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Abstract
The superstructure optimization of biomass to biomethane system through digestion is conducted in this work. The system encompasses
biofeedstock collection and transportation, anaerobic digestion, biogas upgrading, and digestate recycling. We propose a multicriteria mixed
integer nonlinear programming (MINLP) model that seeks to minimize the energy consumption and maximize the green degree and the bio-
methane production constrained by technology selection, mass balance, energy balance, and environmental impact. A multi-objective MINLP
model is proposed and solved with a fast nondominated sorting genetic algorithm II (NSGA-II). The resulting Pareto-optimal surface reveals the
trade-off among the conflicting objectives. The optimal results indicate quantitatively that higher green degree and biomethane production
objectives can be obtained at the expense of destroying the performance of the energy consumption objective.
© 2016, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communi-
cations Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recently, severe fluctuations in fossil fuel prices and global
environmental problems have greatly accelerated efforts to
develop renewable energy. Biomass-based methane, as a
reproducible and environmentally friendly fuel that can
decrease greenhouse gas emissions and reduce the non-
renewable energy consumption, has gotten increasing atten-
tions. Meanwhile, the multi-objective optimization of the
complex biomass to biomethane process is of great signifi-
cance, which can enhance the material and energy efficiency
of the biomethane production system and assist in realizing the
energy saving and emission reduction.

In the last decades, considerable efforts have been made to
assess and optimize digestion and upgrading units of a
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biomethane production system. Huang et al. [1] proposed a
novel multiobjective control strategy to simultaneously opti-
mize the biogas flow rate and the effluent chemical oxygen
demand in a complex anaerobic bioreactor. The developed
hybrid approach may offer a very effective and useful tool for
simulation, design, operation and optimization of anaerobic
digesters. Zaher et al. [2] addressed a simulation tool for the
optimization and assessment of co-digestion of different solid
waste streams. The integrated model could determine the feed
ratio and hydraulic retention time to obtain the maximum
biogas production rate. Mahanty et al. [3] developed a
methodology to evaluate and optimize the co-digestion of five
different industrial sludges, which can be utilized to predict
the maximum possible biomethane yield. Xu et al. [4] studied
and assessed three biogas upgrading techniques considering
energy and environmental performance by using the process
simulation and green degree (GD) method. Wu et al. [5]
established a simulation model for the assessment of energy
consumption of biogas upgrading process. Additionally, many
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experimental studies have been conducted to study the per-
formance of anaerobic digestion [6e10].

Meanwhile, there have been many studies on multiobjective
optimization of biomass to biofuels systems. Gebreslassie
et al. [11] addressed a bi-criteria nonlinear programming
(NLP) model for the optimal operation and design of hydro-
carbon biorefinery that produced diesel and gasoline from
hybrid poplar feedstock through fast pyrolysis, hydrotreating
and hydrocracking. Then they proposed a mixed-integer
nonlinear programming (MINLP) model for the rigorous
optimization and operation of an algae-based biorefinery
system with sequestration of carbon dioxide from power plant
flue gas. The mathematical model integrates the techno-
economic analysis and environmental impact assessment
through a life cycle optimization framework [12]. Zhang et al.
[13] proposed a comprehensive superstructure for the sus-
tainable process design and synthesis of hydrocarbon bio-
refinery that included fast pyrolysis, biocrude collection,
hydroprocessing and hydrogen production under economic
and environmental criteria. The Pareto-optimal solutions pro-
vided optimal operation configuration, profit, and emission
data for future decision-makers. Santibanez-Aguilar et al. [14]
presented a mathematical model for the optimal design of a
biomass conversion system considering simultaneously the
total net profit maximization and the environmental impact
minimization. Mian et al. [15] presented detailed thermoeco-
nomic and environmental models for the multiobjective opti-
mization of microalgae to synthetic natural gas (SNG)
conversion system accounting for supercritical gasification.
Martin and Grossmann [16] established an MINLP model for
the superstructure optimization of bioethanol process from
switchgrass via gasification. In addition, they optimized a
process to enhance the production of biodiesel and bioethanol
from algae through glycerol fermentation [17]. Wang et al.
[18] proposed a superstructure model for the optimization of
hydrocarbon biorefinery via gasification considering the eco-
nomic and environmental performance. Gassner and Marechal
[19] addressed a superstructure MINLP model for the con-
ceptual design of thermochemical fuel production process
by optimizing the exergy depletion and investment cost
objectives.

