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a b s t r a c t

The zebrafish extracellular matrix (ECM) is a dynamic and pleomorphic structure consisting of numerous
proteins that together regulate a variety of cellular and morphogenetic events beginning as early as
gastrulation. The zebrafish genome encodes a similar complement of ECM proteins as found in other
vertebrate organisms including glycoproteins, fibrous proteins, proteoglycans, glycosaminoglycans, and
interacting or modifying proteins such as integrins and matrix metalloproteinases. As a genetic model
system combined with its amenability to high-resolution microscopic imaging, the zebrafish allows
interrogation of ECM protein structure and function in both the embryo and adult. Accumulating data
have identified important roles for zebrafish ECM proteins in processes as diverse as cell polarity,
migration, tissue mechanics, organ laterality, muscle contraction, and regeneration. In this review,
I highlight recently published data on these topics that demonstrate how the ECM proteins fibronectin,
laminin, and collagen contribute to zebrafish development and adult homeostasis.

& 2014 Elsevier Inc. All rights reserved.

Introduction

The extracellular matrix (ECM) is composed of a complex set of
macromolecules that is produced by cells and organized into a
meshwork through interactions with specific cell surface matrix
receptors. Fibronectin and laminin for example, bind transmem-
brane proteins of the integrin family. It is well established that
matrix assembly into fibrils is a cell-mediated process involving
integrin engagement of the actin cytoskeleton and activation of
intracellular signaling pathways (Wierzbicka-Patynowski and
Schwarzbauer, 2003). Integrin binding to matrix proteins also
creates tension on the ECM and thus promotes further integrin
binding and crosslinking of fibrils (Schwarzbauer and Sechler,
1999). In addition to integrin receptors, generation of fibrillar
ECM matrices can require mechanical forces created by cell–cell
adhesion (Schwarzbauer and DeSimone, 2011). In epithelial tissues,
the ECM is assembled into a specialized structure called the basal
lamina (or basement membrane) and consists of several proteins
including laminin and type IV collagen. Laminin, with its multidomain
stem-like structure, functions as an organizing center for basal laminae
(Colognato and Yurchenco, 2000). Type IV collagen exists as long
interacting fibers that form twisted structures that crisscross through-
out the basal lamina and provide tensile strength (Yurchenco et al.,
1986). Unlike thin basement membranes, the ECM associated with
interstitial tissues forms a large macromolecular structure consisting of
numerous types of ECM proteins including fibrous collagens, proteo-
glycans, glycosaminoglycans, and glycoproteins such as laminin and

fibronectin. Interstitial tissues also contain cells (e.g. fibroblasts,
chondroblasts, and osteoblasts) that both secrete ECM proteins
and also control ECM assembly by exerting tension on matrix
proteins through non-covalent interactions. Fibrillar collagens are
a major component of interstitial ECM and provide structural
support for cells in part through interactions with fibronectin and
integrins.

It has long been recognized that ECM proteins provide more
than just structural support for cells and tissues and a scaffold or
barrier for cell migration. For example, pioneering work demon-
strated that epithelial cell gene expression could be regulated by
changes in the surrounding ECM (Bissell et al., 1982). The model of
dynamic reciprocity states that through interactions with trans-
membrane receptors, ECM proteins influence the cytoskeleton and
subsequently changes in gene expression levels (Bissell and
Barcellos-Hoff, 1987; Bissell et al., 1982). The nature of an ECM
meshwork also has a strong impact on the movement and
availability of secreted molecules and thus the activation of signal
transduction pathways. Proteoglycans, with their covalently
attached glycosaminoglycan side chain(s), are particularly well
known for the ability to interact with a variety of growth factors.
For example, the Drosophila melanogaster glypican family member
Dally (encoded by division abnormally delayed) regulates both
TGFβ/BMP and Wingless signaling at the cell surface (Jackson
et al., 1997; Tsuda et al., 1999). Even in regards to cell motility,
data suggest that interactions between cells and their surrounding
ECM can regulate both ECM rigidity and cell migration/invasion
(Bordeleau et al., 2010; Kim et al., 2014).

Much of our knowledge regarding the diverse functions of ECM
proteins has come from model organisms such as fly, frog, fish,
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chicken, and mouse. While some of the first reports on cloning and
expression of zebrafish ECM proteins appeared in the 1990s
(Higashijima et al., 1997), publications on the analysis of ECM
structure and function have increased dramatically over the last
decade. For a comprehensive review on the role of multiple
zebrafish ECM and related proteins during development (see
Mundell and Jessen, 2013). Notably, as researchers delve more
deeply into the molecular mechanisms underlying various cellular
processes, ECM proteins and their regulators are repeatedly being
recognized for their significant roles. The goal of this review is to
discuss recent findings that highlight the diverse roles played by
the ECM proteins fibronectin, laminin, and collagen in the embryo-
nic and adult zebrafish. The topics of these papers are organized
into six sections that together cover multiple developmental
stages and processes (gastrulation, somitogenesis, organogenesis,
formation of skeletal muscle, heart development, and adult heart
regeneration). Each section includes a background for the topic
discussed and provides, when necessary, general information
regarding the genetic characterization and expression of zebrafish
ECM genes and their encoded proteins.

