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Abstract

We study a two-dimensional family of probability measures on infinite Gelfand–Tsetlin schemes induced
by a distinguished family of extreme characters of the infinite-dimensional unitary group. These measures
are unitary group analogs of the well-known Plancherel measures for symmetric groups.

We show that any measure from our family defines a determinantal point process on Z+ × Z, and we
prove that in appropriate scaling limits, such processes converge to two different extensions of the discrete
sine process as well as to the extended Airy and Pearcey processes.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let S(n) be the symmetric group of degree n. Denote by Yn the set of partitions of n or,
equivalently, the set of Young diagrams with n boxes. It is well known that complex irreducible
representations of S(n) are parameterized by elements of Yn; we denote by dimλ the dimension
of the irreducible representation corresponding to λ. The probability distribution

Prob{λ} = dim2 λ

n! , λ ∈ Yn,

on Yn is called the Plancherel measure for S(n). The Plancherel weight of λ ∈ Yn is the relative
dimension of the isotypic component of the regular representation of S(n), which transforms
according to the irreducible representation corresponding to λ. Hence, one has the following
equality of functions on S(n):

δe =
∑
λ∈Yn

dim2 λ

n!
χλ

dimλ
,

where δe is the delta-function at the unity, and χλ is the irreducible character corresponding to λ.
Let S(∞) = ⋃

n�1 S(n) be the group of finite permutations of a countable set known as the
infinite symmetric group, see e.g. [21]. The group S(∞) has a rich theory of characters (positive-
definite central functions on the group). For any character χ of S(∞) normalized by χ(e) = 1,
its restriction to the subgroup S(n) of permutations of first n symbols can be written as

χ =
∑
λ∈Yn

χ̂n(λ)χλ/dimλ.

The coefficients χ̂n(λ) form a probability measure on Yn; they are a kind of Fourier transform
of χ .

There exists only one character χ of S(∞) for which the rows and columns of the Young
diagrams distributed according to χ̂n grow sublinearly in n as n → ∞. This character is the delta-
function at the unity of S(∞), the corresponding representation is the (bi)regular representation
of S(∞) in �2(S(∞)), and χ̂n is the Plancherel measure on Yn introduced above.

An analogous construction for the infinite-dimensional unitary group U(∞) = ⋃
N�1 U(N)

yields a two-dimensional family of characters of U(∞). Equip U(∞) with the direct limit topol-
ogy. Although the notion of regular representation for U(∞) is meaningless, by comparing the
lists of the extreme (i.e., indecomposable) characters of S(∞) and U(∞) one sees that the analog
of δe on S(∞) is the family of characters
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χγ +,γ −
(U) = exp

(
Tr

(
γ +(U − 1) + γ −(

U−1 − 1
)))

, U ∈ U(∞),

where γ ± � 0 are the parameters of the family. We will provide details in Section 3, and for
now let us just say that on the level of Fourier transform, the set Yn is replaced by the set
of N -tuples of integers λ1 � · · · � λN which we call signatures or highest weights of length N

(they parameterize irreducible representations of the unitary group U(N)), and the corresponding
probability distributions have the form

P
γ +,γ −
N (λ1, . . . , λN) = const ·det

[
f

(γ +,γ −)

i (λj − j)
]N
i,j=1 dimU(N)(λ),

f
(γ +,γ −)

k (x) = 1

2πi

∮
|z|=1

eγ +z+γ −z−1
dz

zx+k+1
, k = 1,2, . . . ,

where dimU(N)(λ) is the dimension of the irreducible representation of U(N) with highest

weight λ. We call the measures P
γ +,γ −
N the Plancherel measures for the infinite-dimensional

unitary group, and the present paper is devoted to the study of these measures.
One source of interest to the Plancherel measures for symmetric groups is the fact that the

distribution of the largest part of λ ∈ Yn coincides with the distribution of the longest increasing
subsequence of uniformly distributed permutation in S(n). This fact can be restated in terms of
a random growth model in one space dimension called the polynuclear growth process (PNG).
Namely, the distribution of the height function for PNG with the so-called droplet initial con-
dition at any given point in space-time coincides with the distribution of the largest part of
λ ∈ ⋃

n�0 Yn distributed according to the Poissonized Plancherel measure

Prob{λ} = e−θ2
(

θ |λ| dimλ

|λ|!
)2

, λ ∈
⋃
n�0

Yn,

where |λ| is the number of boxes in the Young diagram λ, and θ > 0 is a parameter, see [30].
Note that |λ| is Poisson distributed with mean θ2.

Quite similarly, the largest coordinate of a signature distributed according to the Plancherel
measure for U(∞) describes the height function in another growth model in one space dimension
called PushASEP for the so-called step initial condition. This fact can be established by direct
comparison of Proposition 3.4 from [6] and Theorem 3.1 below.

The asymptotics of the Plancherel measure for S(n) as n → ∞ has been extensively studied.
In the seventies, Logan and Shepp [22] and, independently, Vershik and Kerov [32,34], discov-
ered that Plancherel distributed Young diagrams have a limit shape: In a suitable metric, the
measure on these Young diagrams scaled by

√
n converges as n → ∞ to the delta-measure sup-

ported on a certain shape. In the late nineties, more refined results were obtained. It was shown
that the random point process generated by the rows (or columns) of the Plancherel distributed
Young diagrams has two types of scaling limits, in the “bulk” and at the “edge” of the limit shape.
In the limit, the former case yields the discrete sine determinantal point process, while the latter
case yields the Airy determinantal point process, see [2,3,8,18,24].

The main goal of the present paper is to prove similar asymptotics results on scaling limits

of random point processes related to more complex measures P
γ +,γ −
N with N → ∞ and γ ±

possibly dependent on N . Note that our results do not imply the existence of the limit shape in
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any of the cases we consider, although they strongly suggest that in some cases the limit shape
does exist, and they predict what it looks like. For a discussion of the relationship between “local”
results on point processes and “global” measure concentration properties see Remark 1.7 of [8],
§1 of [11].

Let us describe our results in more detail.
It is convenient to represent a signature λ = {λ1 � · · · � λN } as a pair of partitions, one

partition λ+ consists of positive parts of λ while the other one λ− consists of absolute values of
negative parts of λ. When the parameters γ ± are independent of N , they describe (see Section 2)
the asymptotic behavior of |λ±|, namely |λ±| ∼ γ ±N , as N → ∞. This asymptotic relation
remains true in other situations as well, and it is helpful to keep it in mind when going through
the limit transitions below.

Our first result describes what happens when γ ± ∼ N−1 as N → ∞. Then one expects that

|λ+|, |λ−| remain finite in the limit, and indeed the measures P
(γ +,γ −)

N converge to the product of
two independent copies of the Poissonized Plancherel measures for the symmetric groups. One
copy is supported on the partitions λ+ consisting of positive parts, while the other measure is
supported on the partitions λ− consisting of negative parts.

The next possibility to consider is when γ ± are independent of N . The case when γ − = 0
was considered by Kerov [20], who proved the existence of the limit shape and showed that
the limit shape coincides with that for the Plancherel measures for symmetric groups. We show
that when both parameters γ ± are fixed and nonzero, the random point processes describing
λ± asymptotically behave as though λ± represent two independent copies of the Poissonized
Plancherel measures for the symmetric group with Poissonization parameters γ ±N → ∞.

The most interesting case is when γ ± grow at the same rate as N . Biane [4] proved that
when γ − = 0, the corresponding measure has a limit shape that depends on the limiting value
of the ratio γ +/N . We consider the case when both parameters are nonzero and investigate the
asymptotic behavior of the random point process that describes our random signatures.

Even though we do not prove the existence of the limit shape, it is convenient to use the
hypothetical limit shape inferred from the limit of the density function to describe the results.
There are three possibilities: The limit shapes of λ± scaled by N do not touch (that happens
when γ ±/N are small), when they barely meet, and when they have already met, see Fig. 4 in
the body of the paper. Accordingly, there are three types of local behavior one can expect: The
bulk, the edge, where the limit shape becomes tangent to one of the axes, and the point when
the edges of the limit shapes for λ± meet. We compute the local scaling limits of the correlation
functions for the random point process describing our signatures, and obtain the correlation func-
tions of the discrete sine, Airy, and Pearcey determinantal processes in the three cases above, see
Theorems 4.6, 4.9, and 4.8.

As a matter of fact, we consider probability measures on a more general object than sig-
natures. Every character of U(∞) naturally defines a probability measure on Gelfand–Tsetlin
schemes (a kind of infinite semistandard Young tableaux), see Section 2 and [9]. The correspond-
ing measures on signatures of length N are certain projections of the measure on Gelfand–Tsetlin
schemes. In particular, every character from our two-dimensional Plancherel family yields a
measure on Gelfand–Tsetlin schemes, and that is what we study asymptotically. We interpret
each scheme as a point configuration in Z × Z+, and compute the scaling limits of correlation
functions of the arising two-dimensional random point processes. The results are appropriate
(determinantal) time-dependent extensions of the limiting processes mentioned above.

The proofs are based on the techniques of determinantal point processes.
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First, we show that for any extreme character of U(∞), the corresponding random point
process on Z × Z+ is determinantal, and we compute the correlation kernel in the form of a
double contour integral of a fairly simple integrand. This result (Theorem 3.1) is similar in spirit
to the formula for the correlation kernel of the Schur process from [27], but it does not seem
to be in direct relationship with it. After that we perform the asymptotic analysis of the contour
integrals largely following the ideas of [25,27,28].

2. Description of the model

Let U(N) denote the group of all N × N unitary matrices. It is a classical result that the
irreducible representations of U(N) can be parametrized by nonincreasing sequences λ = (λ1 �
· · · � λN) of N integers (see e.g. [36]). Such sequences are called signatures (or highest weights)
of length N. Thus there is a natural bijection λ ↔ χλ between signatures of length N and the
conventional irreducible characters of U(N).

For each N , U(N) is naturally embedded in U(N + 1) as the subgroup fixing the (N + 1)th
basis vector. Equivalently, each U ∈ U(N) can be thought of as an (N + 1) × (N + 1) matrix
by setting Ui,N+1 = UN+1,j = 0 for 1 � i, j � N and UN+1,N+1 = 1. The union

⋃∞
N=1 U(N) is

denoted U(∞).
A character of U(∞) is a positive definite function χ : U(∞) → C which is constant on

conjugacy classes and normalized (χ(e) = 1). We further assume that χ is continuous on each
U(N) ⊂ U(∞). The set of all characters of U(∞) is convex, and the extreme points of this set
are called extreme characters.

