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Abstract

We study a nonlocal mixed problem for a nonlinear pseudoparabolic equation, which can, for
example, model the heat conduction involving a certain thermodynamic temperature and a conductive
temperature. We prove the existence, uniqueness and continuous dependence of a strong solution of
the posed problem. We first establish for the associated linear problem a priori estimate and prove that
the range of the operator generated by the considered problem is dense. The technique of deriving the
a priori estimate is based on constructing a suitable multiplicator. From the resulted energy estimate,
it is possible to establish the solvability of the linear problem. Then, by applying an iterative process
based on the obtained results for the linear problem, we establish the existence, uniqueness and
continuous dependence of the weak solution of the nonlinear problem.
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1. Introduction

We deal with a nonlinear mixed problem having a nonlocal condition, the so-called
energy specification. The problem of parameter identification from nonstandard boundary
conditions in boundary value problems, originating from various engineering disciplines,
is of growing interest. That is, a large number of physical phenomena and many problems
in modern physics and technology can be described in terms of nonlocal problems, such as
problems in partial differential equations with integral conditions. These nonlocal bound-
ary conditions such as the integral conditif;l’?m (x,t)dx = f(¢), arise mainly when the
data on the boundary cannot be measured directly, but their average values are known.
More precisely, standard (Dirichlet, Neumann and Robin type) conditions which are pre-
scribed pointwise are not always adequate as it depends on the physical context which data
can be measured at the boundary of the physical domain. In some cases it is not possible
to prescribe the solutiom (pressure, temperature,) pointwise, because only the average
value of the solution can be measured along the boundary or along some part of it. These
kinds of problems are very important in the transport of reactive and passive contami-
nates in aquifer, an area of active interdisciplinary research of mathematicians, engineers
and life scientists. For ample information, and for the derivation of mathematical mod-
els and for the precise hypothesis and analysis, the reader should refer to Cushmand and
Ginn [8], Cushmand et al. [9]. The presence of an integral term in the boundary conditions
can greatly complicate the application of standard functional or numerical methods, owing
to the fact that the elliptic differential operator with integral condition is no longer posi-
tive definite in the usual function spaces, which poses the major source of difficulty. The
physical significance of these conditions (total energy, total mass, mean, moments, etc.)
has served as a fundamental reason for the increasing interest carried to this kind of prob-
lems. The first work, devoted to second order partial differential equations with nonlocal
integral conditions goes back to Cannon [5]. Later, problems with integral conditions for
parabolic equations were treated by Kamynin [15], lonkin [14], Yurchuk [29], Bouziani [3],
Mesloub and Bouziani [17], Mesloub [16]. Other parabolic problems also arise in plasma
physics Samarskii [24], heat conduction Cannon [5], lonkin [14], dynamics of ground wa-
ters, Nakhushev [21], Vodakhova [28], thermoelasticity Muravei [20], can be reduced to
the nonlocal problem with integral conditions. An interesting collection of nonlocal par-
abolic problems in one-dimensional space is discussed in Fairweather [12]. Problems for
elliptic equations with operator nonlocal conditions were considered by Scubachevski [25],
Paneiah [22]. Then Gordeziani and Avalishvili [13], Mesloub and Bouziani [18], Mesloub
and Lekrine [19], Pulkina [23], Beilin [1] devoted some papers to nonlocal problems for
hyperbolic equations.

The pseudoparabolic equation and others

du —k@—m{:o, (1.1)

ot at
have been extensively investigated, and many important results concerning existence,
unigueness and other properties of solutions have been published, see, for example,
DiBenedetto [10,11], Coleman [7], Bouziani [4], and Showalter [26]. Equation (1.1) arises
in various physical phenomena. It can, for example, model the diffusion of fluids in frac-
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tured porous media: Barenblatt [2], DiBenedetto [10], Coleman [7]. It can also model the
heat conduction involving a thermodynamic temperafire « — k Au and a conductive
temperature:, Chen and Gurtin [6], Ting [27]. Motivated by this, we study a nonlocal
nonlinear mixed problem for Eq. (1.1) in the case where the Laplacian operator is replaced
by the Bessel operatdarfi (x %) and atermf (x, ¢, u, u,) is added to its right-hand side.