ECM and planar cell polarity during gastrulation

Gastrulation is the process whereby the three embryonic germ
layers (ectoderm, mesoderm, and endoderm) are established and
involves complex morphogenetic cell movements that shape the
body plan into an embryo with anterior–posterior and dorsal–
ventral axes (Jessen and Solnica-Krezel, 2005; Solnica-Krezel,
2005). Unlike zebrafish, it has been well established that ECM
proteins influence amphibian gastrulation (Boucaut and Darribere,
1983; Lee et al., 1984) with fibronectin/Integrin α5β1 interactions
being required for polarized membrane protrusive activity under-
lying the gastrulation cell movement termed convergent extension
(Davidson et al., 2006; Marsden and DeSimone, 2003). Convergent
extension is the narrowing of a tissue in one direction with
simultaneous extension in the perpendicular direction and
requires the cell behavior of mediolateral intercalation (Keller
and Tibbetts, 1989; Keller et al., 1985). Loss of fibronectin or
integrin activity produces misshapen frog gastrula embryos with
shortened and broadened body axes, hallmarks of disrupted
convergent extension (Skoglund and Keller, 2010). By contrast,
loss of fibronectin in the mouse is embryonic lethal producing
numerous problems associated with mesoderm morphogenesis
including somite and heart defects (George et al., 1993; Georges-
Labouesse et al., 1996).

What then is the nature of the ECM in the early zebrafish
embryo? The most current study of ECM dynamics in zebrafish
gastrula-stage embryos (6–10 h post-fertilization) analyzed fibro-
nectin and laminin protein expression (Fig. 1) (Latimer and Jessen,
2010). Fibronectin is a large multidomain dimeric glycoprotein
typically expressed in both embryonic and adult tissues as either a
soluble or insoluble form. Insoluble fibronectin constitutes a major
ECM protein and is assembled from a dimer into a fibrillar
meshwork (Schwarzbauer and Sechler, 1999) and it is clear that
the state of the fibrillar fibronectin matrix can have different
effects on embryonic morphogenetic cell movements (Rozario
et al., 2009). The zebrafish genome encodes two fibronectin
isoforms, Fibronectin 1 and Fibronectin 1b (Sun et al., 2005;
Zhao et al., 2001). The expression of fibronectin1 mRNA (natter is
the mutation) is restricted in the early embryo (prior to 24 h post-
fertilization) localizing to mesoderm, posterior notochord, tailbud,
and yolk syncytial layer (Thisse et al., 2004; Trinh and Stainier,
2004). Fibronectin1b mRNA expression is also restricted localizing
to somitic and paraxial mesoderm at early embryonic stages
(Thisse et al., 2004). Unlike fibronectin, laminins consist of

different combinations of alpha, beta, and gamma subunits and
the zebrafish genome encodes at least 10 laminin genes with
distinct and overlapping mRNA expression patterns. Notable
expression domains include the eye, brain and spinal cord,
pharyngeal arches, notochord, and trunk muscle (Sztal et al.,
2011). Unlike fibronectin and laminin (Latimer and Jessen, 2010),
few collagen family members are expressed during gastrulation
and these are predominantly restricted to axial tissue (Rauch et al.,
2003; Thisse et al., 2001, 2004).

Gastrulation-stage expression of fibronectin and laminin pro-
teins is first detected by immunofluorescence at approximately
65% epiboly (7.3 h post-fertilization) and localizes to the epiblast–
hypoblast boundary (Latimer and Jessen, 2010). As gastrulation
proceeds, fibronectin and laminin expression and fibrillogenesis
increases and a new domain appears between the mesendodermal
cells and the underlying extra-embryonic yolk syncytial layer
(Fig. 1). Fibronectin fibrils also extend between individual cells
and associate with protrusions produced by migrating deep
mesodermal cells (see Fig. 1 and Latimer and Jessen, 2010). These
data indicate that the ECM in gastrula-stage zebrafish embryos
forms a layer at the ectoderm–mesoderm tissue boundary and
beneath and surrounding the deep mesodermal cells. The precise
role of these matrices during gastrulation remains unclear but, as
in frog embryos, ECM proteins likely influence polarized cell
behaviors necessary for zebrafish convergence and extension cell
movements. This notion is supported by data showing that
antisense morpholino oligonucleotide-mediated knockdown of
both fibronectin1 and fibronectin1b produces misshapen zebrafish
embryos with phenotypes characteristic of convergence and
extension defects (Latimer and Jessen, 2010).

In zebrafish, it has become clear that gastrulation cell move-
ments are regulated by homologs of D. melanogaster planar cell
polarity genes including vang-like 2 (vangl2), prickle, and frizzled
(Carreira-Barbosa et al., 2003, 2009; Jessen et al., 2002; Lin et al.,
2010). During zebrafish gastrulation, planar cell polarity is defined
as the elongation and mediolateral alignment of both mesodermal
and ectodermal cell populations (Jessen et al., 2002; Topczewski et
al., 2001). Loss of function mutations in vangl2 for example,
produce misshapen embryos with defective convergence and
extension (Jessen et al., 2002). Significantly, data have now
identified relationships between zebrafish planar cell polarity
proteins and assembly/organization of the ECM. For example, it
was shown that vangl2/trilobite mutant embryos (Jessen et al.,
2002; Solnica-Krezel et al., 1996) have increased matrix metallo-
proteinase activity and decreased fibronectin protein levels
(Williams et al., 2012). Mechanistically, it is thought that the
transmembrane protein Vangl2 regulates endocytosis and cell
surface levels of membrane-type 1 matrix metalloproteinase
(Mmp14) and that Mmp14 could function downstream of Vangl2
to influence convergence and extension cell movements (Coyle
et al., 2008; Williams et al., 2012).