The extreme characters of U(∞) can be parametrized as follows: Let R∞ denote the product
of countably many copies of R. Let Ω be the set of all (α+, α−, β+, β−, δ+, δ−) such that
[29, §1]

α± = (
α±

1 � α±
2 � · · · � 0

) ∈ R∞, β± = (
β±

1 � β±
2 � · · · � 0

) ∈ R∞, δ± ∈ R,

∞∑
i=1

(
α±

i + β±
i

)
� δ±, β+

1 + β−
1 � 1.

Set

γ ± = δ± −
∞∑
i=1

(
α±

i + β±
i

)
� 0.

For any U ∈ U(∞) define Spectrum(U) as the finite set of eigenvalues (with multiplicities)
of U that not equal to 1. Each ω ∈ Ω defines a function χω on U(∞) by

χω(U) =
∏

u∈Spectrum(U)

f0(u),

f0(u) = eγ +(u−1)+γ −(u−1−1)

∞∏
i=1

1 + β+
i (u − 1)

1 − α+
i (u − 1)

1 + β−
i (u−1 − 1)

1 − α−
i (u−1 − 1)

. (1)

As ω ranges over Ω , the functions χω turn out to be all the extreme characters of U(∞)

[26,33,35].
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Equipping R∞ × R∞ × R∞ × R∞ × R × R with the product topology induces a topology
on Ω . For any fixed U ∈ U(∞), χω(U) is a continuous function of ω. For any character χ of
U(∞), there exists a unique Borel probability measure P on Ω such that

χ(U) =
∫
Ω

χω(U)dP,

see [29, Theorem 9.1]. This measure is called the spectral measure of χ .
The extreme characters of U(∞) can be approximated by χλ with growing signatures λ. To

state this precisely we need more notation.
Represent a signature λ as a pair of Young diagrams (λ+, λ−), where λ+ consists of positive

λi ’s and λ− consists of negative λi ’s. Zeroes can go in either of the two:

λ = (
λ+

1 , λ+
2 , . . . ,−λ−

2 ,−λ−
1

)
.

Let d(·) denote the number of diagonal boxes of a Young diagram and set d+ = d(λ+) and
d− = d(λ−). Recall that the Frobenius coordinates pi, qi of a Young diagram λ are defined by

pi = λi − i, qi = (λ′)i − i, 1 � i � d(λ),

where λ′ is the transposed diagram, see e.g. [23].
The dimension of the irreducible representation of U(N) indexed by a signature λ =

(λ1, . . . , λN) is given by Weyl’s formula:

dimN λ = χλ(1, . . . ,1) =
∏

1�i<j�N

λi − i − λj + j

j − i
.

Define the normalized irreducible characters by

χ̃λ = 1

dimN λ
χλ.

Note that χ̃λ(e) = 1.
Given a sequence {fN } of functions on U(N), we say that fN ’s approximate a function f on

U(∞) if for any fixed N0, the restrictions of the functions fN (for N � N0) to U(N0) uniformly
tend, as N → ∞, to the restriction of f to U(N0). We have the following approximation theorem:

Theorem 2.1. Let χ be the extreme character corresponding to (α±, β±, γ ±) ∈ Ω . Let {λ(n)}
be a sequence of signatures of length n with Frobenius coordinates p±

i (n), q±
i (n). Then the

functions χ̃λ(n) approximate χ iff

lim
n→∞

p±
i (n)

n
= α±

i , lim
n→∞

q±
i (n)

n
= β±

i , lim
n→∞

|(λ(n))±|
n

= δ±

for all i.
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Proof. This theorem is due to Vershik and Kerov [33]. See [26] for a detailed proof. �
Let GTN be the set of all signatures of length N and set GT = ⋃

N GTN . Turn GT into a
graph by drawing an edge between signatures λ ∈ GTN and μ ∈ GTN+1 if λ and μ satisfy the
branching relation λ ≺ μ, where λ ≺ μ means that μ1 � λ1 � μ2 � λ2 � · · · � λN � μN+1. GT

is also known as the Gelfand–Tsetlin graph.
Each character of U(∞) defines a probability measure PN on GTN . If we restrict the extreme

character χω to U(N), we can write

χω|U(N) =
∑

λ∈GTN

PN(λ)χ̃λ. (2)

Definition 2.2. The measure PN corresponding to the extreme character with α± = β± = 0 and
arbitrary γ ± � 0 will be called the N th level Plancherel measure with parameters γ ±. Denote it

by P
γ +,γ −
N .

The choice of the term is explained by the analogy with the infinite symmetric group S(∞).
The extreme characters of S(∞) are parameterized by{

(α,β, γ ) ∈ R∞+ × R∞+ × R+;
∑

(αi + βi) + γ = 1
}
.

The measure on partitions of n obtained from the character with αi = βi = 0, γ = 1, similarly
to the measure PN above, assigns the weight (dimλ)2/n! to a partition λ and is commonly
called the Plancherel measure. Here dimλ is the dimension of the irreducible representation of
Sn corresponding to λ.

Let χ be a character of U(∞) and let P and PN be its corresponding decomposing measures
on Ω and GTN . For any N , embed GTN into Ω by sending λ to (a+, a−, b+, b−, c+, c−) where

a±
i = p±

i

N
, b±

i = q±
i

N
, c± = |λ±|

N
.

Define a probability measure P N on Ω to be the pushforward of PN under this embedding.
Then P N weakly converges to P as N → ∞ [29, Theorem 10.2].

This implies that as N → ∞, the Plancherel measures P
γ +,γ −
N converge to the delta measure

at ω = (α±
i = β±

i = 0, γ +, γ −), that is, the row and column lengths for λ± distributed according

to P
γ +,γ −
N grow sublinearly in N .

The main goal of this paper is to study the asymptotic behavior of the signatures distributed

according to the Plancherel measures P
γ +,γ −
N as N → ∞. We will also study a more general

object: the corresponding probability measures on objects called paths in GT.
A path in GT is an infinite sequence t = (t1, t2, . . .) such that ti ∈ GTi and ti ≺ ti+1. Let T

be the set of all paths.
We also have finite paths, which are sequences τ = (τ1, τ2, . . . , τN ) such that τi ∈ GTi and

τ1 ≺ τ2 ≺ · · · ≺ τN . The set of all paths of length N is denoted by TN . For each finite path τ ∈ TN ,
let Cτ be the set

Cτ = {
t ∈ T : (t1, t2, . . . , tN ) = τ

}
.
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Fig. 1. Black dots represent points in the configuration and white dots represent points not in the configuration.

A character χ of U(∞) also defines a probability measure Mχ on T which can be specified
by setting

Mχ(Cτ ) = PN(λ)

dimN λ
, (3)

where PN is as above and τ is an arbitrary finite path ending at λ, see [29, Section 10] for details.
In particular, any ω ∈ Ω defines a measure on T via the corresponding extreme character χω . If
ω satisfies α±

i = β±
i = 0 with arbitrary γ ±, then let P γ +,γ −

denote this measure.

3. Plancherel measures as determinantal point processes

In order to analyze P
γ +,γ −
N and P γ +,γ −

, it is convenient to represent signatures as finite point
configurations (subsets) in one-dimensional lattice. Assign to each signature λ ∈ GTN a point
configuration L(λ) ⊂ Z by

λ = (λ1, . . . , λN) → L(λ) = {λ1 − 1, . . . , λN − N}.

The pushforward of P
γ +,γ −
N under this map is a measure on subsets of Z, that is, a ran-

dom point process on Z. See Appendix A for general information on point processes. De-

note this point process by Pγ +,γ −
N . The map λ → L(λ) can be seen visually. For example, if

λ = (4,2,0,0,−1,−3), then L(λ) = {3,0,−3,−4,−6,−9}. See Fig. 1.
Just as λ → L(λ) defines a map from GTn to the set of subsets of Z, we have a map from the

set T of paths in the Gelfand–Tsetlin graph to subsets of Z+ × Z. Let t = (t1 ≺ t2 ≺ · · ·) be a
path in GT. Each ti is a signature of length i which will be written as λ(i) = (λ

(i)
1 , λ

(i)
2 , . . . , λ

(i)
i ).

Then map t to

L(t) = {(
i, λ

(i) − j
)
: 1 � i < ∞, 1 � j � i

} ⊂ Z+ × Z.
j
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The pushforward of P γ +,γ −
under this map will be denoted by Pγ +,γ −

. This is a random
point process on Z+ × Z.

Let us now state the main theorem of this section.

Theorem 3.1. The point process Pγ +,γ −
is determinantal. Let K(ni, xi;nj , xj ) denote its cor-

relation kernel. If n1 � n2, then

K(n1, x1;n2, x2) =
(

1

2πi

)2 ∮ ∮
eγ −u+γ +u−1

ux1(1 − u)n1

eγ −w+γ +w−1
w1+x2(1 − w)n2

dudw

u − w
.

If n1 < n2, then

K(n1, x1;n2, x2) = − 1

2πi

∮
zx1−x2−1

(1 − z)n2−n1
dz

+
(

1

2πi

)2 ∮ ∮
eγ −u+γ +u−1

ux1(1 − u)n1

eγ −w+γ +w−1
w1+x2(1 − w)n2

dudw

u − w
. (4)

In these expressions, u is integrated over |u| = r < 1 and w is integrated over |w−1| = ε < 1−r

and z is integrated over |z| = r < 1.

Let Pγ +,γ −
Δ be the image of Pγ +,γ −

under the particle-hole involution (see Appendix A for
definitions).

Corollary 3.2. The point process Pγ +,γ −
Δ is determinantal. Let KΔ(ni, xi;nj , xj ) denote its

correlation kernel. If n1 > n2, then

KΔ(n1, x1;n2, x2) = −
(

1

2πi

)2 ∮ ∮
eγ −u+γ +u−1

ux1(1 − u)n1

eγ −w+γ +w−1
w1+x2(1 − w)n2

dudw

u − w
.

If n1 � n2, then

KΔ(n1, x1;n2, x2) = 1

2πi

∮
zx1−x2−1

(1 − z)n2−n1
dz

−
(

1

2πi

)2 ∮ ∮
eγ −u+γ +u−1

ux1(1 − u)n1

eγ −w+γ +w−1
w1+x2(1 − w)n2

dudw

u − w
. (5)

In these expressions, u is integrated over |u| = r < 1 and w is integrated over |w−1| = ε < 1−r

and z is integrated over |z| = r < 1.