X 0x

2. Problem setting

In the rectangular domain
Dy = %2 x(O,T):{(x,t)eRz, O<x<l, O<t<T},

we consider the equation

Eu:a—u—ii<xa—u>—Ea—2<xa—u)=f<x,t,u,a—u), (2.1)
at  xdx \ OJx X 0tdx \  0x ox
with the initial data

u(x,0) =ug(x), (2.2)
Neumann boundary condition

ux(l,1)=0 (2.3)
and the nonlocal weighted boundary condition

l

fxu dx =0, (2.4)

0
with

1
duol.1) _ /xuodx —o0. (2.5)
ax

0

Hereug and f are given functions.
We shall assume: there exists a positive constasich that

| f(x,t,u1,v1) — fx, 1, u2,v2)| <d(lur — upl + lvr — v2), (A

forall (x,1) € Dr.

This paper is organized as follows: In Section 3, we state and pose the linear problem
associated to (2.1)—(2.4) and introduce the function spaces used throughout the paper as
well. Then in Section 4, we prove the uniqueness of the solution of the linear problem. And
in Section 5, we show the existence of solutions. Finally, in Section 6, on the basis of the
results obtained in Sections 4 and 5, and on the use of an iterative process, we prove the
existence and uniqueness of the solution of the nonlinear problem (2.1)—(2.4). The method
used here is a further elaboration of that in [16].
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3. Statement of the associated linear problem

Let us in this section give the position of the linear problem and introduce the different
function spaces needed to investigate the mixed nonlocal problem given by the equation

2
Cu:a_”_ii( 8u>_}8_( au)zf(x,;), (3.1)

x— x—
0x x 0tdx \ dx

and supplemented by conditions (2.2)—(2.4). The method used here is one of the most
efficient functional analysis methods in solving partial differential equations with nonlocal
boundary conditions, the so-called a priori estimate method or the energy—integral method.
This method is essentially based on the construction of suitable multiplicators for each
specific given problem, which provides the a priori estimate from which it is possible to
establish the solvability of the posed problem. More precisely, the proof is based on an
energy inequality and on the density of the range of the operator generated by the abstract
formulation of the stated problem.

To investigate the posed problem, we introduce the needed function spaces. We denote
by L%(_Q) the Hilbert space of weighted square integrable functions with inner product

(u, v)L%(Q) = (xu,v) 20y = /xuv dx,
Q
and with associated norm

1/2
lull 22y = IVxullp20) = (/xuzdx) .
2

Let X be a Banach space with notfm| x, and letu : (O, T) — X be an abstract function.
By |lu(.,1)|x we denote the norm af(., ) € X for fixedr. Let L?(0, T; X) be the set of
all measurable abstract functiom§, 1) : (0, T) — X such that

T
120 7., =[ a1y |2 dt < oo.
0

If X is a Hilbert space, then2(0, T: X) is also a Hilbert space. L&t(0, T; X) be the set
of all continuous functions: (0, T) — X such that

lullc.rix) = max [ut. 0] < oo

And denote bij(.Q) the weighted Sobolev space with

au ||

— < 00.
0x

12(2)

2 _ 2

The given problem (3.1), (2.2)—(2.4), can be viewed as the problem of solving the operator
equation

Lu=(f,ug), VYue D(L), (3.2)
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whereL is the operator given b = (£, £), andD(L) is the set of all functions

, ou ou 0%u 9%u  %u ,
eL?(0,T; H'(2)): —,—,—,——,—— € L?(0,T; H}(Q)),
ue L ) Tt ke 2 T e P AL »(2)
andu satisfies conditions (2.3) and (2.4). The operdtacts fromB to F, whereB is the
Banach space obtained by enclosing thel3@t) with respect to the finite norm
2

2
lullp =

2
— + Jull 1O
’ ot L2(0,T;L2(R2)) CO.T:H; ()

Functions: € B are continuous ofD, 7'] with values inH/}(Q). Hence the mapping
C:Bou— tu=u(x,0) € Hy(£2)
is defined and continuous aB. And F is the Hilbert space.2(0, T’; L%(Q)) x Hl}(.Q)
consisting of vector valued functiotfs = ( f, ug) for which the norm
_ 2 2 1/2
”f“F - (”f”LZ(O,T;L%(.Q)) + ”uO”H[}(Q))

is finite. LetL be the closure of the operatbrwith domain of definitionD(L).

Definition. We call a strong solution of the problem (3.1), (2.2)—(2.4), the solution of the
operator equation

Lu=F forallue D(L).

We establish an energy inequality for the operdtpand extend the obtained estimate
to the closurel, of the operatotL.. Finally, we prove the density of the rang&L) of the
operatorL in the spacer.