Vangl2 is a four-pass transmembrane planar cell polarity
protein thought to regulate cell behaviors through a physical
interaction with the cytosolic protein Prickle (Carreira-Barbosa et
al., 2003). Recent work has now shown that, similar to vangl2/
trilobite mutant embryos, wild-type embryos injected with prick-
le1a morpholino exhibit reduced fibronectin protein expression
(Dohn et al., 2013). While it is unclear whether Vangl2 and
Prickle1a interactions are required for Mmp14 trafficking to and
from the cell surface, these data indicate that two so-called core
planar cell polarity proteins regulate ECM dynamics during zebra-
fish gastrulation. Similar to loss of Vangl2 or Prickle1a function,
reduced activity of other planar cell polarity proteins such as
Frizzled7 and the heparan sulfate proteoglycan and Wnt co-
receptor Glypican4 also produces strong convergence and extension
phenotypes. However, gastrula-stage frizzled7a/7b and glypican4/
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knypekmutant embryos exhibit increased fibronectin fibrillogenesis
as indicated by immunofluorescence (Fig. 2) (Dohn et al., 2013). This
increase is not associated with an increase in fibronectin protein
expression supporting the notion that it is likely due to increased
matrix assembly and not disrupted matrix metalloproteinase activ-
ity. Furthermore, it was shown that glypican4/knypek mutant

embryos have increased cell surface cadherin expression and cell–
cell adhesion (Dohn et al., 2013). These data raise several important
questions regarding the relationship between planar cell polarity
and ECM assembly. First, how can disruption of Vangl2 and
Glypican4 function produce embryos with similar convergence
and extension phenotypes (Marlow et al., 1998; Solnica-Krezel

Fig. 1. Fibronectin (FN) and laminin (LN) expression during zebrafish gastrulation. (A) Fibronectin and laminin expression in cross-sectioned (A–F) and sagittally sectioned
(E and G) gastrula-stage embryos. Insets in (A) and (D) show the cross-section plane (horizontal lines) while the inset in panel (G) depicts the sagittal-section plane (vertical
line); arrowhead in (G) marks the embryonic midline or notochord (Nc). (A and B) At 80% and 90% epiboly fibronectin localizes to the epiblast–hypoblast boundary,
arrowheads. (C) At yolk plug closure two fibronectin domains are visible, the ectoderm–mesoderm boundary (formally epiblast–hypoblast) and the deeper mesendoderm–

yolk boundary. Fibronectin is also observed adjacent to the Nc. (D) By the end of gastrulation, fibronectin assembly becomes more fibrillar and continues to define germ layer
tissue boundaries. (E) Laminin expression at 80% epiboly localizes to the deep mesendoderm–yolk boundary, arrowhead. (e) Notably at this stage, in sagittally sectioned
embryos, laminin is observed underneath internalized hypoblast cells near the blastoderm margin (arrowheads). (F) By the end of gastrulation, laminin expression
demarcates tissue boundaries similar but not identical to fibronectin. (G) Fibronectin expression in membrane-GFP injected wild-type embryos. Arrowheads denote deep
membrane-GFP-labeled mesendodermal cells. Scale bars, 20 μm. Adapted from Latimer and Jessen (2010) with permission.
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et al., 1996) yet cause such different effects on fibronectin matrix
assembly? Second, what are the roles of pericellular proteolysis of
ECM substrates and cell adhesion during zebrafish gastrulation?
Third, how do cell–ECM interactions influence the establishment of
planar cell polarity and directed cell migration? Fourth, does the
ECM move with migrating gastrula cells, as shown in chick (Zamir
et al., 2008), and is this required to maintain planar cell polarity?

ECM, somitogenesis, and trunk elongation

It is well known that fibronectin, laminin, and collagen-
containing extracellular matrices function as substrates for cell
migration events both during embryonic development and in
disease processes such as tumor progression. However, cell–ECM
interactions also regulate tissue level morphogenetic processes.
Somites are transient epithelial segmental structures that form as
bilateral pairs along the anterior–posterior body axis of the
developing embryo (Holley, 2007). Somites are derived from
mesenchymal presomitic mesoderm and a molecular oscillator
(cycles of positive and negative feedback) termed the segmenta-
tion or somite clock regulates their formation (Julich et al., 2005,
2009). The expression of zebrafish fibronectin and laminin at
somitic boundaries has been recognized for more than a decade

(Crawford et al., 2003). Furthermore, the expression of Integrin α5,
paxillin, and focal adhesion kinase at intersomitic furrows strongly
suggests that integrin-ECM adhesion plays a key role in somitic
boundary formation (Crawford et al., 2003; Henry et al., 2001;
Julich et al., 2005). This is supported by the observation that
fibronectin and Integrinα5 knockout mice have defects in somito-
genesis (George et al., 1993; Yang et al., 1999). The zebrafish
genome contains at least 17 integrin or integrin-like genes
including genes encoding 9 alpha and 8 beta subunits. A compar-
ison of fibronectin1 and fibronectin1b mRNA localization with
integrin receptor subunits integrinα5 and integrinβ1 identifies
distinct and overlapping expression domains including adaxial
cells (muscle precursor cells adjacent to the notochord), posterior
tailbud, pre-somitic mesoderm, notochord, and somites (Julich et
al., 2005; Thisse et al., 2001, 2004).

It was proposed that, independent of the Notch-mediated
oscillator clock, Integrin α5 adhesion to fibronectin is required
for the assembly of intersomitic ECM and necessary for both
epithelialization and maintenance of somite boundaries (Julich
et al., 2005; Koshida et al., 2005). Notably, integrinα5 mutant
zebrafish embryos have undetectable levels of Y397 phosphory-
lated focal adhesion kinase perhaps suggesting that the formation
of cell–ECM adhesions is disrupted (Koshida et al., 2005). However,
the phosphorylation of focal adhesion kinase at other amino acids