Proof. The corollary follows immediately from Proposition A and the fact that

δx1=x2 = 1

2πi

∮
zx1−x2−1

(1 − z)n2−n1
dz
|z|=r
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for n1 = n2. Note that in Theorem 3.1 the two cases for the kernel are n1 � n2 and n1 < n2,
while in Corollary 3.2 the two cases are n1 > n2 and n1 � n2. �
Remark. Let K̄(n1, x1;n2, x2) and K̄Δ(n1, x1;n2, x2) denote the correlation kernels of Pγ −,γ +

and Pγ −,γ +
Δ , respectively (γ + and γ − switched places). These kernels are real-valued, and they

are non-symmetric. However, the substitutions u → u−1,w → w−1 and further deformation of
the contours show that

(−1)n1−n2K(n1,−x1 − n1 − 1;n2,−x2 − n2 − 1) = K̄(n1, x1;n2, x2),

(−1)n1−n2KΔ(n1,−x1 − n1 − 1;n2,−x2 − n2 − 1) = K̄Δ(n1, x1;n2, x2).

This can be understood independently. Switching γ + and γ − corresponds to switching λ+ and
λ− in a signature λ. In terms of L(λ), this corresponds to replacing xi with −xi − ni − 1.
For example, consider λ = (4,2,0,0,−1,−3) from Fig. 1. Switching λ+ and λ− gives λ̄ =
(3,1,0,0,−2,−4). Then L(λ̄) = {2,−1,−3,−4,−7,−10}, which can be obtained from L(λ)

by replacing xi with −xi − 6 − 1.

Remark. The arguments below actually prove a more general statement. If we define a point
process of Z+ × Z similarly to Pγ +,γ −

, but starting from an extreme character of U(∞) with
arbitrary parameters (α±

i , β±
i , γ ±), then this process is determinantal and its kernel has a similar

form. The only change is replacing E(z) below by f0(z) from Eq. (1).

In what follows we use the notation

E(z) = eγ +(z−1)+γ −(z−1−1) = e−γ +−γ −
eγ +z+γ −z−1

.

Lemma 3.3. Suppose λ = (λ1, λ2, . . . , λN) ∈ GTN . Write xk for λk − k. Then

P
γ +,γ −
N (λ) = 1

1!2! . . . (N − 1)! · det
[
fj (xk)

]
1�j,k�N

det
[
gj (xk)

]
1�j,k�N

where

fj (xk) = 1

2πi

∮
|u|=1

E(u)u−1−xk−j du, 1 � j � N, (6)

gj (xk) = x
j−1
k , 1 � j � N. (7)

Proof. Writing E(u) = ∑∞
l=−∞ c(l)ul and integrating E(u)uk over the unit circle, we can solve

for c to get

c(l) = 1

2πi

∮
E(u)u−1−l du.
|u|=1
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Set ω = (α±
i = β±

i = 0, γ +, γ −). For U ∈ U(N) with spectrum u1, . . . , uN , we can write

χω(U) = E(u1) . . .E(uN). Recall that P
γ +,γ −
N is defined by (2). Using [29, Lemma 6.5], we

can express χω|U(N) as
∑

λ∈GTN
c(λ)χλ, where

c(λ) = c(λ1, . . . , λN) = det
[
c(λk − k + j)

]
1�j,k�N

.

Set fj (xk) = c(xk + j). Since χλ = χ̃λ · dimN λ, with

dimN λ =
∏

1�i<j�N

λi − i − λj + j

j − i
= 1

1!2! . . . (N − 1)! ·
∏

1�i<j�N

(
(λi − i) − (λj − j)

)
,

we get the additional Vandermonde determinant det[(λk − k)j−1] = det[xj−1
k ]. �

Remark. Observe that the argument above and (3) imply that

P γ +,γ −
(Cτ ) = det

[
fj (xk)

]
1�j,k�N

.

To state the next result we need slightly different notation. Let

Pγ +,γ −({
x

(n)
k : 1 � n � N, 1 � k � n

}) = P γ +,γ −
(Cτ )

if there exists a path τ = (λ(1) ≺ · · · ≺ λ(n)) such that

λ(n) = (
x

(n)
1 + 1, x

(n)
2 + 2, . . . , x(n)

n + n
)
,

and Pγ +,γ −
({x(n)

k }) = 0 otherwise.

Proposition 3.4. Let {x(n)
k : 1 � n � N, 1 � k � n} be arbitrary integers satisfying x

(n)
k � x

(n)
k+1

for all n, k. Then

Pγ +,γ −({
x

(n)
k : 1 � n � N, 1 � k � n

})
= 1

1!2! . . . (N − 1)! ·
N−1∏
n=1

det
[
φn

(
x

(n)
i , x

(n+1)
j

)]
1�i,j�n+1 det

[
fi

(
x

(N)
j

)]
1�i,j�N

where x
(n)
n+1 are “virtual” variables,1 and φn is defined by

φn(x, y) :=
⎧⎨⎩

1 if x � y,

1 x “virtual,”

0 otherwise.

1 One can think of “virtual” variables as being equal to negative infinity.
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Proof. By the remark after 3.3, it suffices to prove that
∏

det[φn] acts as an indicator function.
It takes the value of 1 if λ(1) ≺ λ(2) ≺ · · · ≺ λ(N) and 0 otherwise, where

λ(n) = (
x

(n)
1 + 1, . . . , x(n)

n + n
)
.

If λ(1) ≺ λ(2) ≺ · · · ≺ λ(N), so that x
(n+1)
1 � x

(n)
1 > x

(n+1)
2 � x

(n)
2 > · · · � x

(n)
n > x

(n+1)
n+1 for

each n, then

φn

(
x

(n)
i , x

(n+1)
j

) =
{

1 if j � i,

0 if i < j.

So det[φn] = 1 for each n.
Conversely, suppose that

∏
det[φn] = 1, so that det[φn] �= 0 for each n. Notice that the matrix

[φn(x
(n)
i , x

(n+1)
j )] consists entirely of zeroes and ones. Also notice that the number of ones in

the kth column is greater than or equal to the number of ones in the j th column for k < j .
Additionally, if the (i, j) entry is zero then so is the (i − 1, j) entry. Since the determinant is
nonzero, this means that no two columns are equal, so each column must have a different number
of ones, so the (i, j) entry is 1 if j � i and 0 if i < j . This says exactly that λ(1) ≺ λ(2) ≺ · · · ≺
λ(N), and each determinant in the product is equal to 1. �

We can now prove Theorem 3.1.

Proof of Theorem 3.1. For computational purposes, it is actually easier to consider

φn(x, y) :=
⎧⎨⎩

θ
x−y
n if x � y,

θ
−y
n x “virtual,”

0 otherwise

with mutually distinct θn’s and then take θn → 1. It is also convenient to denote θ0 = 1. We will
assume that |θn| > |θn−1| > 1 for all n. Notice that det[fi(x

(N)
j )] only depends on the linear span

of f1, . . . , fN (up to a constant), so redefine

fj (x) = 1

2πi

∮
|u|=const

E(u)u−2−xpj−1
(
u−1)du, where

pj−1(x) = (θ0 − x) . . . ̂(θj−1 − x) . . . (θN−1 − x) =
N−1∏

k=0,k �=j−1

(θk − x).

The rest of the proof is a direct application of Lemma 3.4 of [7], where we use the notation
Ψ N

N−j = fj . For readers’ convenience, this lemma is discussed in Appendix B. Although the
statement holds for signed measures, the measures considered below are actually positive as
long as all θk’s are positive.

All series below converge exponentially fast as long as θk’s are bounded away from the unit
disc.
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Taking the Fourier Transform of φn, we obtain

φn(x, y) = 1

2πi

∮
|z|=1

Fn(z)z
x−y−1 dz,

φ(n1,n2)(x, y) = 1

2πi

∮
|z|=1

Fn1(z) . . . Fn2−1(z)z
x−y−1 dz (8)

where Fn(z) = (1 − θ−1
n z)−1 and n1 < n2. We also agree that φ(n1,n2) ≡ 0 if n1 � n2. In case x

is a “virtual” variable (which is denoted by virt), then

φ(n1,n2)(virt, y) =
∑
m∈Z

φn1(virt,m)φ(n1+1,n2)(m,y)

= θ
−y
n1

2πi

∮
Fn1+1(z) . . . Fn2−1(z)

dz

z − θn1

= θ
−y
n1 Fn1+1(θn1) . . . Fn2−1(θn1),

where the contour integral is taken over |z| = r for some |θn1 | < r < |θn1+1|.
This allows us to calculate the matrix M (cf. Lemma 3.4 of [7] or Appendix B):

Mij = (
φ(i−1,N) ∗ Ψ N

N−j

)
(virt) =

∑
y∈Z

φ(i−1,N)(virt, y)Ψ N
N−j (y)

=
∑
y∈Z

θ
−y

i−1Fi(θi−1) . . . FN−1(θi−1) · 1

2πi

∮
|u|=1

E(u)u−2−ypj−1
(
u−1)du

= −Fi(θi−1) . . . FN−1(θi−1)
1

2πi

∮
E(u)u−2pj−1

(
u−1) uθi−1

1 − uθi−1
du

= Fi(θi−1) . . . FN−1(θi−1)E
(
θ−1
i−1

)
pj−1(θi−1)θi−1,

where the second contour integral is taken over an annulus of radii r and 1 for some r < |θi−1|−1.
Notice that M is diagonal because pj−1(θi−1) = 0 unless i = j . We have one more prelimi-

nary calculation (cf. [7, formula (3.22)]):

Ψ n
n−j (x) =

∑
y∈Z

φ(n,N)(x, y)Ψ N
N−j (y)

=
(

1

2πi

)2 ∮
|z|=1

Fn(z) . . . FN−1(z)z
x−1 dz

∮
|u|=R>1

E(u)u−2pj−1
(
u−1)∑

y�x

(zu)−y du

=
(

1

2πi

)2 ∮
Fn(z) . . . FN−1(z)z

−1 dz

∮
E(u)u−2−xpj−1

(
u−1) du

1 − (zu)−1
|z|=1 |u|=R>1
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= 1

2πi

∮
|u|=1

Fn

(
u−1) . . . FN−1

(
u−1)E(u)u−2−xpj−1

(
u−1)du.