However, little work concerns the rigorous optimization
strategies of the complex biomethane production system,
which covers the whole subsystem including collection and
transportation, anaerobic digestion, biogas upgrading, and
digestate utilization. In this paper, an MINLP model for the
rigorous optimization of the superstructure-based biomethane
production process is established. The model simultaneously
considers the minimization of the energy consumption, the
minimization of the total environmental impact, and maxi-
mization of the biomethane production as three objective
functions by optimizing the combinations of the feedstocks,
operation variables, and alternative operation technologies.
The environmental performance takes into account the overall
environmental impact estimated by the GD method. Mean-
while, the GD values of biomass (chicken manure, sugar cane
and corn stalk, etc.) and digestate are developed on the basis of
the GD method. Based on a real application, the description of
the superstructure system is presented. Then it is optimized by
a non-dominated sorting genetic algorithm II (NSGA-II).
Finally, the Pareto optimization results are obtained and some
typical optimal points are selected and analyzed.

2. Process description

This section provides a description of each of the four
major processing steps, including biomass collection and
transportation, anaerobic process, biogas upgrading, and
digestate utilization shown in Fig. 1. In each processing unit,
the alternative technologies (Fig. 1) considered are based on
the environmental and thermodynamic performance of the
system.
2.1. Collection and transportation
Distribution of biomass resources is broad and non-
uniform. So collecting biomass feedstock from fields is a
great challenge for biomass power plants in China. A mathe-
matical model is addressed for the optimal design and analysis
of geographic distribution of biomass power plant and satellite
storages based on a square sub-collection-region [20,21].
Singh et al. [22] proposed a circular island-based mathemat-
ical model of biomass collection and transportation costs. In
this article, it is assumed that all biofeedstocks collected are in
centralized covered collection and all biomass transported is
done by diesel trucks.
2.2. Biomass handling and anaerobic digestion
Agricultural residues should be shredded into a small
particle size prior to entering into the anaerobic digestion
tank, because the decomposition and methane (CH4) potential
of biomass could be considerably enhanced by pretreating for
reduction of particle size [23,24]. The length of cereal resi-
dues is usually cut into the range of 2e3 cm.

The major component in this system is anaerobic digestion
technique. Anaerobic digester is a sophisticated process in
which insoluble organic polymers are broken down and con-
verted into CO2 and CH4 by anaerobic bacteria in the absence
of oxygen. Several factors within the reactor such as temper-
ature, pH, retention time, inoculum-to-feed ratio, C/N ratio,
and organic loading rate can impact the efficiency of anaerobic
digester, degradation rates, biogas production, and bio-
methane content [25]. In this model, the influence of
different temperature is taken into account in detail: meso-
philic anaerobic digestion and thermophilic anaerobic
digestion.

Generally, the higher operating temperature can bring
higher metabolic activities. Anaerobic process can be operated
at ambient temperatures exhibiting a low efficiency. So, most
reactors are operated at either mesophilic conditions
(30e40 �C) or thermophilic conditions (50e60 �C).

Compared to mesophilic reactor, thermophilic reactor
usually possesses higher decomposition efficiency, COD



Fig. 1. Biomass to biomethane superstructure.
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removal rate, and CH4 content at smaller digester volumes or
in a shorter time [26,27]. However, the higher temperature
cannot always get better optimal operation, due to the larger
energy input.
2.3. Biogas upgrading
Biogas primarily consists of CH4 (40e75%) and carbon
dioxide (CO2) (15e60%). Trace impurities presented in biogas
can reduce the calorific value and increase energy input for its
transportation and storage [28]. After removing CO2 and other
impurities, the final production, biomethane, can be used as
the secondary grid injection at 10 bar [29]. In this work, four
alternative upgrading techniques are considered, including
pressured water scrubbing (PWS), monoethanolamine aqueous
(MEA)-based scrubbing (MAS), ionic liquid scrubbing (ILS),
and pressure swing adsorption (PSA).

PWS is deemed to be the simplest and cheapest process.
Physical absorption-based PWS employs water as an absor-
bent for removing H2S and CO2 in a gas-liquid countercurrent
method. PWS can have high separation efficiency (more than
97% CH4) and low CH4 loss (less than 2%) at higher pressure
[28]. However, The low diffusivity values result in a large
column volume required and tardy absorption process [4].
Additionally, the drawback of clogging or foaming due to
microbial growth is inevitable [28,30].