Fig. 2. glypican4 and frizzled7 mutant embryos have increased fibronectin assembly. (A–C) Top panels show morphological convergence and extension phenotypes at tailbud
stage (see arrowheads) of wild type, glypican4 mutant, and maternal-zygotic frizzled7a/7b double mutant embryos. Middle two panels show confocal images of fibronectin
(Fn) immunolabeling without and with nuclear DAPI staining. Scale bars¼20 μm. The bottom images in (A) and (B) show Fn expression in cross-sections (x.s.) of tailbud
stage embryos (n, notochord). Adapted from Dohn et al. (2013) with permission.
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in integrinα5 mutant embryos warrants investigation. Presomitic
mesodermal cells undergo morphological changes to become
polarized epithelial cells that border nascent somite boundaries
(Barrios et al., 2003; Henry et al., 2000) and this organization is
lost in integrinα5 and fibronectin1 mutant embryos (Koshida et al.,
2005). Because fibronectin fibrillogenesis is a cell-mediated pro-
cess (Mao and Schwarzbauer, 2005), interactions between Integrin
α5β1 expressed by adaxial cells and secreted fibronectin dimers
likely trigger cross-linking and further integrin–fibronectin bind-
ing (Koshida et al., 2005). However, it is unknown how cell–ECM
interactions and integrin signaling promote epithelialization of
somitic boundary cells. Ephrin receptor tyrosine kinase (Eph)-
mediated signaling regulates Integrin α5 clustering and this event
precedes ECM formation and is independent of fibronectin binding
(Julich et al., 2009). Interestingly, cell surface Integrin α5 on
adjacent paraxial mesodermal cells non-cell autonomously inhi-
bits Integrin α5 clustering, fibronectin binding, and fibrillogenesis
along somitic boundaries (Julich et al., 2009). Derepression
induced by Ephrin B2a reverse signaling initiates Integrin α5
clustering and subsequent fibronectin binding thus providing a
mechanism to restrict ECM assembly to specific tissue surfaces
(Julich et al., 2009).

Recent work has now implicated the small monomeric GTPase
Rap1b as a potential regulator of Integrin α5 and inside-out
signaling and fibronectin matrix assembly (Lackner et al., 2013).
Knockdown of rap1b function in an integrinα5 mutant background
causes a large reduction in fibronectin matrix assembly surround-
ing the somites. This synergistic interaction subsequently leads to
a failure in somite border formation along the anterior–posterior
body axis but does not affect somite patterning. Significantly, no
genetic interaction was identified between rap1b and ephrinB2a as
indicated by normal fibronectin assembly around somites though
the trunk extension defect was enhanced. Thus while it cannot yet
be concluded, the data by Lackner et al. support the notion that
Rabp1b does not provide a link between EphrinB2a and integrin
activation. However, it is clear that Rap1b is a component of a
signaling pathway that promotes integrin/fibronectin protein
interactions and subsequent fibronectin matrix assembly neces-
sary for formation and stabilization of somite boundaries (Lackner
et al., 2013).

The above discussion demonstrates how cell–ECM interactions
are utilized to promote fibronectin matrix assembly at local tissue
boundaries, in this case, those between developing somites and
the adjacent notochord and mesoderm. In an elegant study by
Dray et al. (2013), the role of cell–fibronectin interactions during
zebrafish trunk elongation was addressed. Here, a combination of
integrinα5/integrinαV mutant and/or morpholinos was utilized to
assess trunk phenotypes after loss of both fibronectin receptors.
Double knockdown produced embryos with severe body trunca-
tion that was not due to convergence and extension, cell prolifera-
tion, patterning, or cell migration defects (Dray et al., 2013). Fig. 3
shows analyses of integrinα5/integrinαV morpholino injected
embryos including the trunk elongation defect in live embryos,
normal cell fate specification as indicated by whole-mount in situ
hybridization, and abnormal fibronectin matrix assembly. One
notable aspect of the integrinα5/integrinαV loss of function pheno-
type is the reduced fibronectin fibrillogenesis and abnormal
alignment of fibronectin fibers in relation to the embryonic body
axis. It was hypothesized that a disruption of mechanical force in
the paraxial mesoderm and abnormal ECM tension caused the
defect in matrix assembly resulting in a shortening of the
embryonic trunk. To address this, a tbx6l enhancer-containing
integrinα5-RFP transgene was utilized to restore integrin–fibronec-
tin interactions specifically within the paraxial mesoderm (Dray et
al., 2013). Significantly, injection of this transgene partially rescued
the integrinα5/integrinαV knockdown body elongation defect and

restored fibronectin matrix assembly on the paraxial mesoderm
and adhesion between the paraxial mesoderm and the notochord.
All together, this paper demonstrates how integrin binding of
fibronectin provides mechanical strength and adhesion that can be
integrated across trunk tissues during the process of tail morpho-
genesis in zebrafish.