We can now calculate K according to [7, formula (3.26)]. For n1 < n2,

K(n1, x1;n2, x2) + φ(n1,n2)(x1, x2)

=
n2∑

k=1

Ψ
n1
n1−k(x1)

N∑
l=1

[
M−1]

k,l

(
φl−1 ∗ φ(l,n2)

)(
xl−1
l , x2

)

=
n2∑

k=1

[
M−1]

kk
Ψ

n1
n1−k(x1)φ

(k−1,n2)(virt, x2)

= 1

2πi

∮
|u|=1

Fn1

(
u−1) . . . FN−1

(
u−1)E(u)u−2−x1

×
n2∑

k=1

θ
−x2
k−1Fk(θk−1) . . . Fn2−1(θk−1)pk−1(u

−1)

Fk(θk−1) . . . FN−1(θk−1)E(θ−1
k−1)pk−1(θk−1)θk−1

du

= 1

2πi

∮
|u|=1

Fn1

(
u−1) . . . FN−1

(
u−1)E(u)u−2−x1

×
n2∑

k=1

θ
−x2
k−1pk−1(u

−1)

Fn2(θk−1) . . . FN−1(θk−1)E(θ−1
k−1)pk−1(θk−1)θk−1

du

= 1

2πi

∮
|u|=1

u−2−x1

×
(

n1∑
k=1

θn1 . . . θN−1E(u)
∏n1−1

l=0,l �=k−1(θl − u−1)

θn2 . . . θN−1E(θ−1
k−1)

∏n2−1
l=0,l �=k−1(θl − θk−1)

θ
−1−x2
k−1

+
n2∑

k=1+n1

θn1 . . . θN−1E(u)
∏n1−1

l=0 (θl − u−1)

(θk−1 − u−1)θn2 . . . θN−1E(θk−1)
∏n2−1

l=0,l �=k−1(θl − θk−1)
θ

−1−x2
k−1

)
du

and for n1 � n2 the last sum is omitted.
We can write the expression in parentheses as a contour integral that goes around all the θj ,

so we get

(
1

2πi

)2 ∮
−1

∮
|z−1|=ε

(θ0 − u−1) . . . (θn1−1 − u−1)E(u)u−2−x1

(θ0 − z) . . . (θn2−1 − z)E(z−1)z1+x2

θn2 . . . θn1−1

(u−1 − z)
dudz,
|u|=r >1
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Fig. 2. The double lines show the boundary. Fig. 3. A visual representation.

assuming that |θn − 1| < ε for all n. Substituting u → u−1 gives(
1

2πi

)2 ∮
|u|=r<1

∮
|z−1|=ε

(θ0 − u) . . . (θn1−1 − u)E(u−1)ux1

(θ0 − z) . . . (θn2−1 − z)E(z−1)z1+x2

θn2 . . . θn1−1

(u − z)
dudz.

There is also the term −φ(n1,n2)(x1, x2) from (8), which equals

−
(

1

2πi

)2 ∮
|z|=const<1

zx1−x2−1

(1 − θ−1
n1 z) . . . (1 − θ−1

n2−1z)
dz

if n1 < n2 and 0 if n1 � n2. Finally, taking all the θj to be 1 yields the result. �
4. Limits

4.1. Limit shape

Represent λ ∈ GTN as a pair of Young diagrams (λ+, λ−). Fig. 2 gives an example with
λ = (4,2,0,0,−1,−3), λ+ = (4,2), λ− = (3,1). We have the following conjecture:

Regard λ ∈ GTN as random objects on the probability space (GTN,P
γ +,γ −
N ). As N → ∞,

the boundaries of the two Young diagrams, scaled by N−1/2, tend to (nonrandom) limit curves.
Both limit curves coincide with the Vershik–Kerov–Logan–Shepp limit curve arising from the
Plancherel measure on symmetric groups (see [22,32,33]).

Our results strongly suggest that this statement holds, see Section 3.2.
The conditions α±

i = β±
i = 0 tell us that for fixed γ ± every row and column length grows

sublinearly in N (see the end of Section 1). Furthermore, since γ ± correspond to the area of the
Young diagrams λ± (see Section 1), this suggests a scaling of N−1/2. See Fig. 3.
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Furthermore, we see from Fig. 1 that vertical segments of the boundary correspond to points in
the configuration, while horizontal segments correspond to points not in the configuration. This
implies that the first correlation function ρ1(x) (also known as the density function) corresponds
to the density of vertical segments in the boundary. For example, in between the two curves in
Fig. 3, the vertical segments are densely packed, so ρ1(x) should converge to 1. Above the top
curve (the boundary of λ+) and below the bottom curve (the boundary of λ−), the horizontal
segments are densely packed, so ρ1(x) should converge to 0. We will see that this is indeed the
case.

Notice that near the edges of the Young diagrams (the boxes in Fig. 3), the probability of
finding a vertical segment tends to 0 or 1. This means that the vertical segments (or horizontal
segments) become so rare that they occur infinitely far away from each other. In other words, for
any fixed k, the differences λ±

k − λ±
k+1 and (λ±)′k − (λ±)′k+1 both go to infinity as N → ∞. In

fact, we find that λ±
k − λ±

k+1 and (λ±)′k − (λ±)′k+1 are of order N1/6. The limiting distribution
of λ±

k − λ±
k+1 or (λ±)′k − (λ±)′k+1 normalized by N1/6 is referred to as the edge scaling limit.

We will later prove that the well-known Airy determinantal point process appears in the edge
limits. On the other hand, if we zoom in at any other point on the limit curves, the behavior
there is different. At these points, the differences between consecutive rows and columns stay
finite. Their limiting distributions are described by the bulk limit. We prove that it coincides with
the discrete sine determinantal process. The limit density function in the bulk predicts the limit
shape.

We should also consider what happens to the more general object—the corresponding measure
on the set τ of paths in GT (see Section 1). Consider two signatures on such a path at levels n1
and n2. If n1 − n2 stays bounded then the bulk and the edge limits of these two signatures are
indistinguishable (the local point configurations are essentially the same). However, as n2 − n1
grows, we may see nontrivial joint distributions. It turns out that the proper level scaling in the
bulk is n1 −n2 ∼ √

N while at the edge it is n1 −n2 ∼ N2/3. We will compute the corresponding
scaling limits of the correlation functions later.

It is also interesting to consider the case when the parameters γ ± depend on N . If γ ± depend
on N in such a way that γ ±N → a > 0, then the areas of the Young diagrams λ± stay finite.
More precisely, we obtain two independent copies of the Poissonized Plancherel measure for
symmetric groups.

Additionally, consider what happens when γ ± depend on N in such a way that γ +/N →
a > 0 and γ −/N → b > 0 as N → ∞. The Young diagrams are now scaled by N−1. Computing
the asymptotics of the density function of the vertical segments of the boundary, we see that the
new hypothetical limit shape (which is just the integral of the density function) depends on the
values of a and b. See Fig. 4.

It turns out, see Theorem 4.6 below, that the edges of the limit curves (where the density
function reaches values 0 or 1) correspond to the real roots of a fourth degree polynomial

Qa,b(z) = p0 + p1

(
z + 1

2

)
+ p2

(
z + 1

2

)2

+ p3

(
z + 1

2

)3

+ 16

(
z + 1

2

)4

,

p0 = 1 − 12(a + b) + 4
(
a2 + b2) + 184ab − 256ab(a + b) + 64ab(a − b)2,

p1 = 8(b − a)(7 − 2a − 2b + 16ab),

p2 = 8
(
2(a + b)2 − 10(a + b) − 1

)
, p3 = 32(b − a).
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Fig. 4. The limit curves for various values of a and b. The top curve occurs when a = 1
25 , b = 1

15 , the middle curve

occurs when a = b = 1
8 , the bottom curve occurs when a = 1

4 , b = 1
3 . In the top picture, the middle segment of the curve

coincides with the vertical line. In the middle picture, the vertical line is tangent to the curve.

The expression Qa,b(c) is the discriminant of a simpler polynomial

Ra,b,c(z) = −bz3 + (b − c − 1)z2 + (c + a)z − a.

For small a and b, Qa,b has four real roots. As a and b increase, two of the real roots become
closer until they merge into a double root. For larger values of a and b, Qa,b(z) has two real
roots.

We will be able to find what values of a and b lead to Qa,b having exactly three distinct
real roots (the middle root is a double root). This corresponds to the situation when the two
limit curves just barely merge (see the middle image in Fig. 4). The correct scaling there is to
let (λ±)′i − (λ±)′i+1 ∼ N1/4 and n1 − n2 ∼ N1/2, which results in the Pearcey determinantal
process appearing in the limit. At the other edges, letting λi − λi+1 ∼ N1/3 or (λ±)′i − (λ±)′i+1
and n1 − n2 ∼ N2/3 results in the Airy process appearing. Away from the edges we still observe
the bulk limit.
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Fig. 5. Deformation of the contours.

We now proceed to computing the (scaling) limits of our determinantal point process Pγ +,γ −

corresponding to the limit regimes described above.

4.2. Limits with γ ± ∝ 1/N

Introduce the kernel J on R+ × Z by

J(s, x; t, y) =
(

1

2πi

)2 ∮ ∮
eu−1−tu−w−1+sw

w − u

dudw

wx+1u−y

where the w and u contours go counterclockwise around 0 in such a way that the w-contour
contains the u-contour if s � t , and the w-contour is contained in the u-contour if s < t . This
kernel for s = t is equivalent to the discrete Bessel kernel KBessel, which appears when analyzing
Plancherel measures for symmetric groups (see e.g., [25, §2.4]). Additionally, J is a special case
of the kernel [10, (3.3)] corresponding to θ(t) = e−2t .

Theorem 4.1. Let x1, . . . , xk be finite and constant. Let n1, . . . , nk and γ ± depend on N in such
a way that nj/N → tj > 0 and γ ±N → a > 0. Then as N → ∞,

det
[
K(ni, xi;nj , xj )

]
1�i,j�k

→ det
[
J(ati , xi;atj , xj )

]
1�i,j�k

.

Proof. We use the integral representation for the kernel in Theorem 3.1.
We first focus our attention on the double integral in u and w. Since the integrand is holo-

morphic everywhere except at u = 0, w = 1, w = u and w = 0, we can deform the contours of
integration as shown in Fig. 5.