4. A priori estimate

In this section, we establish an a priori estimate for the operaténom which we
conclude the uniqueness and continuous dependence of the solution upon the initial
condition (2.2) and the right-hand side of (3.1). First observe g}@t (f)=f, and

I L30(f) = 3§(f) =0, whereX, (f) = [y f(§)dE, and? S2EFE) = I Re(nf ).
By taking the inner product nLZ(Q) of Eq. (3.1) and the integro-differential operator

Mu = xa—“ - xmsz(éu) and then integrating oveD, t), with 0 < = < T, with 3, (f) coin-
cides W|th s1(f), we obtain

Z

> Tl 9 3
// _u_(x_u> dxdt

T I

Tl
ou _ a ou\ .
_//xg;si(éu)dxdt—i—//a<x5>\sf($u)dxdt
00 00

du(.,t)
ot
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P92 (s u 92
u u
—I—// e <xa)o (Eu)dx dt — // o7 3t8x< 8x>dth
//xf(x t)—dxdt //xf(x DI (Eu)dx dr.

Standard integration by parts of each integral in (4.1) leads to

0
f/”a dxdi = &
Jdt dx 8x 2

du(, 1)
0x

3140
ax

a5

2
L2(Q)

12(2)

1
/ / U2y drdi = [N, 0) [Py — |30 Eu0) | 2o

. Tl

//i(xa_u>3)26($u)dxdt:—//xa_uggx(gu)dxdt,
9x \ 9x 9x

00

Tl

~2
// 3t3x< ) x(udxdr =— // 8;( x>m9x($u)dxdt
/ 8u 92 ( ) /‘
- o dxdt =
9t 9rdx \" dx
00

Substitution of (4.2)—(4.6) into (4.1) yields

2u(., 1) |?
0xot

dt.
L2(92)

/r due,0|* o)
0 oz 2o iz
+jH PuC O IS (et o)
0x0t L2(2) 2" .’ e
o R DR

//x—;)x(éu)dxdt—i—// 3597 \sx(éu)dxdt
+//xf(x,t)2—1:dxdt—//xf(x,t)f\‘f(éu)dxdt.
00 00

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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By virtue of the elementary inequalities

N 2 3 2

(Ux(%-u)) dx < E ”M(, t) HL%(Q)’
12

(3%6w)*dx < 5|35 €| 2

x (S (Ew) dx <1 SeEw) |20 (4.8)

O O O~ _

(see [3]) and the Cauchyésinequality

af < oz + /3 (4.9)

the last four terms of the right-hand side of (4.7) can be (respectively) estimated as follows:

Tl
ou
f/x—%x(éu)dxdt
0x

T
£1 ou(., t) ! / 2
> dt + o— | [Sx(§u, 1) dt, 4.10
) o Iy [T @10
T
02u
//xmox(éu)dxdt
00
T T
e [ 0%2u(,t)|? I / )
> dt+— | S Wt dt, 4.11
2 [‘ dxot 2@ + 2¢0 ” Sx (E“( )) ||L2(_Q) ( )
0 0
T [ 5
u
//xf(x,t)gdxdt
00
eIk 1
83/‘ u(., / 2
2 dt+o— | [ f(. D120 dt, (4.12)
2 5 L2(92) 2e3 ) ” HLn(Q)

—//xf(x,t)si(gu)dxdt

s 1
Beq f [ (6t 0) oy e + 5 / 176025 gy (4.13)
0
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By takinge1s = 1,62 = 2,63 =1, ¢4 = 1, and by combining (4.7) and (4.10)—(4.13), we
obtain

du(.,1) du(.,7)|? 1. 2
/‘ LZ(Q)d +2‘ |z §||~‘x(5“(-vf))||L2<m
1 8140 ou(., t)
<= 3 d
2 ax L%(Q) “ QX(EMO)”LZ(Q) /‘ L%(Q) t
13 31
/ G0N 2s e+ ( / 32 (51 1) 22 g . (4.14)
Adding the following elementary inequality
1 1 [ ouC. o) |?
2 u(.,
_H”( t)“LZ(.Q) ””0”L2(Q) Z/||”("t)||Lg(9)dt+Z/‘ Y L2(.Q)dt
0 0 ’
to (4.14), and using the first inequality of (4.8), we obtain
[ out.n |2
~ 2 2 u(.,
”*SX(SL‘(-’T))”LZ(Q) + ”“(-’f)HHg(Q) +/‘ R
5 L2(2)
T T
<C(/”“(\‘JC(EM("t))”iZ(.Q)dt"‘/””("t)||ir/}(.fz)dt
0 0
T
2
+||uo||§{g(9)+/ ||f(.,t)||L%(mdt), (4.15)
0

where
C =max(3l +15,4).