MAS is a chemical absorption process using MEA as an
absorbent to remove CO2 from methane rich biogas at ambient
temperature and atmospheric pressure [31,32]. In addition,
MAS needs less investment cost and operation cost compared
to PWS due to the higher absorption capacity [31]. However,
the process of solvent regeneration needs significant higher
energy consumption [28,32].

As a promising technology, IL has been paid remarkable
attention caused by its tunable physicochemical property, huge
thermal stability, and high solubility capacity [33,34]. Addi-
tionally, ILS process can reduce the energy consumption and
solvent loss due to the low vapor pressure of the IL solvent
[35e37]. However, it should be noticed that higher viscosity
might result in lower absorption rate and lower heat and mass
transfer [4,35]. Moreover, the higher costs of ionic liquids
confine their extension to industrial-scale application.

PSA uses a string of adsorption columns which are packed
with adsorptive materials, such as zeolite, silica gel, and
activated carbon, for differential adsorption of the CO2, letting
CH4 passing through [5,38]. The process cycle consists prin-
cipally of five steps: pressurization, feed, depressurization,
blowdown, and purge. Increasing the column numbers enable
to improve CH4 enrichment, reduce offgas emission, and
reduce energy demand [5]. However, a higher cost would be
paid [38e40].

Notice that except for the first technology which releases
the CO2 into atmosphere, the other three processes would
obtain high purity CO2 product.
2.4. Digestate utilization
In this model, plenty of digested slurry and sludge produced
during the digestion process are pumped into gas separator.
Then the solid phase could be utilized as solid organic fertil-
izer, while part of the digested slurry could be used as algae
cultivation.

3. Model formulation

A multicriteria optimization model based on an elitist
evolutionary algorithm is constructed to determine the best
operation of biomass to biomethane process by minimizing
energy consumption and maximizing the green degree and the
biomethane production. The model formulation is presented as
follows.
3.1. Mass balance
The total mass flow rate of feedstock to the anaerobic
digester is given by

mtotal ¼ mmanure þ mstraw þ mwater ð1Þ



159N. Yan et al. / Green Energy & Environment 1 (2016) 156e165
where mmanure, mstraw, and mwater are the mass flow rates of
manure, straw residue and water, ton d�1, respectively.

The total mass balance on digestion process states that the
total mass flow rate of raw material equals to the raw biogas
mass flow rate plus the digestate mass flow rate.

mtotal ¼ mbio þmdige ð2Þ
The raw biogas mass flow rate is modeled with the equation

below.

mbio ¼ mbio;CH4
þmbio;CO2

ð3Þ

where mbio;CH4
and mbio;CO2

are the mass flow rates of CH4 and
CO2 in raw biogas, ton d�1, respectively. In this model, minor
impurities (hydrogen sulfide, siloxanes, etc.) are ignored,
assuming that there are only CH4 and CO2 produced in the
anaerobic digester.

The volume flow rates of CH4 and CO2 in biogas are given
by

Vbio;met ¼ Vbio � xmet ð4Þ

Vbio;cad ¼ Vbio � xcad ð5Þ
X
g

xg ¼ 1; g2fmet;cadg ð6Þ

where xmet and xcad are volume fractions of CH4 and CO2 in
raw gas mixture, respectively.

In the biogas upgrading unit, the raw biogas is decanted
into the high purity CH4 product and the CO2 rich stream as
shown in the equation below:

mbio ¼ mCH4
þmCO2

ð7Þ
Table 1

Energy consumption models for different technologies.

Items Mathematical mod

Collection&Transportation
ECcotr ¼ DHV � F

Handling biomass EChand ¼ 83:55S�1
L

Heating feedstock ECheat¼Cpmtotal(T

Anaerobic digestion Heat loss
EClose ¼ 86:4ðTD �

Mechanical agitation ECma¼ 24Wma/s

PWS ECPWS ¼ 3600br
CH

Biogas upgrading MAS ECMAS ¼ 3600br
CH

þ3600
�
Vbio;

ILS ECILS ¼ 3600br
CH4

PSA
ECPSA ¼ r

r�1
Rð273

Digestate utilization
ECredi ¼ 4070:066
The mass balance of the digestate recycling unit states that
the digestate from anaerobic digester is split into liquid
digested slurry and solid digested sludge.

mdige ¼ mdig;l þmdig;s ð8Þ
3.2. Objective function
The objective function simultaneously considers the energy
consumption minimization, the environmental impact mini-
mization, and the biomethane production maximization.