As N → ∞, the integrand converges to 0 for |w| large enough because |1 − w| � |1 − u|.
Therefore we can ignore the outer half of the w contour. Then the contours of integration can be
deformed to |u| = a/N and |w| = 2a/N . Making the substitutions u′ = Nu/a and w′ = Nw/a,
the double integral is now

1

(2πi)2

∮
′

∮
′

eγ +u′−1N/a+γ −u′a/N

eγ +w′−1N/a+γ −w′a/N

u′xi (1 − u′a/N)ni

w′xj +1(1 − w′a/N)nj

du′ dw′

w′ − u′

(
N

a

)xj −xi
|u |=1 |w |=2
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= 1

(2πi)2

∮
|u′|=1

∮
|w′|=2

eu′−1−atiu
′−w′−1+atj w′+O(1/N)

w′ − u′
dudw

u′−xi w′xj +1
(N/a)xj −xi .

When taking the determinant, the term (N/a)xj −xi cancels. This gives the result.

Remark. Comparing this result to [8], we see that the distribution of λ+ converges to the Pois-
sonized Plancherel measure for the symmetric groups. By the symmetry (λ± ↔ λ∓, γ ± ↔ γ ∓)
the same is true for λ−. On the other hand, a similar contour integral argument to the above
shows that K(ni, xi;nj ,−nj − xj − 1) → 0 as N → ∞, which implies that λ+ and λ− are
asymptotically independent. �
4.3. Bulk limits with γ ± fixed

To state the next result, we need a definition. Given a complex number z+ in the upper half
plane, define

Sz+(ti − tj ;xi − xj ) = 1

2πi

z+∫
z+

uxi−xj −1e(tj −ti )u du.

If ti � tj , then the integration contour crosses (0,∞) but does not cross (−∞,0). If ti < tj , then
the integration contour crosses (−∞,0) but not (0,∞). This kernel is one of the extensions of
the discrete sine kernel constricted to [5]. A similar kernel appeared in [10]. It can be seen as a
degeneration of the incomplete beta kernel, see Section 4.4.

The main theorem of this section is the following:

Theorem 4.2. Let x1, . . . , xk and n1, . . . , nk all depend on N in such a way that xi − xj is
constant, (nj − N)/

√
N → tj ∈ R and xi/

√
N → c ∈ R for all 1 � i, j � k. Write z+ for (c +√

c2 − 4γ +)/2. Then

lim
N→∞ det

[
K(ni, xi;nj , xj )

]
1�i,j�k

=

⎧⎪⎪⎨⎪⎪⎩
0, c � 2

√
γ +,

1, c � −2
√

γ +,

det
[
Sz+(ti − tj ;xi − xj )

]
1�i,j�k

, −2
√

γ + < c < 2
√

γ +.

Remark. Theorem 4.2 only makes a statement about the behavior around the top limit curve in
Fig. 3. If we replace xi with −xi −ni −1 and γ + with γ −, then by symmetry the same statement
holds for the asymptotics around the lower Young diagram.

Corollary 4.3. Let ρ1(N,x) be the density function of Pγ +,γ −
N . Then limN→∞ ρ1(N,αN +

βN1/2) equals

• 0, if α > 0 or α < −1 or α = 0, β � 2
√

γ + or α = −1, β � −2
√

γ +,
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• 1 if −1 � α < 0 or α = 0, β < −2
√

γ + or α = −1, β � 2
√

γ +,
• 1

π
arccos( β

2
√

γ + ) if α = 0,−2
√

γ + < β < 2
√

γ + or α = −1,−2
√

γ + < β < 2
√

γ +.

Proof. The arguments are similar to those used for the analysis of Plancherel measures for the
symmetric groups in [25].

For reasons that will later become clear, it is more convenient to analyze N(xi−xj )/2 ×
(γ +)(xj −xi )/2K(ni, xi;nj , xj ). When taking the determinant

det
[
N(xi−xj )/2(γ +)(xj −xi )/2

K(ni, xi;nj , xj )
]
,

the term N(xi−xj )/2(γ +)(xj −xi )/2 cancels out.
We use the integral representation for the kernel in Theorem 3.1. The conditions ni � nj and

ni < nj translate to ti � tj and ti < tj , respectively.
Just as in Theorem 4.1, we can deform the contours of integration as shown in Fig. 5.
As N → ∞, the integrand converges to 0 for |w| large enough because |1 − w| � |1 − u|.

Therefore we can ignore the outer half of the w contour. Then the contours of integration can
be deformed to |u| = 1/

√
N and |w| = 2/

√
N . Making the substitutions u′ = √

Nu and w′ =√
Nw, the double integral is now

1

(2πi)2

∮
|u|=1/

√
N

∮
|w|=2/

√
N

eγ +u−1+γ −u

eγ +w−1+γ −w

uxi eni ln(1−u)

wxj +1enj ln(1−w)

dudw

w − u
N(xi−xj )/2(γ +)(xj −xi )/2

= 1

(2πi)2

∮
|u′|=1

∮
|w′|=2

eγ +u′−1
√

N+γ −u′/
√

N

eγ +w′−1
√

N+γ −w′/
√

N

u′xi eni ln(1−u′/
√

N)

w′xj +1enj ln(1−w′/
√

N)

du′ dw′

w′ − u′
(
γ +)(xj −xi )/2

= 1

(2πi)2

∮
|u′|=1

∮
|w′|=2

e
√

N(γ +u′−1+c logu′−u′+O(1/
√

N))

e
√

N(γ +w′−1+c logw′−w′+O(1/
√

N))

du′ dw′

w′(w′ − u′)
(
γ +)(xj −xi )/2

.

In general |ez| = e�z, so consider the real part of the function in the exponent, A(z) =
γ +z−1 + c log z − z. Note that A′(z) = 0 at z+ = c

2 +
√

c2−4γ +
2 and z− = z̄+.

The basic idea of the rest of the proof can be summarized as follows. The term
√

γ +xj −xi

creates a e
√

N(−c log
√

γ +) term in both the numerator and denominator. So it is equivalent to
analyze �(A(z) − c log

√
γ +) = �(A(z) − A(z+)). We deform the u and w contours in such a

way that �(A(u) − A(z+)) < 0 and �(A(w) − A(z+)) > 0, which will cause the integrand to
converge to 0 as N → ∞. However, the deformation of the contours causes the integral to pick up
residues at u = w. These residues occur on a circular arc from z− to z+. If c = 2

√
γ +, then z+ =

z− > 0, so the arc consists of a single point. As c decreases, z+ moves counterclockwise around
the circle |z| = √

γ + while z− moves clockwise. This means that the arc becomes increasingly
large as c decreases from 2

√
γ + to −2

√
γ +. When c = −2

√
γ +, then z+ = z− < 0, so the arc

has becomes the whole circle around the origin.
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Fig. 6. On the left is �(A(z)− c log
√

γ +), where the black regions indicate � < 0 and the white regions indicate � > 0.
The u-contour is contained in the black regions, while the w contour is contained in the white regions.

We then need to consider

− 1

2πi

∮
|z|=r<1

zxi−xj −1

(1 − z)nj −ni
dz,

which occurs when ni < nj . The expression for the residue at u = w has the same integrand.
With the minus sign, the integration contour for z goes clockwise along a circle around the
origin. Therefore it will cancel the circular arc from z− to z+. This explains why the integration
contour in Sz+ crosses (0,∞) when ti � tj and (−∞,0) when ti < tj .

Case 1: −2
√

γ + < c < 2
√

γ +. Observe that �(A(z) − A(z+)) = 0 for all |z| = |z±| =
|√γ +|. Also notice that A(z) − A(z+) has a double zero at z+ and z−. See Fig. 6.

If the contours of integration are deformed as shown in Fig. 6, then

e
√

N(γ +u′−1+c logu′−u′+O(1/
√

N))

e
√

N(γ +w′−1+c logw′−w′+O(1/
√

N))
→ 0

as N → ∞. The integral thus approaches zero, except for the residues at u = w. So√
N

xi−xj
K(ni, xi;nj , xj ) converges to

√
N

xi−xj 1

2πi

z+/
√

N∫
z−/

√
N

du

uxj −xi+1
(1 − u)ni−nj → 1

2πi

z+∫
z−

uxi−xj −1e−(ti−tj )u du.

If ti � tj , then the integration contour crosses (0,∞). If ti < tj , then the contour crosses
(−∞,0).

Case 2: c2 − 4γ + > 0 and c > 0. Deforming the contours of integration as shown in Fig. 7,
the integral becomes zero. The contours do not pass through each other, so no residues appear.
So

√
N

xi−xj
K(ni, xi;nj , xj ) → 0 if ti � tj . This means that det[K(ni, xi;nj , xj )] → 0.

Case 3: c2 − 4γ + > 0 and c < 0. Deform the contours as shown in Fig. 8. Since the w and u

contours pass through each other during the deformation, the integral picks up residues at u = w.
So if ti � tj , then

√
N

xi−xj
K(ni, xi;nj , xj ) converges to
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Fig. 7. Again, the figure on the left shows �(A(z) − A(z+)), with black regions indicating � < 0 and white regions
indicating � > 0.

Fig. 8. On the left is �(A(z)− c log
√

γ +), where the black regions indicate � < 0 and the white regions indicate � > 0.

√
N

xi−xj 1

2πi

∮
wxi−xj −1(1 − w)ni−nj dw = 1

2πi

∮
wxi−xj −1e(tj −ti )w dw

= (tj − ti )
xj −xi

(xj − xi)!

If ti < tj , then there is the integral in z, which cancels with the residues at u = w,

so
√

N
xi−xj

K(ni, xi;nj , xj ) converges to 0. This means that the matrix [K(ni, xi;nj , xj )]
asymptotically has ones on the diagonal and zeroes below. So det[K(ni, xi;nj , xj )] converges
to 1. �
Remark. It is natural to ask what happens when xi/

√
N do not all converge to the same real

number. If xi/
√

N and xj/
√

N converge to different real numbers, then xi − xj diverges. In
that case, K(ni, xi;nj , xj ) → 0. So the determinant det[K(ni, xi;nj , xj )] factors into blocks
corresponding to distinct values of limxi/

√
N . Probabilistically, this means that the probability

of finding a vertical edge becomes independent in different parts of the boundary.
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Fig. 9. This figure shows the equations in (9), with a plotted on the horizontal axis and b plotted on the vertical with
parameter z0.