We now need to eliminate the sufj I3, (§uc., t))||L2(Q) dt+ [ llu., t)HHl(Q)dt from

the right-hand side of (4.15). To do this, we use the following version of Gronwall’s lemma
[19, Lemma 2.2].

Lemma 4.1. If g1(z), g2(¢r) and g3(¢) are nonnegative functions on the intenjal 7],
g1(¢) and g2(¢) are integrable on0, 7], and g3(¢) is bounded nondecreasing ¢@, 7],
andC is a positive constant, then

T

/gl(t) dt + g2(t) < e“g3(1),
0
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is a direct consequence of the inequality
T T
/gl(t)dtJrgz(f) < 83(7) +C/g2(t)dt-
0 0

By putting in (4.15)

u(., 1) |?

ot

g1(t) = ‘ ,
L2(R)

82(0) = |35 (5. ) 120y + 14 D33 0.

and

T
2 2
g3(1)=C (nuon,,,}(m + / [ 70120 dr>,
0
we obtain

ou(., 1)
ot

T
2
2 2
Se(Eu(, 1) + |u(., T) +/‘
” x( )”LZ(Q) “ ”H/}(Q) " L2(2)

T
2
gcecT(HuOH%&(va/||f(.,t)||L%(Q)dt>. (4.16)
0

If we discard the first term on the left-hand side of (4.16), and since its right-hand side does
not depend orr, we take the upper bound on the left-hand side with respectftom 0
to T, and we have the a priori estimate

., 1) >

2
Jut. o) “C(O,T;H}(Q)) ot

L2(0,T;L2(2))
2
< CECT(””OHEQ}(Q) + ”f(" 1)) HLZ(O,T;Lg(Q)))'

Thus we have established the following theorem.

Theorem 4.2. If u € D(L), then we have the a priori estimate
lullp < cllLullF, (4.17)

wherec is a positive constant independentuogiven by

c=vCeCT, withC =max3l + 13, 4).

Since we have no information concerning the range of the operat@xcept that
R(L) C F, we must extend. so that estimate (4.17) holds for the extension and its range
is the whole spacé'. To this end, we establish the following proposition.
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Proposition 4.3. The operatorL : E — F admits a closure..
Proof. The proof is analogous to that in [18].0
Since points of the graph of the operaloare limits of sequences of points of the graph
of L, then take the limitin (4.17) to obtain an a priori estimate for the opetattinat is
lullg < cllLullp Vue D(L),
from which we conclude the results.

Coroallary 4.4. A strong solution of probler(8.1), (2.2)—(2.4)is unique and depends con-
tinuously on the datéf, ug) € F.

Corollary 4.5. The rangel?(Z) of the operatorL is closed inF and is equal to the closure
R(L) of R(L), thatisR( L) = R(L).

5. Solvability of thelinear problem
Now, we are in a position to state the main result for the linear problem.

Theorem 5.1. Problem(3.1), (2.2)—(2.4) has a unique strong solutian= L=Y(f,up) =
L=Y(f, uo), that depends continuously on the data, for Ak L2(0, T; L2(£2)) andug €
HL($2).

P

Proof. According to Corollary 4.5, we deduce that to prove the existence of the strong
solution, it is sufficient to show thak(L) = F, that isL is one to one (injective). To this
end, we need to establish the following proposition.

Proposition 5.2. Let Do(L) be the set of alk € D(L) vanishing in a neighborhood of
t=0.Iffor g € L%(0, T; L2(£2)) and for allu € Do(L), we have

(;Cu, g)LZ(O,T;L%(Q)) = 0, (51)
then the functiorg vanishes almost everywherefiry.