ECM and trunk neural crest cell migration

Zebrafish trunk neural crest cells delaminate from the neural
tube and migrate along specific tracts towards their final destina-
tion (Erickson, 1985). In the region of the somites, these cells
transition from a so-called sheet-like migration pattern into
individual streams of migrating cells. While it is known that
signals from the somites regulate neural crest cell migration, for
example Ephrin/Eph receptor dependent signaling (Krull et al.,
1997) and Wnt signaling (Banerjee et al., 2011), the in vivo role of
ECM molecules is less clear. ECM proteins known to be involved in
neural crest cell migration include the integrin receptor ligands
fibronectin and laminin (Perris and Perissinotto, 2000). In a recent
study the enzyme lysyl hydroxylase 3 was shown to regulate trunk
neural crest cell migration in zebrafish potentially through post-
translational modification of the non-fibrillar collagen, Collagen
18A1 (Banerjee et al., 2013). It is notable that while the zebrafish
genome encodes at least 22 collagen isoforms including 10
representative collagen family members (types I, II, IV, V, VI, VII,
VIII, IX, X, and XI), few collagen germ-line mutants have been
described. Zebrafish collagen mRNAs are expressed in numerous
tissues including the somites (collagen1a1a and 5a1) and noto-
chord (collagen4a5, 5a3, 11a1, and 11a2) (Fang et al., 2010; Thisse
et al., 2001, 2004) where they might affect neural crest cell
migration. Notably, it was previously shown that collagen18a1
and lysyl hydroxylase 3 are co-expressed in adaxial muscle pre-
cursor cells adjacent to the notochord (Schneider and Granato,
2006). Lysyl hydroxylase 3 is a glycosyltransferase known to post-
translationally modify collagens through the addition of galactosyl
or glucosyl sugars (Myllyla et al., 2007). Banerjee et al. hypothe-
sized that enzymatic modification of Collagen 18A1 might regulate
neural crest cell migration. Antisense morpholino oligonucleotides
were utilized to knockdown translation of collagen18a1. Injected
embryos exhibited a neural crest cell migration defect very similar
to that in lysyl hydroxylase 3 mutant embryos. Specifically, knock-
down of collagen18a1 caused cells to either stall their migration or
migrate through the somites along ectopic trajectories (Fig. 4).
Notably, loss of Collagen 18A1 function did not disrupt adaxial cell
morphology, differentiation, or number suggesting a specific
requirement for this ECM protein during neural crest cell migra-
tion (Fig. 4). How might Collagen 18A1 function to regulate cell
migration? Banerjee et al. suggest that modification of Collagen
18A1 could create tissue regions that are either permissive or non-
permissive for neural crest cell migration. This scenario would
suggest that cell–ECM interactions, perhaps mediated by integrins,
provide a substrate for cell migration. Alternatively, Collagen 18A1
may utilize its cysteine rich domain (also found in frizzled
receptors) to influence the availability of Wnt migratory cues or
its thrombospondin domain that is common to semaphorin
guidance cues. Whatever the mechanism, it is clear that lysyl
hydroxylase 3 and Collagen 18A1 function are required for neural
crest cell motility likely acting to impact cell–ECM interactions and
downstream cytoskeletal remodeling events necessary for cell
motility.

Collagens also function as cleavage substrates for metallopro-
teases. In another recent study, the function of matrix metallo-
proteinase 17b (Mmp17b) in migrating trunk neural crest cells was
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investigated utilizing both morpholino-mediated mmp17b knock-
down and chemical inhibition of MMP function (Leigh et al., 2013).
Mmp17b is a glycosylphosphatidylinositol anchored membrane-
tethered metalloproteinase. Unlike collagen18a1, mmp17b mRNA
expression is detected within the neural crest cells themselves.
Knockdown of mmp17b or broad spectrum MMP inhibition caused
a neural crest cell migration defect with cells localizing to the
posterior trunk as opposed to being dispersed along the anterior–
posterior embryonic axis. The authors provide evidence that the
matrix metalloproteinase inhibitor RECK (reversion-inducing-
cysteine-rich protein with Kazal motifs) physically binds Mmp17b
raising the possibility that these proteins functionally interact to
regulate neural crest cell migration (Leigh et al., 2013). A key
question raised by this study is the identity of the Mmp17b
cleavage substrate present in the neural crest cell microenviron-
ment. Is it an ECM protein such as collagen or is it a non-ECM
protein such as ADAMTS-4 (a disintegrin and metalloproteinase
with thrombospondin-like motif-4) (Gao et al., 2004). ECM clea-
vage by Mmp17b could function to promote cell migration in
multiple ways including by the release of guidance cues seques-
tered in the ECM.

ECM and organ laterality

ECM remodeling influences several aspects of organogenesis
including migration, cell–cell interactions, and branching morpho-
genesis. For example, regulation of ECM remodeling is required for
the asymmetric migration of lateral plate mesoderm necessary for
gut-looping and correct spatial organization of digestive organs
(Yin et al., 2010). By examining the expression of the transcription
factor hand2, a novel cell rearrangement was identified that occurs
in the lateral plate mesoderm and is regulated by left-right gene
expression. Significantly, whereas in wild-type embryos laminin
expression diminishes along the path of lateral plate mesoderm
migration, in hand2 mutant embryos laminin deposition or
expression persists, an effect not due to altered laminin or integrin
gene expression (Yin et al., 2010). Unlike the heart primordium
where hand2 mutants exhibit disorganized fibronectin matrix
assembly, loss of hand2 does not disrupt fibronectin distribution
in the gut-looping region (Trinh et al., 2005; Yin et al., 2010).
Notably, partial loss of laminin in a hand2 mutant background
suppressed the lateral plate mesoderm migration defects while
broad inhibition of matrix metalloproteinase activity recapitulated

Fig. 3. Axis Elongation Defects after Loss of Both integrinα5 and integrinαV. (A–D) Wild-type (WT) (A and B) and truncated (C and D) integrinα5mo; integrinαVmo embryos at
the end of trunk elongation; i.e., 16 somite-stage embryos (A and C) and 24 h post-fertilization (B and D). At the 16 somite stage, we find that distance from the otic vesicle to
the anterior of the head in integrinα5mo; integrinαVmo embryos is 74% of that in WT embryos and that the distance from the otic vesicle to the tip of the tail is 71% of that in
WT embryos. (E–L) In situ hybridization of tail bud gene expression in 13 somite-stage embryos. (M and N) Fibronectin immunolocalization in 16 somite-stage WT (M) and
integrinα5mo; integrinαVmo embryos (N). Note the reduction in fibronectin matrix as well as the prominent medial-lateral fiber orientation in (N). Scale bars are 50 μm. In (A–
D), anterior is the left. In (E–N), anterior is up. Adapted from Dray et al. (2013) with permission.
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aspects of the hand2 mutant phenotype (Yin et al., 2010).
Membrane-tethered mmp14a was decreased in hand2 mutants
while expression of the Mmp inhibitors timp2a and timp2b was
increased. Knockdown of mmp14a using morpholinos produced a
gut-looping phenotype in wild-type embryos (Yin et al., 2010).
Taken together, these data implicate Hand2 as a regulator of Mmp
proteolytic activity and subsequently ECM remodeling and cell
migration during the early stages of organogenesis in zebrafish.