The energy consumption objective is optimized to achieve
the minimum energy consumption of the whole system
described as follows:

ECBBS ¼ ECcotr þECandi þECbiup þECredi

106 � TST �mtotal

ð9Þ

where ECBBS is the energy consumption of the whole system,
MJ kg�1 TS feedstock. ECcotr, ECandi, ECbiup, and ECredi are
the energy consumption of biomass collection and trans-
portation, anaerobic digestion, biogas upgrading, and digestate
utilization, kJ d�1, respectively. TST is the total solid (TS)
content of biofeedstock.

The energy consumption of anaerobic digestion process
includes biomass handling EChand, feedstock heating ECheat,
the heat loss ECloss and the power consumption for mechanical
agitation ECma.

ECandi ¼ EChand þECheat þECloss þECma ð10Þ
The selection among the biogas upgrading techniques is

modeled using binary variables that ensure only one technol-
ogy selected. If the corresponding technology is selected, y
els Ref.
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Table 2

Green degree values of some substances.

Substances Chicken manurea Dairy manurea Pig manurea Agricultural residuesa Rice strawb Wheat strawb

GD/gd kg�1 �0.1076 �0.0317 �0.0727 0 �0.428 �0.434

Substances Sugar caneb Corn stalkb Pig manureb Dairy manureb Chicken manureb Sheep manureb

GD/gd kg�1 �0.509 �0.525 �0.883 �0.661 �0.788 �0.666

Substances Digestatec Digestated CH4 CO2 H20 MEA

GD/gd kg�1 �0.0179 �0.00174 �5.765 �0.2502 0 �0.001

a The average GD value of biomass resource discharged into environment.
b The average GD value of biomass combustion.
c The average GD of the biogas slurry and biogas residues produced in mesophilic reactor.
d The average GD value of the digested effluent and sludge in thermophilic reactor.
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equals to 1; otherwise y equals to 0. The relationship can be
determined as follows:

ECbiup ¼
X
bg

ECbg � ybg; bg2fPWS;MAS; ILS;PSAg ð11Þ

X
bg

ybg ¼ 1; ybg2½0;1� ð12Þ

Energy consumption functions of these operation processes
are summarized in Table 1.

The environmental assessment considers the global envi-
ronmental impact measured with the GD method, which is
applied to quantitatively assess and analyze the environmental
impact of a complicated system [44,45]. The GD of biomass to
biomethane system can be calculated as follows [44].

DGDBBS ¼

�P
k

GDs;emis
k þP

k

GDe;out
k þP

k

GDs;in
k þP

k

GDe;in
k

	
ð103 � TST �mtotalÞ

ð13Þ
where DGDBBS is the GD value of whole system, gd kg�1 TS
feedstock. GDs;emis

k and GDe;out
k are the output GD value of a

material and energy stream from the system, gd d�1, respec-
tively. GDs;in

k and GDe;in
k are the input GD value of stream and

energy source into the system, gd d�1, respectively.
DGDBBS> 0 means that the process is environmentally
friendly. Correspondingly, DGDBBS< 0 indicates that the
process discharges pollution into environment. The GD values
of some substances are calculated on the basis of its element
property shown in Table 2.
Table 3

Regression equations of Vr in the co-digestion of chicken manure (CM) with rice

Feed ratio (dry matter) Regression equation

CM/RS 1:1 Vr ¼ 1103:88� 176:94TD þ
CM/RS 2:1 Vr ¼ �22:5� 0:16TD þ 0:25

CM/RS 3:1 Vr ¼ 110:81� 21:364TD þ 1

CM/WS 1:1 Vr ¼ 1356:56� 216:47TD þ
CM/WS 2:1 Vr ¼ 1082:78� 172:65TD þ
CM/WS 3:1 Vr ¼ 1153:19� 183:89TD þ
CM/CS 1:1 Vr ¼ 261:33� 42:51TD þ 2:

CM/CS 2:1 Vr ¼ 1341:70� 212:93TD þ
CM/CS 3:1 Vr ¼ 1192:02� 190:47TD þ
The biomethane production is considered as an objective
function to be maximized shown in Eq. (14).

VBBC;CH4
¼ VCH4

ð103 � TST �mtotalÞ ð14Þ

VBBC;CH4
is the biomethane production per kg TS feedstock.