Proof of Proposition 5.2. Assume that (5.1) holds for amye Dg(L). Using this fact, we
can express (5.1) in a special form. First define the function

T
qu%=ngnwdu 52)
t

Let % be a solution of the equation

ou

o TEE =91 (5.3)
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And let
u:{f]fg’;dr v<t<T, (5.4)
0, 0<r<vy
From (5.2) and (5.3), it follows that
u
g(x,t)——ﬁ — 35 (Euy). (5.5)

We have the following result:
Lemma 5.3. The functiong(x, 7) defined by(5.5)is in L2(0, T; L3(£2)).
Proof. The proof can be derived as in [16]0

To continue the proof of Proposition 5.2, we replgce, r) in (5.1) by its representation
(5.5); we have

du 9%u d ([ u\ 9%
- _7_2 + — I\ X 7_2
o t° )20z  \OXN\ 0%/ 0% ) 120, 1:12(2))
+( 32 ( au) 82u> <8u 2 ))
—lx— ), —= - .3 U
3x8t 8X 8t2 LZ(O,T;L%(.Q)) 8f * LZ(O,T;L%(.Q))

d ou ~2
+ | —(x—).3:CEu)
ox \ ox L2(0,T;L2(%2))

3 [ d
+ (—(x—“), s)%@ut)) =0. S
oxar \ ox L2(0,T;L2(82))

Invoking (5.3), (5.4) and the boundary conditions (2.3), (2.4), and then carrying out appro-
priate integrations by parts of each term of (5.6), we obtain

_(8_"@) 21‘ e [? 67
8[ 8[ L2(OT'L%(Q)) 2 8t L%(.Q)
du\ 0%u 92
(5 05) 5) i[5 ’ 6
LZ(O,T;LI%(.Q)) dxor LZ(V,T;L%(.Q))
( ( au) i ) ZE‘LW’V) o (5.9)
d0xot 8t LZ(O,T;L%(Q)) 2 dxot L/Z)(.Q)

~ ~ 2
( 5(5“[)) = ||~Yx (i:ut)” LZ(U,T;LZ(Q))’ (510)
L2(0,T;L2(£2))
d
0x

u ou
( ( —)302(5’41)> :_<_’SX($MI)) ) (511)
dx L2(0,T;L2(£2)) dx L2(,T;L2(2))

ad u 9%u
(—( —),si(sw) =—(—,sx(sut)> . (5.12)
¢\ ox L2(0.T:L3(2)) dxdt L20,T:L3(2))
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Combination of (5.7)—(5.12) and (5.6) yields

1 du(x, v)||? 1‘ 32u(x,v) ||
32u |2 - 2
+ ‘ 9191 Lz(v T.LZ(Q)) + ||«5x (éul) || LZ(V,T;LZ(.Q))
ot
ou 82u
_ (—, sx@ut)) n (— fsx@u,)) S 613)
dx L20.7:22(2)  \ X0t L2(0,T:L2(2))

By virtue of inequality (4.9), we can estimate the right-hand side of (5.13) as follows:

ou
—— S« (uy)
dx L2(0.T:L2(2))

1 ou|?

1 ~ 2
g 2 ax + E“&sx(éut)HLZ(U,T;LZ(.Q))’ (514)

L2(0,T;L2(2))

3%u -
—— Sx(Eur)
d0xot LZ(U,T;Lg(.Q))

l 2
< —
2

92u
0x ot

1
T3 |3 Eur) ”iz(v,T;LZ(Q))' (5.15)

L2(n.T:L2(R)

Inserting (5.14), (5.15) and the Poincaré inequality

into (5.13) and omitting the third term on the left-hand side of the obtained inequality, we
get

If we denote the integral term on the right-hand side of (5.16) @@y, then we have

2 2

92u
dx 0t

ou

— <2472
0x

L2(v,T;L2(£2)) L2(v,T;L2(£2))

2 2

9%u
0x0t

ou(x,v)
ot

82u(x,v)

< 2
3507 \l(1+24T )

L2()

2 ‘

L2(2) L2(v.T:L2(2))

—dd—v (0(v) exp(i(1+ 247%)v)) < 0. (5.17)
Taking into account that(7) =0, (5.17) gives
o (v)exp(l(1+2472))v < 0. (5.18)

It follows from (5.18) thatg =0 a.e. inDy_,, = 2 x [T — v, T]. Proceeding in this way
step by step along the cylinders of heightve prove thag = 0 a.e. inDy. This completes
the proof of Proposition 5.2. O
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To complete the proof of Theorem 5.1, we suppose that for some el€merg, go) €
R(L)*,

(Lu, &) 120,1;12(2)) + (Ett, 80) n1(2) = O- (5.19)
We must prove that; = 0. If we putu € Dg(L) into (5.19), we have

(Lu, g)L2(0,T;L§(9)) =0, ueDo(L). (5.20)
Applying Proposition 5.2 to (5.20), it follows thgt= 0. Thus (5.19) takes the form

