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Neoplastic cells of cutaneous T cell lymphoma (CTCL) 
appear to be of monoclonal origin and frequently are 
nonspecific helpers of normal B cell differentiation. A 
natural progression from epidermotropic (mycosis fun
goides and Sezary syndrome) to nonepidermotropic, 
more widely disseminated T cell neoplasms generally 
occurs. Affinity of CTCL cells for the epidermis may 
result from their having membrane receptors for histo
compatibility (Ia) antigens present in skin. Cultured hu
man epidermal cells produce a thymopoietin-like mole
cule, an indication of a role for skin in T cell differentia
tion. 

Cutaneous T cell lymphoma (CTCL) is a neoplasm of thy
mus-derived lymphocytes (T cells) that characteristically infil
trate broad expanses of skin, frequently have functional prop
erties characteristic of helper T cells, and may be monoclonally 
derived in individual patients (for a review, see reference 1) . A 
natural progression from epidermotropic forms (mycosis fun
goides and Sezary syndrome) to more disseminated and aggi·es
sive nonepidermotropic forms appears to be a general feature. 
Although the term "cutaneous T cell lymphoma" was proposed 
in 1975 [2] as a clinically and scientifically useful way of unifying 
the otherwise splintered group ofT cell lymphomas of the skin, 
it was not until the 1978 National Cancer Institute Symposium 
that it was formally adopted and began to receive broad ac
ceptance [3]. 

This paper reviews recent studies on the ftmctiona1 and 
membrane properties of CTCL cells. As neoplastic amplifica
tions ofT cells with an affinity for epidermis, these cells present 
special opportunities for the investigation of epidermal-T cell 
interactions. 

HELPER FUNCTION 

The first clue that CTCL cells might facilitate or "help" B 
cell differentiation (Fig 1) came from a preliminary observation 
made in collaboration with Broder and Waldmann [ 4]. Leu
kemic T cells from one patient had the property of reversing 
the inability of B cells from a patient with hypogammaglobu-
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linemia to develop into immunoglobulin-secreting cells after 
stimulation in vitro with pokeweed mitogen (Fig 2). The hy
pogammaglobulinemic patient also had a profound thymic de
ficiency, manifested by the absence of delayed hypersensitivity 
on skin testing with specific antigens, decreased in vitro re
sponse to mitogens and antigens, failure to reject g1·afted allo
geneic skin, and few peripheral blood lymphocytes with T cell 
membrane properties; however, despite the hypogammaglobu
linemia, this patient had normal peripheral blood B cell levels. 
The most likely explanation was that the leukemic T cells from 
the CTCL patient permitted B cells from the hypogammaglob
ulinemic patient to differentiate into immunoglobulin-secreting 
cells by providing a previously absent cellular function. 

Additional studies on cells from other CTCL patients were 
then performed. Immunoabsorbent-column-purified B cells, 
fwther depleted ofT cells by having been rosetted with sheep 
erythrocytes, did not secrete significant quantities of IgG, IgM, 
or IgA, as determined by double radioimmunoassay after stim
ulation with pokeweed mitogen, unless T cell "help" was avail
able. Homogeneous cell populations from 4 of 5 leukemic CTCL 
patients provided this polyclonal "help," and the possibility 
that this reflected contamination by a small number of residual 
normal T cells was excluded by dilution studies. 

The absence of suppressor T cells in the same cell prepara
tions was suggested by 2 observations. Fil·st, when normal 
purified T cell preparations were added at 4 times the optimal 
T-to-B cell ratio for production of maximal immunoglobulin 
synthesis, significant inhibition indicative of suppressor activity 
was identified. Second, not only was such suppressor activity 
absent even with increasing concentrations of leukemic T cells 
from our patients, but the addition of leukemic T cells as 3rd
pal'ty cells overcame the apparent suppressive effect of increas
ing concentrations of normal human T cells. We concluded that 
4 of om 5 CTCL patients had leukemia ofT lymphocytes with 
helper T cell activity and suggested that these neoplasms might 
have developed from normal helper T lymphocytes. We have 
recently extended these observations to include the aleukemic 
phases of CTCL [5]. Furthermore, these findings support om 
impressions that the various phases of CTCL are all manifes
tations of the same basic underlying process. Lawrence et al [6] 
also reported that T cells from a patient with CTCL had 
polyclonal helper activity, and Kermani-Arab et al [7] found 
that cells from another patient lacked concanavalin-A-inducible 
suppression for mitogen-responsive normal cells. 