VCH4
is the biomethane yield in m3 d�1, which associates with

the digestion and upgrading technologies. The function is
given by:

VCH4
¼ br

CH4
�Vbio � xmet

bp
CH4

ð15Þ

where bpCH4
is the CH4 purity in product gas. brCH4

is the CH4

recovery ratio. Vbio is the volume flow rate of biogas in
m3 d�1. We have fitted the experience formulas (Table 3) of
biogas production rate (Vr) on the basis of the literature data
[43,46].

Some assumptions about the objective functions are pre-
sented below.

1. The agricultural residues density (r) is a constant.
2. Specific heat of the biofeedstock (Cp) is approximately

equal to that of water in low TS content.
3. The distribution of temperature and concentration is ho-

mogeneous in the anaerobic digester.
4. The biofeedstock temperature is same with the ambient

temperature.
straw (RS), wheat straw (WS), and corn stalk (CS).

R2/%

4:03T2
D þ 11:59T3

D � 0:39T4
D þ 0:0075T5

D 98.73

T2
D � 0:016T3

D þ 0:00046T4
D 98.21

:63T2
D � 0:064T3

D þ 0:00141T4
D 98.26

14:11T2
D � 0:48T3

D þ 0:0091T4
D 95.73

11:25T2
D � 0:38T3

D þ 0:0072T4
D 98.72

11:98T2
D � 0:41T3

D þ 0:0077T4
D 99.51

83T2
D � 0:099T3

D þ 0:0019T4
D 99.15

13:81T2
D � 0:46T3

D þ 0:0087T4
D 99.11

12:44T2
D � 0:42T3

D þ 0:008T4
D 98.73



Fig. 2. Framework of the multiobjective optimization model.

Table 4

Characteristics of feedstock used in digestion [46].

Item CM WS CS RS

TS/% 28.79 81.08 81.74 77.92

VS/% 65.24 90.29 91.42 94.23

C/N 11.15 91.17 88.13 92.91

Table 5

Characteristics of the digester.

Parameter Value Unit

Digester volume 500 m3

Diameter of the digester (D) 7.5 m

Height of the digester (HD) 7.5 m

Top area of the digester (Stop) 46.5 m2

Thickness of the digester (dD) 8 mm

Thickness of the insulating layer (dins) 120 mm

Thermal conductivity of the digester (lD) 49.8 W m�1 �C�1

Thermal conductivity of the insulating layer (lins) 0.035 W m�1 �C�1

Heat transfer coefficient (a) 6.812 W m�1 �C�1

Total power of agitator (Wma) 13 kW
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5. There exist only CO2 and CH4 in the raw biogas product of
the anaerobic digestion process.

6. The solvent losses of ILS and MAS processes are
negligible.

7. The GD values of biomethane product and corresponding
byproducts are assumed to be 0.

8. The GD values of agriculture residues used for anaerobic
digestion are assumed to be zero because the straw
returning application is benign to the environment.

4. Solution method

The multicriteria optimization model is performed by
combining the energy consumption objective (EC ) given by
Eq. (9), the environmental performance objective given by Eq.
(13), and biomethane production objective (BMP) given by
Eq. (14) as shown in Eq. (16).

minðx;yÞEC
maxðx;yÞGD
maxðx;yÞBMP
s:t:
hðx;yÞ ¼ 0
gðx;yÞ � 0P
j

yi;j ¼ 1

x2R; y2½0;1�

ð16Þ
where the equality constraints h (x,y) are mass and energy
balances. The inequality constraints g (x,y) denote the opera-
tion indexes. x indicates continuous variables representing the
operation parameters (temperatures, pressures, recovery rate
and performance variables, etc.). y denotes the binary



Table 6

Main parameters of biomethane production system.

Parameter Value Unit

Diesel consumption of loaded units (FCb) 0.06 L km�1 ton�1

Low heat value of diesel fuel (DHV) 35827.68 kJ L�1

Tortuosity factor (g) 1.5 /

Transport distance from the collection area to

the biogas plant (L)

20 km

Biomass spatial density (r) 705.71 ton km�2

Transformation efficiency of heat to electricity (s) 0.38 /

Length of cereal residues (SL) 25 mm

Power consumption of pump (Wpump) 0.1375 kWh ton�1

Specific heat of the feedstock (Cp) 4174 J kg�1 �C�1

Ambient temperature (Tamb), 25 �C
Volume fraction of CH4 in raw biogas (xmet) 0.6 /

CH4 purity in product gas (bp
CH4

) 0.94 /

Mechanical efficiency (h) 0.8 /

Universal gas constant (R) 8.314 J mol�1 k�1

r¼Cp/Cr 1.5 /
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variables, which represents selection of the technology j in
biomethane processing section i.