(Lu, 80) 3¢y =0. (5.21)

But since the seR (¢) is everywhere dense in the spa’e%(!z), then relation (5.21) implies
thatgo = 0. Consequently; = 0, and Theorem 5.1 follows. O

6. Thenonlinear problem
This section is consecrated to the proof of the existence, uniqueness and continuous

dependence of the solution on the data of the problem (2.1)-(2.4). Let us consider the
following auxiliary problem with homogeneous equation:

1 1 92
cuzﬂ__i(xﬂ) 19° (LYY, 6.1)
Jt X 0x 0x Xx 0tdx 0x
LU =U(x,0) =ug(x), (6.2)
oU
—(l,t) =0, (6.3)
l
/dex = (6.4)

0

If u is a solution of problem (2.1)—(2.4) arid is a solution of problem (6.1)—(6.4), then
w =u — U satisfies

2
Ew:a—w—ii<xa—w> 1 9 < 8—w):F<x,t,w,8—w), (6.5)
ot X 0x 0x X 0tdx 0x 0x

w(x,0) =0, (6.6)
0
Lan=0, (6.7)
0x

1
/xwdx:o, (6.8)

whereF (x,t, w, 8x)_ fx,t,w+ U, 2 o+ %—5{). The functionF satisfies the condition

|F(x,t,u1,v1) — F(x,t,u2,v2)| <d(lux — uzl + [vi — v2l), (B)

forall (x,7) € Dr.
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According to Theorem 5.1, problem (6.1)—(6.4) has a unigue solution that depends con-
tinuously onug € H/}(Q). It remains to solve the problem (6.5)—(6.8). We shall prove that
problem (6.5)—(6.8) has a unique weak solution.

First let

~1 _ 1 %0
C*(Dr) =43v eC~(Dr), such thatata e C(Dr)y.
X

Assume that andw € CX(Dr), v(x, T) =0, w(x,0) =0, féxw dx = féxvdx =0. For
v e CY(Dr), we have

—(Lw, 3, (EU))LZ(O,T;L%(.Q))
ow d ow
= — _73X(§U) + — |\ X ssx(év)
Jat LZ(O,T;L%(.Q)) 0x 0x LZ(DT)

3% [ ow
+ <8x8t <x a), JX(SU))[}(DT). (6.9)

By using conditions omw andwv, a quick computation of each term on the right- and left-
hand side of (6.9), gives

ow Jv
—(—, sx@u)) - —(—, sx@w)) , (6.10)
ot L2(0.T:L2(£2)) ot L2(0.T:L3(£2))
3 (0 3
(— (x—w>, tsx@v)) = —(x—w, u) : (6.11)
8.X 8X LZ(DT) 8x LZ(O,T;L%(Q))
2 [ 9 dw 9
(—(x—w), sx(su)) - (x—w, —“) : (6.12)
8X8t 8)6 LZ(DT) 8)6 8t LZ(O,T;LIZ)(.Q))
—(Lw, 3 (Ev))LZ(O,T;L%(Q)) = (v, 3x(5F))L2(0,T;L§(Q)>' (6.13)

Insertion of (6.10)—(6.13) into (6.9) yields

H(w7 U) = (Ua SX(‘;F))LZ(O,T;L%(.Q))’ (614)
where
d 0 0
H(w,v)=<x—w,—“) —(—“,sx@w)
dx 9t ) 1207;12(2)) dt L2(0,T;L2(£2))

9
— (x—w,v> . (6.15)
IxJr207:02(2)

Definition 6.1. A function w € L2(0, T H&(Q)) is called a weak solution of problem
(6.5)—(6.8) if (6.7) and (6.14) hold.

Let us construct an iteration sequence in the following way. Startingw/th= 0, the
sequencéw™) _ is defined as follows: given the element’™), then forn =1, 2, ...
solve the problem:
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aw™ 19 [ dw™ 1 02 [/ dw™
ot _}5(’“ ox >_}atax<x ox )

(n—1)
=F(x,t,w" D, L , (6.16)
0x
w™(x,0) =0, (6.17)
dw™
lgx (,1)=0, (6.18)
1
fxw(")(x, t)dx =0. (6.19)