4.4. Bulk limits with γ ± ∝ N

We now let γ ± depend on N in such a way that γ +/N → a > 0 and γ −/N → b > 0 as
N → ∞. Before we can state the result, some preliminary definitions and lemmas are needed.

For a, b > 0 and c ∈ R, recall that

Ra,b,c(z) = −bz3 + (b − c − 1)z2 + (c + a)z − a.

Lemma 4.4.

(1) The cubic polynomial Ra,b,c(z) has a multiple root iff c is a root of Qa,b(z), where Qa,b(z)

is defined in Section 3.1.
(2) Let q1 � · · · � qm be the real roots of Qa,b . If q1 < c < q2 or qm−1 < c < qm then
Ra,b,c(z) has a pair of complex conjugate roots.

Proof. (1) In general, a polynomial has a multiple root iff its discriminant is zero. The discrimi-
nant of Ra,b,c is exactly Qa,b(c)/16.

(2) A cubic polynomial has nonreal roots iff its discriminant is negative. Since Qa,b diverges
to +∞ in both directions, Qa,b(z) is negative for q1 < z < q2 and qm−1 < z < qm. �
Lemma 4.5. The polynomial Qa,b has a double root at c0 iff a, b and c0 satisfy the equations

a = z3
0

(z0 − 1)3
, b = − 1

(z0 − 1)3
, c0 = −z2

0(z0 − 3)

(z0 − 1)3
(9)

for some z0 ∈ R.

Proof. Since Qa,b(c0) is the discriminant of Ra,b,c0 , Qa,b(z) has a double root at c0 iff Ra,b,c0(z)

has a triple root. For any z0, R has a triple root at z0 iff R(z0) = R′(z0) = R′′(z0) = 0. This gives
three linear equations in the three variables a, b, and c0, which can be solved explicitly. �
Remark. We have a, b > 0 iff z0 < 0. Then −1 < c0 < 0. See Fig. 9.
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One more definition is needed before we can state the main result of this section. Let B be the
incomplete beta kernel defined by

B(k, l; z) = 1

2πi

z∫
z̄

(1 − u)ku−l−1 du,

where the path of integration crosses (0,1) for k � 0 and (−∞,0) for k < 0. The incomplete
beta kernel has been introduced in [27]. It is one of the extensions of the discrete sine kernel
of [5].

Theorem 4.6. Let γ +/N → a and γ −/N → b for positive real numbers a and b. Also let
x1, . . . , xk and n1, . . . , nk depend on N in such a way that ni − nj and are xi − xj constant,
nj/N → 1 and xj /N → c for all 1 � i, j � k. Let q1 � · · · � qm denote the distinct real roots of
Qa,b(x) (m can be 2, 3, or 4). Additionally, assume Qa,b(c) �= 0. Let z+ be a root of Ra,b,c(x)

such that �(z+) � 0 (cf. Lemma 4.4). If m = 4, then

det
[
K(ni, xi;nj , xj )

]
1�i,j�k

→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, c � q1,

det[B(ni − nj , xj − xi; z+)]1�i,j�k, q1 < c < q2,

1, q2 � c � q3,

det[B(ni − nj , xj − xi; z+)]1�i,j�k, q3 < c < q4,

0, c � q4.

If m = 2 or 3, then

det
[
K(ni, xi;nj , xj )

]
1�i,j�k

→
⎧⎨⎩

0, c � q1,

det[B(ni − nj , xj − xi; z+)]1�i,j�k, q1 < c < qm,

0, c � qm.

Proof. The double integral in the correlation kernel of Theorem 3.1 asymptotically becomes

(
1

2πi

)2 ∮ ∮
eN(au−1+bu+c log(u)+log(1−u)+O(1/N))

eN(aw−1+bw+c log(u)+log(1−u)+O(1/N))

dudw

w(u − w)

where the contours are over |u| = r and |w−1| = ε < 1−r . So we can perform a similar analysis
as in Theorem 4.2, except with a more complicated A(z) = az−1 + bz + c log(z) + log(1 − z).
For this proof, it is actually more convenient to write A(z; c) in place of A(z).

First we find which values of c correspond to the edges of the hypothetical limit shape in
Fig. 4. These are the values of c such that A(z; c) − A(z0; c) has a triple zero for some z0 ∈ C.
Requiring A(z; c) − A(z0; c) to have a triple zero at z = z0 is equivalent to requiring A′(z; c)
to have a double zero at z = z0. Multiplying the equation A′(z; c) = 0 by z2(1 − z) gives the
equation Ra,b,c(z) = 0 (note that Ra,b,c(0) = −a and Ra,b,c(1) = −1, which are both nonzero).
By Lemma 4.4, Ra,b,c has a double zero iff c = q1, . . . , qm.

Now we need to determine how to deform the contours appropriately. The analysis here
is almost identical to that of Theorem 4.2. We want to find nonreal values of z0 such that
A(z; c) − A(z0; c) has a double zero. This reduces to looking for nonreal roots of Ra,b,c(z)
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Fig. 10. The shaded regions show �(A(z; c) − A(z+; c)) < 0, while the white regions show � > 0. The first row
corresponds to c < q1, the second row corresponds to q1 < c < q2, the third corresponds to q2 < c < q3, the fourth
corresponds to q3 < c < q4, and the fifth corresponds to c > q4.

in the upper half-plane, which we have defined to be z+. As can be seen from Fig. 4, there are
potentially five different regions of behavior for the bulk limits. The corresponding behavior of
�(A(z; c) − A(z+; c)) is shown in Fig. 10. (These are computer generated figures for specific
values of parameters, however, it is not hard to prove that similar figures arise for any values
of the parameters in the corresponding domains. An example of such an argument can be found
in the beginning of the proof of Theorem 4.9 below.) The arguments of Theorem 4.2 are again
applicable here, except with the new definition of z+. �
4.5. The Airy kernel as an edge limit

Before stating the main result, some definitions are needed.
Let Ai(x) denote the Airy function:

Ai(x) = 1

2π

∞∫
−∞

eis3/3+ixs ds.

This integral only converges conditionally. Shift the contour of integration as shown in Fig. 11.
Along this contour, the function eis3/3 is real and decreases superexponentially.
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Fig. 10. (continued)

Fig. 11. A better contour for the Airy function. The contour goes from ∞e5πi/6 to 0 to eπi/6.
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Define the extended Airy kernel A to be

A(τ1, σ1; τ2, σ2) =
{∫ ∞

0 e−λ(τ1−τ2)Ai(σ1 + λ)Ai(σ2 + λ)dλ if τ1 � τ2,

− ∫ 0
−∞ e−λ(τ1−τ2)Ai(σ1 + λ)Ai(σ2 + λ)dλ if τ1 < τ2.

(10)

It was first obtained in [30] in the context of the polynuclear growth model.
There is a useful representation for A as a double integral.

Proposition 4.7. (See [19, §2.2].) Let ν1, ν2 satisfy ν1 + ν2 + τ1 − τ2 > 0. If τ1 � τ2, then

A(τ1, σ1; τ2, σ2) =
(

1

2πi

)2 ∫
�(u)=ν1

∫
�(w)=ν2

eiσ1u+iσ2w+i(w3+u3)/3

τ2 − τ1 + i(w + u)
dudw.

If τ1 < τ2, then

A(τ1, σ1; τ2, σ2)

=
(

1

2πi

)2 ∫
�(u)=ν1

∫
�(w)=ν2

eiσ1u+iσ2w+i(w3+u3)/3

τ2 − τ1 + i(w + u)
dudw

− 1√
4π(τ2 − τ1)

exp

(
− (σ1 − σ2)

2

4(τ2 − τ1)
− 1

2
(τ2 − τ1)(σ1 + σ2) + 1

12
(τ2 − τ1)

3
)

.

The double integral from Proposition 4.7 can be rewritten as(
1

2πi

)2 ∫ ∫
exp

(
τ1σ1 − τ2σ2 − 1

3
τ 3

1 + 1

3
τ 3

2 − (
σ1 − τ 2

1

)
u + (

σ2 − τ 2
2

)
w

− τ1u
2 + τ2w

2 + 1

3

(
u3 − w3)) dudw

u − w
. (11)

Indeed, just as we deformed the contours of integration for Ai(x), we can deform the contours
of integration in Proposition 4.7. The u-contour can be taken over iν1 + ∞e5πi/6 to iν1 to iν1 +
eπi/6, while the w-contour can be taken from iν2 + ∞e5πi/6 to iν2 to iν2 + eπi/6. Integrating
along these contours also allows for the possibility of ν1 + ν2 + τ1 − τ2 = 0. If we further make
the substitutions w = −iw′ + ν2i and u = iu′ + ν1i, then the double integral becomes(

1

2πi

)2 ∫ ∫
exp

(
−ν1σ1 − ν2σ2 + 1

3
ν3

1 + 1

3
ν3

2 − (
σ1 − ν2

1

)
u + (

σ2 − ν2
2

)
w

+ ν1u
2 + ν2w

2 + 1

3

(
u3 − w3)) dudw

−τ2 + τ1 + ν1 + ν2 + u − w
,

where u is integrated from ∞e−πi/3 to 0 to ∞eπi/3 and w is integrated from ∞e4πi/3 to 0 to
∞e2πi/3. Taking ν1 = −τ1 and ν2 = τ2 turns the double integral into (11). Writing the double
integral in this form is useful when proving the following result.

In the next statement, let Qa,b be the same polynomial as in Section 3.1, see also Section 3.4.
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Theorem 4.8. Let γ +/N → a, γ −/N → b for positive real numbers a and b. Let c1 be a root of
Qa,b(z) and z1 be the double zero of Ra,b,c1(z). Let n1, . . . , nk depend on N in such a way that

nj − N

N2/3
→ tj ∈ R as N → ∞.

Let t̃j = tj z1(1 − z1)
−1 and let x1, . . . , xk depend on N in such a way that

xj − c1N − t̃jN
2/3

N1/3
→ sj ∈ R as N → ∞.

If c1 > 0 or c1 < −1, set K = K . Otherwise, set K = KΔ. Then as N → ∞,

det
[∣∣z1p

1/3
3

∣∣N1/3K(ni, xi;nj , xj )
]

1�i,j�k
→ det

[
A(τi, σi; τj , σj )

]
1�i,j�k

.