The mathematical model is a mixed-integer nonlinear
problem, which is solved with a fast and elitist genetic algo-
rithm: NSGA-II [47] to obtain a set of Pareto optimal solu-
tions. There is no single “optimal” solution to the
multiobjective optimization problem since the objectives
compete against one another. The multi-objective optimization
framework is presented in Fig. 2.
Table 7

Variables of the multiobjective optimization problem and relevant bounds.

Parameter Ranges Units

Digester temperature (TD) [25, 60] �C
Absorption (adsorption)

pressure (P)

[8, 10] bar

CH4 recovery ratio (br
CH4

) [0.9, 1] /

Lean liquid loading (ε) [0.13, 0.28] /

Integer variables ( y) [0, 1] /

Fig. 3. Pareto optimal solution surface.

Fig. 4. (a) Projection onto the x-y plane. (b) Projection onto the x-z plane. (c)

Projection onto the y-z plane.
5. Results and discussion

The benchmark data of this work is based on the biogas
project in Nanjing University of Technology. The feedstock
characteristics, digester and main process parameters are listed



Table 8

Decision variables and objective function values of the five Pareto-optimal points.

Pareto optimal points TD/
�C br

CH4
Feed ratio (dry matter) Upgrading EC/MI kg�1 TS feedstock GD/gd kg�1 TS feedstock BMP/m3 kg�1 TS feedstock

A 51 0.96 CM/RS 2:1 ILS 4.437 0.06 0.833

B 47 0.95 CM/RS 2:1 PWS 3.966 �0.304 0.729

C 44 0.98 CM/RS 3:1 PWS 3.719 �0.161 0.633

D 34 0.97 CM/CS 2:1 ILS 2.964 0.0477 0.344

E 25 0.90 CM/WS 1:1 PWS 2.139 �0.0188 0.0618

Fig. 5. Energy consumption distribution for point A.
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in Tables 4e6, respectively. The manure/straw is co-digested
in dry matter ratios of 1:1, 2:1, and 3:1, with the same TS
concentration of 8%. The multiobjective optimization model
accounts for decision variables, listed in Table 7.

The MINLP problem is solved using coded NSGA-II in
MATLAB 8.0 to achieve a set of Pareto-optimal solutions. The
Pareto optimal surface is shown in Fig. 3 using linear inter-
polation of the Pareto non-inferior solutions. The three axes
represent the three objective functions. Fig. 4 is the projections
of Pareto-optimal surface onto the coordinate planes. The
resulting Pareto optimal surface demonstrates the tradeoff
among the objectives. Five Pareto optimal solutions are
selected for further analysis. Table 8 shows the decision var-
iable and objective function values of the selected Pareto
optimal solutions.

As can be seen from Figs. 3 and 4, and Table 8, the energy
consumption, GD value, and the biomethane production are
Fig. 6. Distribution of GD contributions among the processing sections for the

selected Pareto optimal points.
increasing in the direction from E to D to A. Those results are
attributed to two factors: Firstly, the COD removal efficiency
and decomposition efficiency increase with the enhancement
of temperature. Subsequently the biogas production rate
continually improves, accompanying with a decreasing of the
digested slurry discharged into the environment. For example,
the digesting temperature and the biogas production of point
A have increased by 26 �C and 11.64 times compared with
point E, respectively. Meanwhile, the digested slurry and
sludge production have reduced by 14.01%. Thus its effect on
the environment is suppressed. Secondly, the selected
upgrading technique is ILS process. The energy consumption
of the ILS process is low, when compared with that of MAS
and PSA techniques [4]. Meanwhile, the CO2 purity in
byproduct can be higher than 90%, thus offgas vented to the
atmosphere can be negligible. However, the performance
improvement of environmental impact and biomethane pro-
duction can be obtained at the cost of increasing energy
consumption. The distribution of energy consumption
contribution among the processing subsection for point A is
given in Fig. 5, the largest energy consuming contribution
from anaerobic digestion that accounts 75.15% of the total
energy consumption, followed by 19.90% of energy con-
sumption of biogas upgrading section. Within the anaerobic
digestion section, 30.58% of energy consumption is attributed
to the feedstock heating. Thus, the energy input of heating
feedstock and raw biogas processing increases with the
Fig. 7. Energy consumption distribution among the processing sections of the