Certain organs including liver, pancreas, and heart do not exhibit
bilateral symmetry, rather these organs localize asymmetrically in

relation to the central body axis. While it is known that left-right
asymmetry initiates during zebrafish gastrulation when motile cilia
regulate directional fluid flow within Kupffer's vesicle (Amack and
Yost, 2004), molecular details connecting early events with later
stages of morphogenesis are lacking. Recently, the ECM protein
Laminin 1 was shown to regulate establishment of left-right asym-
metry for both the liver and pancreas (Hochgreb-Hagele et al., 2013).
This is a previously unrecognized phenotype attributable to lami-
ninb1a loss of function. Mutations in Laminin 1 and Laminin
2 subunits were previously shown to produce strong developmental

Fig. 4. Knockdown of collagen18a1 results in neural crest cell migration defects. (A) RT PCR analysis showing efficiency of collagen18a1 knockdown following morpholino
treatment. Arrow marks the expected band following morpholino treatment sized at 439 base pairs. Lateral views of 28 h post-fertilization vehicle (B) collagen18a1 MO
(C) and collagen18a1 MO plus collagen18a1 mRNA injected embryo (D), stained with crestin to visualize neural crest cells. Arrows indicate neural crest cells stalled along the
mid-segmental path (C), and asterisks indicate neural crest cells along the ectopic path. (C and E) (E) Quantification of neural crest cell migration defects in collagen18a1 MO
injected embryos. p values were calculated using one tailed Fisher Exact Probability test. Vehicle injected and collagen18a1 (G) MO injected embryos, stained with F59 to
visualize adaxial cells (red), and crestin to visualize neural crest cells (green) (F–G) and with prox-1 antibody (H–I). Arrowheads mark adaxial cell nuclei located anteriorly
near horizontal myoseptum region (H–I). Scale bar-10 mm. Adapted from Banerjee et al. (2013) with permission.

J.R. Jessen / Developmental Biology 401 (2015) 110–121116



defects. Loss of either lamininβ1 (grumpy) or lamininγ1 (sleepy)
prevents proper formation of both the intersegmental blood vessels
and the basement membrane adjacent to the notochord resulting in
a failure in cell differentiation (Parsons et al., 2002). Mutation of the
lamininα1 gene (bashful) causes a milder notochord phenotype that is
enhanced by simultaneous disruption of lamininα4 (Pollard et al.,
2006). Mutation of lamininα1 also disrupts the directed migration of
hindbrain motor neurons but not axonal guidance (Paulus and
Halloran, 2006). By contrast, mutations in lamininα2 (Hall et al.,
2007) and lamininβ2 (Jacoby et al., 2009) genes produce dystrophic
phenotypes characterized by degeneration of embryonic skeletal
muscle (see below).

In the study by Hochgreb-Hagele et al. a novel lamininb1a
mutant (s804) was identified during a forward genetic screen that
utilized transgenic embryos with GFP-labeled endoderm (Field et
al., 2003). This mutant has defects in the left–right asymmetric
positioning of both liver and pancreas with the liver spanning the
embryonic midline and the ventral pancreatic bud split into
bilateral structures. Zebrafish Laminin 1 protein expression is
observed in several basement membranes including those asso-
ciated with the neural tube and somites at the 16 somite-stage
(Hochgreb-Hagele et al., 2013). At later developmental stages (30 h
post-fertilization), Laminin 1 localizes to the basement membrane
of the dorsal lateral plate mesoderm and at the boundary of lateral
plate mesoderm and endoderm of the gut (Hochgreb-Hagele et al.,
2013; Yin et al., 2010). At earlier stages (7–8 somites), lamininb1a
(s804) mutant embryos were shown to have a reduction in cilia
length but not number in Kupffer's vesicle compared to controls.
These mutant embryos also had slightly reduced fluid flow within
Kupffer's vesicle and reduced expression of T, brachyury homolog a
(formerly no tail) within the notochord near the region that gives
rise to the digestive organs (Hochgreb-Hagele et al., 2013). Of note,
lamininb1a does not affect T, brachyury homolog a expression in the
area of heart formation nor is it required for left–right asymmetry
of the heart. The migration of lateral plate mesodermal cells is also
compromised in lamininb1a mutant embryos (Hochgreb-Hagele
et al., 2013). It was shown that the epithelial-like character of
lateral plate mesoderm was abnormal with altered hand2 expres-
sion and protrusion into the gut. It was hypothesized by these
authors that the lack of a basement membrane at the lateral plate
mesoderm-gut boundary in lamininb1a mutant embryos disrupts
the sequestration or action of secreted cell migration cues. Indeed,
it is becoming increasingly recognized that during embryonic
development the ECM regulates the accumulation and/or trans-
port of signaling molecules including Nodal, Lefty, BMPs, and FGF
(Belenkaya et al., 2004; Garcia-Garcia and Anderson, 2003;
Marjoram and Wright, 2011; Oki et al., 2007). In one report,
laminin γ1 was shown to modulate cellular responsiveness to
secreted BMP by affecting heparan sulfate proteoglycans present
in the ECM (Dolez et al., 2011). Identification of a specific secreted
signaling molecule regulated by laminin at the boundary between
mesoderm and gut will be a key area of future research.

