∂t
,

∂

∂ξ

(
w(n) − w

))
L2(0,T ;L2

ρ(Ω))

= H
(
w(n) − w,υ

)
. (6.37)

We apply Cauchy–Schwarz inequality to terms on the left-hand side of (6.37) to get
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(6.7)
t

H
(
w(n) − w,υ

)
� C

∥∥w(n) − w
∥∥

L2(0,T ;H1
ρ (Ω))

(
‖υ‖L2(0,T ;L2

ρ(Ω)) +
∥∥∥∥∂υ

∂t

∥∥∥∥
L2(0,T ;L2

ρ(Ω))

)
, (6.38)

where

C = l2√
2

+ l.

On the other side we have(
υ,�x

(
ξF

(
ξ, t,w(n−1),

∂w(n−1)

∂ξ

))
− �x

(
ξF

(
ξ, t,w,

∂w

∂ξ

)))
L2(0,T ;L2

ρ(Ω))

� ld√
2

∥∥w(n) − w
∥∥

L2(0,T ;H1
ρ (Ω))

‖υ‖L2(0,T ;L2
ρ(Ω)). (6.39)

Taking into account (6.38) and (6.39), and passing to the limit in (6.37) asn → ∞ to obtain

H(w,υ) =
(

υ,�x

(
ξF

(
ξ, t,w,

∂w

∂ξ

)))
L2(0,T ;L2

ρ(Ω))

.

Now to conclude that problem (6.20)–(6.23) has a weak solution, we show that
holds. Sincew ∈ L2(0, T ;H 1

ρ (Ω)), then
∫ t

0
∂w(x,s)

∂x
ds ∈ C(DT ), and we conclude tha

∂w
∂x

(l, t) = 0, a.e. �
Thus, we have proved the following:

Theorem 6.3. Suppose that condition(B) holds, and thatd < 1
2
√

T
e−K1T/2, then problem

(6.5)–(6.8), has a weak solution belonging toL2(0, T ;H 1
ρ (Ω)).

It remains to prove that problem (6.5)–(6.8) admits a unique solution.

Theorem 6.4. If condition (B) is satisfied, then the solution of problem(6.5)–(6.8) is
unique.

Proof. Suppose thatw1, w1 ∈ L2(0, T ;H 1
ρ (Ω)) are two solution of (6.5)–(6.8), theV =

w1− w2 is in L2(0, T ;H 1
ρ (Ω)) and satisfies

∂V

∂t
− 1

x

∂

∂x

(
x

∂V

∂x

)
− 1

x

∂2

∂t∂x

(
x

∂V

∂x

)
= σ(x, t), (6.40)

V (x,0) = 0, (6.41)
∂V

∂x
(l, t) = 0, (6.42)

l∫
xV (x, t) dx = 0, (6.43)
0
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al

have

local

lowed to

ctron.

liquids

Appl.
where

σ(x, t) = F

(
x, t,w1,

∂w1

∂x

)
− F

(
x, t,w2,

∂w2

∂x

)
.

Taking the inner product inL2(0, T ;L2
ρ(Ω)), of Eq. (6.40) and the integro-differenti

operator

MV = x
∂V

∂t
− x�2

x(ξV ),

and following the same procedure done in establishing the proof of Lemma 6.2, we

‖V ‖
L2(0,T́ ;H1

ρ (Ω))
� K‖V ‖

L2(0,T́ ;H1
ρ (Ω))

, (6.44)

where

K = 2
√

T deK1T/2, with K1 = max

(
1,

3l + l3

2

)
.

SinceK < 1, it follows from (6.44) that

(1− K)‖V ‖
L2(0,T́ ;H1

ρ (Ω))
= 0,

which implies thatV = w1− w2 = 0, and hencew1 = w2 ∈ L2(0, T ;H 1
ρ (Ω)). �

Remark. It seems that our results still hold for the more general mixed nonlinear non
problem

∂u

∂t
− ∂

∂x

(
a(x, t)

∂u

∂x

)
− ∂2

∂t∂x

(
b(x, t)

∂u

∂x

)
= f

(
x, t, u,

∂u

∂x

)
, (6.45)

u(x,0) = u0(x), (6.46)

ux(l, t) = φ(x),

l∫
0

udx = E(t). (6.47)
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