selected Pareto optimal points.
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increment of operation temperature. Meanwhile, the energy
consumption of the whole system continually increases. For
example, the energy consumption of the anaerobic digestion
and the biogas upgrading of point A have increased by 40%
and 1.42 times compared to point D, respectively. Finally, the
energy consumption of the whole system increases by 49.6%.
Similarly, the biomethane production and energy consump-
tion are increasing, and GD value is decreasing in the direc-
tion from point E to C to B. The major reason is that the PWS
process is the selected upgrading technique, in which the CO2

removed from biogas is discharged to the environment. So,
both the biomethane production and energy consumption in-
crease with an increasing of digesting temperature. Mean-
while, the influence on environment continues to strengthen.
Therefore, there is no objective improved without hurting
another objective.

Fig. 6 presents the distribution to the GD among the
processing subsections of the selected Pareto-optimal points.
The GD of digestion section (�4.844 gd kg�1 TS feedstock
for point A) indicates the worst environmental performance.
The gases CH4 and CO2 produced in the codigestion are the
main greenhouse gases, and the high operating temperature
(51 �C) needs large energy input. These two factors lead to a
serious influence on environment. The GD value of biogas
upgrading using ILS at point A is the highest and equal to
4.835 gd kg�1 TS feedstock, which indicates that ILS process
is friendly to environment. The high GD value arises because
of the high purity byproduct (CO2, >90%), negligible solvent
loss and low-energy consumption [4]. Utilization of digested
slurry and sludge section is also benign to environment
because of the resource utilization of digested slurry and
sludge. The contribution from collection transportation and
digestate utilization sections becomes negligible because
there is only physical effect and no flue gas is vented [48].

Fig. 7 shows the energy consumption distribution among the
processing steps of the selected Pareto-optimal points. The
energy consumption differs from section to section and from
Pareto point to point. For point A, the main energy consuming
section is anaerobic digestion (3.333 MJ kg�1 TS feedstock)
followed by the biogas upgrading (0.883 MJ kg�1 TS feed-
stock), collection and transportation (0.177 MJ kg�1 TS feed-
stock), and digestate utilization (0.044 MJ kg�1 TS feedstock).
The main energy consuming section is anaerobic digestion
(3.333 MJ kg�1 TS feedstock for point A) followed by the
biogas upgrading (0.883 MJ kg�1 TS feedstock for point A).
The major reasons for high-energy consumption of digestion
are the feedstock heating and thermal loss. If 60% digestate
waste heat (point A) is utilized, it can lead to 13.3% decrease in
total energy consumption and 5% increase in GD value of the
system. So, heat regeneration of digestate should be considered.
The biogas upgrading which uses ionic liquid or pressurized
water as an absorbent to obtain high purity CH4 production will
produce high power consumption. Even if the power con-
sumption of ILS is higher than that of PWS, the ILS is preferred
to PWS from the perspective of environmental impact. This is
very in line with previous literature resources [4,48].
6. Conclusions

We developed a multiobjective MINLP model for the
optimization of a biomass to biomethane conversion system
consisting of collection and transportation, anaerobic diges-
tion, biogas upgrading, and digestate utilization. The model
simultaneously takes minimizing energy consumption and
maximizing the green degree and the biomethane production
as three optimization objectives subject to mass balance con-
straints, energy balance constraints, environmental impact
constraints, and technology selection constraints.

The multicriteria problem is solved with NSGA-II method,
and the resulting Pareto-optimal surface reveals the tradeoff
among the considered objectives. The optimization results
reveal that for ILS technique selected, the GD and bio-
methane production objectives can be optimized, which leads
to higher energy consumption. For PWS technology selected,
the biomethane production increases at the expense of dete-
riorating the energy consumption and environmental impact
performance. So, producing biomethane product from PWS
process will lead to larger environmental impact than that
from ILS process. In addition, The proposed approach may
provide a very worthy and useful tool that helps decision
makers to select optimum operating condition for improving
the performance of biomethane production process.

A possible extension direction of future research is extending
the superstructure to the application of biomethane production.
Another promising future research is taking the economic per-
formance into consideration in the optimization model.
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