ECM and skeletal muscle

Our knowledge of cell–ECM protein interactions and their
importance for zebrafish cell and tissue function has increased
with identification of embryos with null mutations in the dystro-
phin gene and realization that dystrophin-deficient embryos can
be used to model human Duchenne muscular dystrophy. Thus
zebrafish can be utilized to analyze the function of integrins and
the collagen- and laminin-containing basement membrane
required during muscle contraction (Hall et al., 2007; Jacoby
et al., 2009; Kim and Ingham, 2009; Postel et al., 2008). For more
details, see the following review on zebrafish models of muscular

dystrophies (Berger and Currie, 2012). In the skeletal basement
membrane, laminin forms two important linkages with trans-
membrane proteins, one to the dystrophin-associated glycoprotein
complex (composed of Laminin 2, dystroglycan, sarcoglycan, and
dystrophin among other proteins) and the other to integrins of the
subsarcolemmal focal adhesion complexes. These cytoskeletal
linkages are important for transmitting the force generated by
muscle contraction across the sarcolemma (or myolemma) and
their disruption is thought to play a role in the pathogenesis of
muscular dystrophy (Carmignac and Durbeej, 2012). Mutations in
human laminin subunits contribute to a variety of diseases
including cardiomyopathy and muscular dystrophy (Knoll et al.,
2007; Mostacciuolo et al., 1996). In zebrafish, candyfloss (lami-
ninα2) mutant has a degenerative muscle phenotype first detected
at 36 h post-fertilization that is characterized by detachment and
retraction of muscle fibers from the myoseptum adjacent to each
somite (Hall et al., 2007). Mechanistically, Laminin α2 might
function within the ECM to promote the stability of muscle
attachments. Without Laminin α2, and upon mechanical load-
induced stress, muscle fiber detachment occurs followed by
apoptosis (Hall et al., 2007). Mutation of the zebrafish softy locus
(lamininβ2) produces a similar muscle detachment phenotype at
3 days post-fertilization (Jacoby et al., 2009). However, while
homozygous lamininα2/candyfloss mutant embryos often fail to
survive, lamininβ2/softy homozygotes survive to maturity (Jacoby
et al., 2009). This is attributed to the formation of ectopic fiber
terminations in softy mutants characterized as myoseptum-like
structures able to support the attachment of fibers (Jacoby et al.,
2009). Analysis of candyfloss/softy double mutant embryos demon-
strated that lamininα2 is epistatic to lamininβ2 with double
mutants having a phenotype most similar to lamininα2/candyfloss
(Jacoby et al., 2009). While lamininα2 and lamininβ2 co-localize in
myotendinous junctions, identification of other laminins and ECM
proteins expressed during muscle development is necessary to
further our understanding of muscular dystrophy (Sztal et al.,
2011). Collagens are major ECM proteins present in connective
tissues and have been linked to muscular dystrophies (Charvet
et al., 2013; Telfer et al., 2010).

In a recent paper by Charvet et al. (2013) Collagen XXII (a
member of the fibrillar-associated collagens with interrupted
triple helices subgroup) was shown to be required for the
structure of the myotendinous junction, a major site of force
transmission between muscle and tendons. Here, interactions
between the actin cytoskeleton and ECM proteins of the basement
membrane occur across the sarcolemma membrane of the striated
muscle fiber cell. The zebrafish collagen22a1 gene is expressed
beginning at 22 h post-fertilization and is observed within the
somites (Charvet et al., 2013). At later stages beyond 24 h post-
fertilization collagen22a1 localizes to the somite/myotome bound-
aries. Collagen XXII protein co-localizes with dystrophin at these
boundaries and specifically marks the myotendinous junctions at
day 5 post-fertilization and beyond to adulthood (Charvet et al.,
2013). Morpholino-mediated knockdown of collagen22a1 pro-
duces a phenotype reminiscent of dystrophic zebrafish with
mutations in genes such as lamininα2 and integrinα7 (Charvet
et al., 2013). These embryos exhibit impaired swimming move-
ments and reduced muscle contraction with associated muscle
fiber detachment. Together with the dystrophin-associated glyco-
protein complex, Integrin α7β1 is the major trans-sarcolemmal
membrane protein complex linking muscle fibers to the ECM
(Berger and Currie, 2012). Notably, a synergistic genetic relation-
ship was identified between collagen22a1 and integrinα7 support-
ing the notion that Collagen XXII interacts with Integrin α7 to
stabilize muscle cell attachment to the ECM (Charvet et al., 2013).
However, it is unclear whether Collagen XXII binds integrin
directly or indirectly through another protein. These important
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data now add Collagen XXII to the list of proteins required for
stabilization of myotendinous junctions and the strengthening of
muscle cell attachment to the ECM during contraction.

ECM and heart development and regeneration

The zebrafish ECM, in particular fibronectin, is well known for
its ability to influence embryonic heart development (Trinh and
Stainier, 2004). In the early zebrafish embryo, cardiomyocyte
precursors undergo collective migration between the endoderm
and extra-embryonic yolk syncytial layer and require interactions
with these cell populations and the surrounding ECM for proper
migration and heart tube formation (Alexander et al., 1999;
Arrington and Yost, 2009; Dickmeis et al., 2001; Kikuchi et al.,
2000; Trinh and Stainier, 2004). The requirement for cell–ECM
interactions during zebrafish heart formation is evidenced by the
appearance of cardiac malformations after loss of either fibronec-
tin1/natter, the proteoglycan syndecan 2, or the lipid mediator
sphingosine 1-phosphate (Arrington and Yost, 2009; Kawahara
et al., 2009; Kupperman et al., 2000; Matsui et al., 2007; Osborne
et al., 2008; Sakaguchi et al., 2006; Trinh and Stainier, 2004).
Fibronectin protein exhibits a dynamic expression pattern during
cardiac progenitor migration initially being deposited in the lateral
plate mesoderm and later, during cardiac cone formation, surrounding
the migrating bilateral myocardial progenitors at the ventral midline
between the endoderm and endocardial cell layers (Trinh and Stainier,
2004). The characteristic cardia bifida phenotype in fibronectin1/natter
mutant embryos results from loss of cell polarity and epithelial
integrity during myocardial progenitor migration (Trinh and Stainier,
2004). During embryogenesis fibronectin1/natter mutants fail to
undergo mediolateral expansion of the anterior lateral plate meso-
derm while posterior lateral plate mesoderm remains unaffected
(Trinh and Stainier, 2004), suggesting that Fibronectin 1 has a broad
role during morphogenesis of anterior lateral plate mesoderm in
addition to regulation of myocardial progenitor cell migration.