0

Theorem 5.1 asserts that for fixed each problem (6.16)—(6.19) has a unique solution
w® (x,1). Ifwe setV ™ (x, 1) = w"*+D (x, 1) — w™ (x, 1), then we have the new problem

avm 19 / gv® 1 92 [ gv®
———|x - = X =0 V(x,1), (6.20)
ot X 0x Jx X 0t0x Jx
V™ (x,0)=0, (6.21)
PR
(4, t)=0, (6.22)
0x
1
fo(")(x, 1)dx =0, (6.23)
0
where
-1
oD 1y = F<x7t, w® 3"’_(")) _ F(x,t, 0@, M)
0x 0x

Lemma 6.2. Assume that conditio(B) holds, then for the linearized proble(6.20)—
(6.23) we have the a priori estimate

Jve HLZ(O,T';H,}(Q)) <K[vob ||L2(O,T;H/}(.Q))’ (6.24)

whereK is a positive constant given by

. 3 +13
K =2JTdef17/2,  with Ky = max(l, + )

Proof. Taking the inner product id2(0, ; L2(£2)), with 0< 7 < T, of Eq. (6.20) and
the integro-differential operator

_ xgg?c(gv(n))’
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T Tl
AV 1|2 qvm g ¢ gy®
/H¥ dt—// —(x )dxdt
8t LZ(Q) 8t 8)( 8)(
0 p 00

Tl Tl
v d ( avm
_ x () _ 2 (n)
//x o7 (Vv )dxdt—i—// °x <x °x )JX(SV )dxdt
00

00
Tl Tl
32 [ avm avm 92/ fym
+// x 32(ev ™) dxdr — // x dx dt
Jtox 0x Jdt 0tdx 0x
00 00

T

Tl
PAAQ.
:ffxTam—l)(x,t)dxd:—ffxo<"—1>(x,t)sf(gv<">)dxdt. (6.25)
00 00

In light of conditions (6.22) and (6.23), successive integrations by parts of each term of
(6.25) leads to

1H VMW, 1) |?
dt + = | ——2—
0x

12(2) L2(2)

32‘/(”)( I)

H M
axdt dt+ 3 H~‘x (EVO )0

[‘ L2(2)
V@

=< ,msx@v(”)))
0x

+<o'("l) 8V(”))
it J 201129

82‘/(11)
+< X (EVO )
L2(0.T:L2(2)) dxar L2(0.T:L2(2))

— (0D, 325V ™)) (6.26)

L2(0,T:L2(£2))"

By using inequality (4.9), each term on the right-hand side of (6.26), can be respectively
controlled by

H¥ i IV 627
LZ(Q)

PV, |? N )
/ T PSS / [5: €V )2 a1, (6.28)
0 p 0

(n—1)
d? /”V(" 1) ||L2(Q) /"8V .0l?
LZ(-Q)
}/ HM dr 6.29)
20 ot 12(2) ’
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; Ly =D 2
d2</||V(n_1)||i§(9)dt+0/H7aV — (.7) L%(Q)dt)
7 / [3:(EV®) 72 gy dt- (6.30)
It is obvious that
}”V(H)('J)”;(Q)
/”V")”Lz(m fHaV(n)( O 4 (6.31)
L2(82)

Combining (6.26)—(6.30) and adding side-to-side the resulted inequality and (6.31), it fol-
lows that

v, t)||H1(9)+H~‘x( V(n)("f))“iz(m

T
~ 2 2
<t [ IV i [ 1V )
0 0

+4d2/ ”V(n_l) H}ZLI/}(Q) dr, (6.32)

where

3A+18
Klzma><<1, er )

We now apply Lemma 4.1 to (6.32) to get

2
”V(n)( t)”fll(g) + H (€ sV, 7)) ”LZ(Q)
T
2 _KiT -2
< 4d?ek / [ve )||Hl}(9)dt. (6.33)

0
After discarding the second term on the left-hand side of (6.33) and integrating the resulted
inequality over the interval0, T), we obtain the desired a priori estimate (6.24), that is

[vo <AaTd?faT |y 2 120,T; HA®))"

”L2(0 T HX(2)) <

From the criteria of convergence of series, we see that the Sefjes V™ converges if
AT d%eK1 T < 1, that is ifd < ﬁ e K1T/2 SincevV® (x, 1) = w D (x, 1) — w™ (x,1),

then it follows that the sequence ™),y defined by
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n—1
w™ (x,1) = Z VO 4 wOx, 1)
k=1

n—1
= Z (w(k+1)(x, t) — w(k)(x, t)) + w(o)(x, 1), k=12, ...
k=1

converges to an elememte L2(0, T; H}(R2)).