Here, p3 denotes the constant

− 1

(1 − z1)3
− 3a

z4
1

+ c1

z3
1

and

τm = tm

2(p3)2/3(z1 − 1)2z1
, σm = τ 2

m − sm

z1p
1/3
3

, 1 � m � k.

Remark. The statement may seem a bit cryptic. Let us explain it in words. There are (potentially)
four edge points (points where the curve becomes horizontal or vertical) as seen in the top curve
in Fig. 4. We consider K for the first point (when c1 > 0) and the fourth point (when c1 < −1),
which means that we look at the largest rows of λ+ and λ−. For the second and third points we
consider KΔ, which means that we look at the largest columns of λ+ and λ−. For the second
and fourth points, det[z1p

1/3
3 K] → det[A], while for the first and third points det[−z1p

1/3
3 K] →

det[A]. At the second and fourth points z1p
1/3
3 is positive, while at the first and third points

z1p
1/3
3 is negative. This corresponds to the fact that in order to obtain the Airy process we need

to flip the sign of particles at the lower edges of λ+ and λ− (the second and fourth edge points,
respectively).

Proof. This proof is similar to the proof of Theorem 4.9, so some of the details will be omitted.
Once again, let A(z; c;d) denote az−1 + bz + c log z + d log(1 − z). Multiplying by the con-

jugating factor

e−NA(z1;xi/N;ni/N)

e−NA(z1;xj /N;nj /N)
= z

−xi

1

z
−xj

1

(1 − z1)
−ni

(1 − z1)
−nj

e−aNz−1
1

e−aNz−1
1

e−bNz1

e−bNz1

allows us to consider A(z;xm/N;nm/N)−A(z1;xm/N;nm/N) instead of A(z;xm/N;nm/N).
The Taylor expansion yields
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N

(
A

(
z; c1 + t̃m

N1/3
+ um

N2/3
;1 + tm

N1/3

)
− A

(
z1; c1 + t̃m

N1/3
+ um

N2/3
;1 + tm

N1/3

))
= 1

3
(z′)3 − tm

2(p3)2/3(z1 − 1)2z1
(z′)2 + sm

(p3)1/3z1
z′ + o(1)

where z′ = (p3)
1/3N1/3(z − z1). The contours of integration for u and w are shown in Fig. 12.

Now let u′ = (p3)
1/3N1/3(u − z1) and w′ = (p3)

1/3N1/3(w − z1). Just like in the proof of
Theorem 4.9, the Taylor series gives rise to the exponential terms in 11. In addition, the term
dudw
u−w

becomes N−1/3p
−1/3
3 , while the extra w in the denominator becomes z−1

1 . We break down
the following analysis into cases.

Case 1: c1 > 0. This corresponds to the fourth row in Fig. 12 and the top edge point of
Fig. 3. In this case, p3 is negative, so the contours for u′ and w′ agree with the contours in
expression (11). Since 0 < z1 < 1, this implies that t̃j − t̃i > 0 if tj − ti > 0. Since nj > ni

translates to tj > ti , this means that xj − xi can be assumed positive if nj > ni . Therefore the
integral in z from expression (4) can be written as

−
(

nj − nj + xj − xi − 1

xj − xi

)
= −

(
nj − ni + xj − xi

xj − xi

)
nj − ni

nj − ni + xj − xi

.

Using the Laplace–Demoivre Theorem shows that

−N1/3 z
xj −x1
1

(1 − z1)
ni−nj

(
nj − ni + xj − xi − 1

xj − xi

)
→ − |1 − z1|√

2π |z1|(tj − ti )
exp

(
− (1 − z1)

2

2|z1|
(sj − si)

2

|tj − ti |
)

. (12)

Taking the last term in Proposition 4.7 and multiplying by exp(−τ1σ1 +τ2σ2 + 1
3τ 3

1 − 1
3τ 3

2 ) yields

−|p3|1/3|z1|1/2 |1 − z1|√
2π(tj − ti )

exp

(
− (1 − z1)

2

2z1

(sj − si)
2

tj − ti

)
.

We have seen that

∣∣z1p
1/3
3

∣∣N1/3 z
xj −x1
1

(1 − z1)
ni−nj

K(ni, xi;nj , xj )

→ exp

(
−τ1σ1 + τ2σ2 + 1

3
τ 3

1 − 1

3
τ 3

2

)
A(τi, σi; τj , σj ), (13)

which gives the result.
Case 2: c1 < −1. This corresponds to the first row in Fig. 12. Here, z1 > 1 and p3 > 0.

Making the deformations gives residues at u = w, which can be written as

− 1

2πi

∮
zxi−xj −1

(1 − z)nj −ni
dz.
|z−1|=ε<1
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Fig. 12. The left column shows �(A(z; c0;1) − A(z0; c0;1)), with shaded regions showing � < 0 and white regions
showing � > 0. The right column shows the local behavior around z1. The first row occurs when c1 is the smallest real
root of Qa,b , the second row when c1 is the second smallest real root, and so forth. If Qa,b has only two real roots, the
middle two rows do not occur.

If ni � nj , then these residues are zero. If ni < nj , then ti < tj , which implies xi > xj , so
the integral in z from expression (4) is zero. So when ni < nj , the extra term can be written
as
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(−1)nj −ni−1
(

xi − xj − 1

nj − ni − 1

)
= (−1)nj −ni−1

(
xi − xj

nj − ni

)
nj − ni

xi − xj

.

Using Laplace–Demoivre, this binomial converges to the right-hand side of Eq. 12. So expression
(13) holds.

Case 3: −1 < c1 < 0. If a and b are small enough, then Qa,b has two roots between −1 and 0.
The second row in Fig. 12 corresponds to the smaller root, while the third row corresponds to the
larger root. In the second row p3 is positive, while in the third row p3 is negative. In both rows
z1 < 0.

Making the deformations gives residues at u = w, which can be written as

− 1

2πi

∮
|z|=r<1

zxi−xj −1

(1 − z)nj −ni
dz.

If ni � nj , then this expression cancels with the z-integral in expression (5). If ni > nj , then the
extra term can be written as

−(−1)xj −xi

(
ni − nj

xj − xi

)
.

Once again, this converges to expression (12). So expression (13) holds. �
4.6. The Pearcey kernel as an edge limit

We now find the edge limit at the point where the two limit curves in the middle figure in
Fig. 4 just barely merge. In this case, we analyze the limiting behavior of KΔ from Corollary 3.2
instead of K , which corresponds to the fact that we consider the limit of the point process formed
by columns of λ± rather than by their rows, see Fig. 1.

Theorem 4.9. Fix z0 < 0 and let a, b and c0 satisfy Eqs. (9). Let γ +/N → a and γ −/N → b as
N → ∞. Let n1, . . . , nk depend on N in such a way that (nj − N)/

√
N → 2tj ∈ R as N → ∞.

Set ζ = (z0 − 1)|z0|−1/2 < 0. Define

t̃j = z0

1 − z0
tj

and let x1, . . . , xk depend on N in such a way that

ζ(xj − c0N − t̃j
√

N)

N1/4
→ sj ∈ R

as N → ∞. Then as N → ∞,

det
[−ζ−1N1/4KΔ(ni, xi;nj , xj )

] → det
[
P(ti , si; tj , sj )

]

1�i,j�k 1�i,j�k
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Fig. 13. The contour for u. Fig. 14. The contour for w.

where

P(ti , si; tj , sj ) =
(

1

2πi

)2 ∫ ∫
ew4−u4+tiu

2−tj w2+siu−sj w dudw

u − w

− 1√
2π |ti − tj |

exp

(
− (sj − si)

2

2(ti − tj )

)
, ti > tj ,

(
1

2πi

)2 ∫ ∫
ew4−u4+tiu

2−tj w2+siu−sj w dudw

u − w
, ti � tj , (14)

where u is integrated from −i∞ to i∞ and w is integrated on the rays from ±∞eiπ/4 to 0 to
±∞e−iπ/4 as in Figs. 13 and 14.

The kernel P(ti , si; tj , sj ) is called the Pearcey kernel and it was previously obtained in [1,
13,14,28,31].

Proof. The argument is similar to the proofs of Theorems 4.2 and 4.6. It is convenient to let
A(z; c;d) denote az−1 + bz + c log z + d log(1 − z). Then the double integral in the correlation
kernel of Corollary 3.2 becomes asymptotically

−
(

1

2πi

)2 ∫ ∫
eN(au−1+bu+(xi/N) logu+(ni/N) log(1−u)+O(1/N))

eN(aw−1+bw+(xj /N) logw+(nj /N) log(1−w)+O(1/N))

dudw

w(u − w)
(15)

= −
(

1

2πi

)2 ∫ ∫
eN(A(u;xi/N;ni/N)+O(1/N))

eN(A(w;xj /N;nj /N)+O(1/N))

dudw

w(u − w)
. (16)

Multiplying the integrand by the conjugating factor

e−NA(z0;xi/N;ni/N)

e−NA(z0;xj /N;nj /N)
= z

−xi

0

z
−xj

0

(1 − z0)
−ni

(1 − z0)
−nj

e−aNz−1
0

e−aNz−1
0

e−bNz0

e−bNz0
,

which cancels when taking the determinant for correlation functions, allows us to consider
A(z;xm/N;nm/N) − A(z0;xm/N;nm/N) instead of A(z;xm/N;nm/N).

Deform the contours as shown in Fig. 15. Let us show that these contours exist. We know that
the level lines only intersect at z0 (the only critical point of the function A(z; c0;1)−A(z0; c0;1),
since A′(z) = −b(z − z0)

3z−2(1 − z)−1), and they are symmetric with respect to the real axis.
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Fig. 15. The figure on the left shows �(A(z; c0;1)−A(z0; c0;1)), with black regions indicating � < 0 and white regions
indicating � > 0.

Restrict �(A(z; c0;1) − A(z0; c0;1)) to the real axis. For |x| = ε small, the main contribution
to �(A(x; c0;1)) comes from the term ax−1. So �(A(x; c0;1)) is positive at x = ε > 0 and
negative at x = ε < 0, so the level lines cross the real axis at 0. For x = 1 − ε with ε small, the
main contribution to �(A) comes from the term log |1 − x|. This implies that �(A) is negative
x = 1 − ε, so the level lines cross the real axis somewhere between 0 and 1. For large x, the main
contribution to �(A) comes from bx, so �(A) is positive for large x. Therefore the level lines
cross the real axis at a third point. Since A′(z) = −b(z − z0)

3z−2(1 − z)−1 is positive for z < z0,
negative for z ∈ (z0,0) ∪ (0,1), and positive for z > 1, the levels lines cannot intersect the real
axis at any other point.