Interestingly, the basic helix–loop-helix transcription factor
Hand2 (discussed above for its role in determining organ later-
ality) was shown to regulate cardiac fusion by impacting the
deposition of fibronectin (Garavito-Aguilar et al., 2010; Trinh et
al., 2005; Yelon et al., 2000). In hand2 mutant embryos, fibronec-
tin1 gene expression is increased while ectopic overexpression of
hand2 mRNA decreases fibronectin protein deposition (Garavito-
Aguilar et al., 2010). Cell transplantation experiments demon-
strated that hand2 functions non-cell autonomously to promote
cardiac fusion (Garavito-Aguilar et al., 2010). What is the role of
fibronectin in this process? The data from Garavito-Aguilar et al.
indicate that both excess and reduced fibronectin deposition
causes a disruption in cardiomyocyte cell movement and thus
cardiac fusion. This is reminiscent of the situation described above
where vangl2/trilobite and glypican4/knypek mutant embryos exhi-
bit opposite effects on fibronectin matrix assembly but have
similar defects in gastrulation cell movements (Dohn et al.,
2013). For both cardiomyocytes and gastrula cells, it is possible
that altered fibronectin matrix assembly affects cell–ECM interac-
tions necessary for proper cell migration, perhaps by altering
integrin signaling and/or cell adhesiveness to the extracellular
environment. Notably, both hand2 and vangl2/trilobite mutant
embryos have disrupted matrix metalloproteinase activity
(Williams et al., 2012; Yin et al., 2010).

Unlike the adult mammalian heart, zebrafish maintain the
ability to regenerate injured heart tissue as they mature (Poss
et al., 2002). Microarray profiling of regenerating zebrafish and
newt tissues identified genes associated with the ECM as the most
enriched (Lien et al., 2006; Mercer et al., 2013). These included a
matrix metalloproteinase, tissue inhibitors of metalloproteinases,
and the extracellular glycoprotein Tenascin C. In another recent
report, fibronectin was shown to be is a required component of the
molecular program necessary for zebrafish heart regeneration
(Wang et al., 2013). Here, a proteomics approach was utilized to
identify proteins whose expression increases after ablation of
more than half of all cardiomyocytes. Fibronectin was found to
be significantly upregulated in ventricular epicardial cells during

Fig. 5. Fibronectin is dynamically expressed during heart regeneration. (A and B) Fibronectin expression by immunostaining in uninjured (A) and 7 days post-ablation
(B) ventricles, localizing to the injury site. MHC, Myosin heavy chain. (C–J) In situ hybridization for fibronectin1 and fibronectin1b in uninjured, 1, 7 and 30 days post-ablation
ventricles. In each section, violet indicates a positive signal. Dashed line indicates approximate resection plane. Scale bars: 50 μm. Adapted from Wang et al. (2013) with
permission.
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the heart regeneration process as demonstrated by both immuno-
fluorescence and in situ hybridization (Fig. 5). Notably, both
zebrafish fibronectin genes (1 and 1b) were induced after heart
injury as were integrinb3 and integrinαV (Wang et al., 2013). When
heart injury was performed on animals either transgenic for a
heat-shock inducible dominant-negative fibronectin or homozy-
gous for a null fibronectin mutation, regeneration was incomplete
and included a reduction in muscle at the site of injury (Wang
et al., 2013). It was further found that loss of fibronectin does not
impact cardiomyocyte proliferation rather fibronectin appears to
be required for accumulation of these cells at the site of regenera-
tion (Wang et al., 2013). As suggested by these authors, fibronectin
interactions with Integrin b3 might regulate cardiomyocyte cell
migration to the injury site. Interestingly, a recent report has
shown that hand2 mRNA overexpression in the zebrafish embryo
promotes cardiomyocyte proliferation and can promote cardiac
regeneration in injured adult hearts (Schindler et al., 2014).
Considering the data from Wang et al., the effect of Hand2 on heart
regeneration should be independent of its influence on fibronectin
deposition during embryonic cardiac fusion. It will be important to
determine the role of both fibronectin deposition and matrix remo-
deling by metalloproteinases during heart regeneration.

Concluding remarks

The zebrafish ECM is a complex macromolecular assembly of
diverse proteins whose composition depends on localization,
developmental stage, and role. The utility of zebrafish as a
vertebrate model organism for analysis of ECM assembly and
function has increased significantly with the advent of genetic
and confocal imaging methods. In addition, as researchers probe
more deeply the underlying molecular underpinnings of specific
cellular and morphogenetic processes, ECM proteins are frequently
being identified as critical players. The continued establishment of
transgenic and fluorescent fusion protein tools is thus critical for
the analysis of ECM protein dynamics in live embryos. There
remains much to be learned regarding cell–ECM adhesive inter-
actions and their contribution to cell behaviors and matrix
assembly/remodeling. One important area for future zebrafish
ECM research is the analysis of integrin signaling and the roles
of outside-in versus inside-out signaling pathways. In addition,
deciphering the role of ECM proteins at the cellular versus tissue
level will likely be relevant to most fields of ECM research that
utilize zebrafish. Lastly, the function of metalloproteases and their
inhibitors has been and should continue to be a significant and
fruitful area of ECM analysis in zebrafish. Given the large number
of metalloprotease family members (adamalysins, astacins, matrix
metalloproteinases, and serralysins) and their capacity to cleave
many ECM and non-ECM substrates, investigation of these
enzymes is likely to yield novel information for a variety of
embryological and adult processes.
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