Now to prove that this limit functiorw is a solution of problem under consideration
(6.20)—(6.23), we should show that satisfies (6.7) and (6.14) as mentioned in Defini-
tion 6.1.

For problem (6.16)—(6.19), we have

quw®—D
H(w®,v) = <v, 3 (sF(s, fuwD, “’3—))) - (6:34)
3 L2(0.T:L2(R))

From (6.34), we have

H(w(") —w, u) + H(w, v)

8'(1)("_1)
(enforenmnzt)
ow
- SX SF Sa t’ w, —
9 ) )/ 120112092

9
+ <u,:sx (w(g, tw, —w>>> . (6.35)
9 L2(0.T:L2(2)

From the partial differential equation (6.16), we have
0
(U, —3 (5 (w(”) — w)))
ot L2(0,T;L2(2))
ad d
REEETERE))
CIANES L2(0.T:L2(2))
d d d
(i)
ot I L2(0,T:12(£2))

= H(w(") —w,v). (6.36)

Integration by parts of each term on the left-hand side of (6.36), and use of conditions on
v andw transform (6.36) to

(Gl —w))

a ad
RTINS R
ot~ 0§ L2(0,T;L2(2))

We apply Cauchy—Schwarz inequality to terms on the left-hand side of (6.37) to get

Xv, %(w(") — w))

L2(0,T;L2(82)) ( L2(0,T;L2(82))
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H(w(”) —w, v)
v
SC w(”)—w 2 gl (”UHLZOT'LZQ +‘— ), (638)
” ”L (0,T;HX(£2)) (0. T;L5(82)) ot L2O.T:L2(2)
where

12
C=—+1.

V2

On the other side we have

Ju 9
(v, 3 (5F<s, f D, w—)) ~ %% (éF(as,z, w, —w>))
9 & /)] 12or:1202)

ld
< (n)
S 2 ||w w ||L2(0,T;Hp1(.(2))”“”LZ(O,T;L%(Q))' (6.39)

Taking into account (6.38) and (6.39), and passing to the limit in (6.37)aso to obtain

ow
Hw, v) = (v, 5 <$F(‘§,t, v, _>>> .
08 )] ) L20.1:L3(2))

Now to conclude that problem (6.20)—(6.23) has a weak solution, we show that (6.7)
holds. Sincew e L2(0, T; HX($2)), then [ 225 45 e C(Dr), and we conclude that

E]
Wwi,r)=0,ae. O
Thus, we have proved the following:

Theorem 6.3. Suppose that conditiofB) holds, and that/ < %e—KlT/Z, then problem
(6.5)—(6.8) has a weak solution belonging I¢(0, T; H}(£2)).

It remains to prove that problem (6.5)—(6.8) admits a unique solution.

Theorem 6.4. If condition (B) is satisfied, then the solution of problei®.5)—(6.8)is
unique.

Proof. Suppose that;, wi € L?(0, T; H(52)) are two solution of (6.5)—(6.8), theé =
wi— wo isin L2(0, T’ H}(£2)) and satisfies

1 1 92

3_V__i(xa_">__ 8 <x3_v)=g(x,,), (6.40)
Jat X 0x 0x X dtox ax

V(x,00=0, (6.41)
oV

—(,1)=0, (6.42)
dax

I

/xV(x,t)dx:O, (6.43)

0
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where

w1 Jwz
ox,t)=F|x,t,wy, — | — F{x,t,wy, — ).
ax 0x

Taking the inner product ii2(0, T’; Lf)(Q)), of Eq. (6.40) and the integro-differential
operator

A%
MV =x"— — xJ2(V),
ot
and following the same procedure done in establishing the proof of Lemma 6.2, we have

” 14 ”LZ(O,T;HK}(Q)) <K ” Vv ”LZ(O,T;H;L(Q))’ (644)
where

. 3 +13
K =2JTdef1 772 with K1 = max(l, —; )

Sincek < 1, it follows from (6.44) that
(1 - K) ” Vv “LZ(O,T;H'%(Q)) = 07

which implies thatV = w;— w, = 0, and hencevy = wy € L2(0, T'; le(.Q)). 0

Remark. It seems that our results still hold for the more general mixed nonlinear nonlocal
problem

du 0 du 92 du du
E—a(d()ﬁt)a)—ﬁ<b(x,t)a)=f(x,t,u,a>, (645)
u(x,0) = uo(x), (6.46)
1
ur(l, 1) = ¢ (x), /udx —E®). (6.47)
0
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