For a fixed x � 0, the main contribution to �(A(x)) comes from bx, so �(A(x)) is negative.
However, as y increases, �(A(x + iy)) goes to +∞, since the main contributions come from
c0 log |x + iy| + log |1 − x − iy|, and c0 > −1. This means there must be level lines going off to
infinity. Restricting �(A(z; c0;1)) to a circle |z| = R � 1 shows that these are the only level lines
that go to infinity. Indeed, note that �(A(z; c0;1)) > 0 if z = R, and as z moves counterclockwise
around the circle, the main contribution to the changes in �(A(z)) comes from bz. Thus �(A(z))

decreases as z moves counterclockwise around the circle in the upper half-plane, so the circle
can intersect at most one level line in the upper half-plane.

In the upper half-plane, there are four level lines coming from the critical point z0. We know
that three of these lines cross the real axis, while one of them goes off to infinity. Since they
can only intersect at z0, the only possibility is a picture as shown in Fig. 15. This justifies the
existence of the contours.

These deformations cause the kernel to pick up residues at u = w. The expression for these
residues is

− 1

2πi

∮
zxi−xj −1

(1 − z)nj −ni
dz (17)

where the integral goes around a circle |z| < 1. If ni � nj , then expression (17) cancels with the
z-contour in expression (5). If ni > nj , then explicitly evaluating the integral yields

−(−1)xj −xi

(
ni − nj

)
.

xj − xi
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The binomial can be approximated by the Demoivre–Laplace Theorem. For large N ,

−N1/4z
xj −xi

0 (1 − z0)
nj −ni (−1)xj −xi

(
ni − nj

xj − xi

)

≈ − 1√
2π(ti − tj )

exp

(
− (sj − si)

2

2(ti − tj )

)
.

So when ti > tj , we obtain the extra exponential term in Eq. (14).
For large values of N , all the contributions to the double integral come from near the point z0.

Taking the Taylor expansion around z0 yields

N

(
A

(
z; c0 + t̃m

N1/2
+ um

N3/4
;1 + 2tm

N1/2

)
− A

(
z0; c0 + t̃m

N1/2
+ um

N3/4
;1 + 2tm

N1/2

))
= smz′ + tm(z′)2 − (z′)4 + o(1)

where z′ = z−1
0 ζ−1N1/4(z − z0). This suggests the substitutions

u′ = z−1
0 ζ−1N1/4(u − z0), w′ = z−1

0 ζ−1N1/4(w − z0).

By making these substitutions, we are zooming in at the point z0 in Fig. 15. Then u′ is integrated
as shown in Fig. 13 while w′ is integrated as shown in Fig. 14.

The exponential terms in expression (16) converge to the exponential terms in (14). The term
dudw
u−w

turns into z0ζN−1/4 du′ dw′
u′−w′ . For large N , the contributions to the correlation kernel become

focused around z0, so the extra w in the denominator becomes z−1
0 . The proof of Theorem 4.9 is

complete. �
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Appendix A. Generalities on random point processes

Let X be a locally compact separable topological space. A point configuration X in X is a
locally finite collection of points of the space X. For our purposes it suffices to assume that the
points of X are always pairwise distinct. Denote by Conf(X) the set of all point configurations
in X.

A relatively compact Borel subset A ⊂ X is called a window. For a window A and X ∈
Conf(X), set NA(X) = |A ∩ X| (number of points of X in the window). Thus, NA is a function
on Conf(X). Conf(X) is equipped with the Borel structure generated by functions NA for all
windows A.

A random point process on X is a probability measure on Conf(X). One often uses the term
particles for the elements of a random point configuration.
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Given a random point process on X, one can usually define a sequence {ρn}∞n=1, where ρn is
a symmetric measure on Xn called the nth correlation measure. Under mild conditions on the
point process, the correlation measures exist and determine the process uniquely.

The correlation measures are characterized by the following property: For any n � 1 and a
compactly supported bounded Borel function f on Xn one has∫

Xn

fρn =
〈 ∑

xi1 ,...,xin∈X

f (xi1, . . . , xin)

〉
X∈Conf(X)

where 〈·〉 denotes averaging with respect to our point process, and the sum on the right is taken
over all n-tuples of pairwise distinct points of the random point configuration X.

Often one has a natural measure μ on X (called reference measure) such that the correlation
measures have densities with respect to μ⊗n, n = 1,2, . . . . Then the density of ρn is called the
nth correlation function and it is usually denoted by the same symbol ρn.

The first correlation function ρ1 is often called the density function as it measures the average
density of particles.

For point processes on a finite or countable discrete space X it is natural to choose the counting
measure as the reference measure μ, and then there is a simpler way to define the correlation
functions: For any n = 1,2, . . . and any pairwise distinct x1, . . . , xn ∈ X,

ρn(x1, . . . , xn) = Prob
{
X ∈ Conf(X)

∣∣ X ⊃ {x1, . . . , xn}
}
.

If X is discrete, a random point process on X is always uniquely determined by its correlation
functions.

The reader can find more information on random point processes in [15].
A point process on X is called determinantal if there exists a function K(x,y) on X × X

such that the correlation functions (with respect to some reference measure) are given by the
determinantal formula

ρn(x1, . . . , xn) = det
[
K(xi, xj )

]n
i,j=1

for all n = 1,2, . . . . The function K is called the correlation kernel.
Note that the correlation kernel is not defined uniquely: K(x,y) and f (x)

f (y)
K(x, y) define the

same correlation functions for an arbitrary nonzero function f on X.
Assume that X is discrete. Define a map Δ by

Δ : Conf(X) → Conf(X), X → X\X.

Given a point process P on X, its pushforward under Δ is also a point process on X; denote it
by PΔ. The map Δ is often referred to as particle-hole involution, because the particles of PΔ

are located exactly at those points of X where there are no particles of P . With this notation, we
have the following proposition.

Proposition A. If P is a determinantal point process with correlation kernel K(x,y), then PΔ

is also a determinantal point process with correlation kernel

KΔ(x, y) = δx,y − K(x,y).
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The proof is an application of the inclusion–exclusion principle, see Proposition A.8 of [8].

Appendix B. Determinantal structure of the correlation functions

Let X1, . . . ,XN be finite sets, and

φn(·,·) : Xn × Xn+1 → C, n = 1, . . . ,N − 1,

φn(virt, ·) :Xn+1 → C, n = 0, . . . ,N − 1,

Ψ N
j (·) : XN → C, j = 0, . . . ,N − 1,

be arbitrary functions on the corresponding sets. Here the symbol virt stand for a “virtual” vari-
able, which is convenient to introduce for notational purposes. In applications virt can sometimes
be replaced by +∞ or −∞.

Set X = X1 � X2 � · · · � XN , and to any point configuration X ∈ Conf(X) (the definition of
Conf(X) can be found in Appendix A) assign its weight W(X) as follows. The weight W(X) is
zero unless X has exactly n points in each Xn, n = 1, . . . ,N . In the latter case, denote the points
of X in Xn by xn

k , k = 1, . . . , n. Thus,

X = {
xn
k

∣∣ k = 1, . . . , n; n = 1, . . . ,N
}
.

Set

W(X) =
N−1∏
n=1

det
[
φn

(
xn
i , xn+1

j

)]n+1
i,j=1 · det

[
Ψ N

N−i

(
xN
j

)]N
i,j=1,

where xn
n+1 = virt for all n = 1, . . . ,N .

In what follows we assume that the partition function of our weights does not vanish:

ZN :=
∑

X∈Conf(X)

W(X) �= 0.

Under this assumption, the normalized weights W̃ (X) = W(X)/ZN define a (generally speaking,
complex valued) measure on Conf(X) of total mass 1. Using the terminology of Appendix A, one
can say that we have a (complex valued) random point process on X, and its correlation functions
are defined accordingly. We are interested in computing these correlation functions.

We need to introduce more notation. Define

φ(n1,n2)(x, y) =
{

(φn1 ∗ · · · ∗ φn2−1)(x, y), n1 < n2,

0, n1 � n2,

where we use the notation (f ∗ g)(x, y) = ∑
z f (x, z)f (z, y), and the sum is taken over all

possible values of z. For n = 1, . . . ,N , set

Ψ n
j (x) = (

φ(n,N) ∗ Ψ N
j

)
(x) =

∑
φ(n,N)(x, y)Ψ N

j (y), j = 0, . . . ,N − 1.
y∈XN
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Finally, introduce an N × N matrix M by

Mij = (
φi−1 ∗ Ψ i

i−j

)
(virt) =

∑
x∈Xi

φi−1(virt, x)Ψ i
i−j (x), i, j = 1, . . . ,N.

The following statement is a part of Lemma 3.4 in [7].

Proposition B. The random point process on X defined by the weights W̃ above is determinantal.
If we denote the value of the correlation kernel of the process at x1 ∈ Xn1 and x2 ∈ Xn2 by
K(n1, x1;n2, x2), then one choice of the correlation kernel is given by

K(n1, x1;n2, x2) = −φ(n1,n2) +
N∑

k=1

Ψ
n1
n1−k(x1)

n2∑
l=1

[
M−1]

kl

(
φl−1 ∗ φ(l,n2)

)
(virt, x2).

Remark. One shows that the assumption ZN �= 0 that we imposed above, is equivalent to the
fact that the matrix M is invertible. In fact, up to a sign one has ZN = detM .

The proof of Proposition B given in [7] is based on the algebraic formalism of [12]. Another
proof can be found in Section 4.2 of [17]. A more general statement, where the determinantal
property holds for a wider class of measures, was proved as Theorem 4.2 in [6], and a different
proof is available in Section 4.4 of [16].

Although we stated Proposition B for the case when all sets Xn are finite, one easily extends
it to a more general setting. Indeed, the determinantal formula for the correlation functions is
an algebraic identity, and the limit transition to the case when Xn are allowed to be countably
infinite is immediate, under the assumption that all the sums needed to define the ∗-operations
above are absolutely convergent. Another easy extension (which we do not need in this paper) is
the case when the spaces Xj become continuous, and the sums approximate the corresponding
integrals over these spaces.
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