The importance of these observations may be 2-fold. Fil·st, 
patients with CTCL, leukemic phase, often have normal or 
increased levels of serum immunoglobulin despite often ru·a
matically decreased absolute B cell levels. In addition, patients 
with mycosis fungoides often have elevated lgG, lgE, and IgA 
serum levels [8], and most of our patients with CTCL, leukemic 
phase, have elevated levels of lgE and lgA. Production of IgE 
and lgA appears to be particularly T-cell-dependent [9]. The 
2nd reason for the significance of the above experimental ob
servation concerns the natw·e of the cell from which such 
leukemias develop. Since individuallymphoproliferative disor
ders may -represent neoplasms of lymphocytes derived from 
normal lymphocytes, it is possible that the cutaneous T cell 
neoplasms develop from normal precmsors that have a tend
ency to mig1·ate to the skin and that subserve the above-
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FIG 1. Lymphocyte differe ntiation. T cells, different iating under the 
influence of the thymus, mediate graft-versus-host (GVH) disease, 
delayed hypersensitivity (DH) , and allograft and tumor rejection. B 
cells are the precurso rs of the im munoglobulin-producing plasma cells. 
D istinct populations of "helper" T cells fac ili tate, and "suppressor" T 
cells suppress, B cell different iation. 
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FIG 2. "Helper" T cell assay. T cells, stimulated with pokeweed 

mitogen (PWM) , induce B cells with which they are cocultured to 
different iate into immunoglobulin-producing cells. One can identify 
production of immunoglobulin directly by cytoplasmicaLly staining 
cytocentrifuged cells with flu orescein-labeled ant ihuman l g or by using 
a radio immunoassay of ceLl supernatant. 

described " helper" function. It is also possible that these a b
normal T cells have a nonspecific helper role t hat is not a 
property of their normal ancestors. 

M~MBRANE DIFFERENTIATION ANTIGEN S 

The above observations must be viewed in the context of 
information generated from studies, on experimental animals, 
that demonstrate a correlation between T cell functional capa
bilities and surface phenotypes. The conceptual framework 
upon which ow· present approach is based is that observations 
made in rodent systems can be extended to the investigation of 
huma n lymphocytes. 

Such studies have demonstrated that suppressor T cells can 
specifica lly [10-12] a nd nonspecificaily [13] inhibit B cell pro
duction of lg. Similarly, specific and nonspecific h elper T cells 
[14] have been identified. Although the specific helper T cells 
operate in a genetically restricted manner [15], the nonspecific 
ones (as with our polyclonally stimulating CTCL "helper" cells) 

Vol. 75, No.1 

do not [16]. S pecific sup pressor factors have been extracted 
from T cells (17]. Extracts of antigen-primed mouse thymocytes 
contain both suppressive a nd enhancing T cell factors that bear 
ant igenic determinants coded fo r by the I-J a nd I-A subregions 
of the major histocompatibili ty complex (MHC) [18], respec
t ively. N onspecific suppressor T cells may predominate in 
spleens of young mice, and more specific suppressor T cells may 
predominate in the spleens of older animals [19]. 

Defini t ive evidence t hat individual functions ar e performed 
by distinct subclasses of T lymphocytes has been obtained 
through the use of specific antisera against mmine Ly smface 
antigenic determinan ts [20- 24]. Cells exhibit ing cytotoxic and 
suppressor activity appear to express Ly~ .a surface an tigens, and 
T cells mediating delayed h ypersensit ivity, mixed leukocyte 
culture (MLC), and helper activity express the Ly, phenotype. 
Immunoregulatory circui ts have been ident ified among subpop
ulations of T cells, through the use of these specific an tisera 
(25]. Alt hough ant igen-stimulated Ly, cells themselves mediate 
helper activity, small numbers of Ly ,-posit ive T cells induce 
nonimmune other T cells to exhibi t poten t suppressor activity. 
S imilarly, small numbers of Ly ,-posit ive T cells can apparently 
induce separate Ly2.a-positive cells to exer t potent, inhibitory 
effects in the in vitro generation of alloreactive cytotoxic activ
ity (26]. In addition, Ly2,a-positive, and perhaps Ly1.2.a-posit ive, 
cells interact with Ly1-positive cells in such a way that specific 
cell-mediated cytotoxicity is a mplified [27]. These phenomena 
suggest that Ly 1-positive T cells may be programmed to signal 
other sets of T cells to fulfill their respective genetically pro
grammed capa bili ties. 

Other evidence that commonly studied in vitro systems in
volve complicated interactions between phenotypically distinct 
T cell populations has been presented by several laboratories. 
For example, alloant igen-activated murine spleen cells release 
a soluble suppressor factor (28] for which activated responding 
T cells have a receptor [29]. This specific activation of suppres
sor T cells causes nonspecific suppression of the r esponse by 
syngeneic T cells to alloan tigen [30]. Activation of both sup
pressor a nd helper T cells can also occur in r esponse to mito
gens. Polyclonal helper T cell activity occurs after pokeweed 
mitogen stimulation, whereas elimination of radiosensitive sup
pressor cells enhances the response [31]. Concanavalin A can, 
under appropr iate experimental condi t ions, stimulate T cells to 
perform helper , killer, or suppressor functions (13]. In a murine 
system, pmification of cell populations permits con A to activate 
Ly, -posit ive cells to perform helper and Ly2,:~-positive cells to 
perform suppressor functions (32]. Therefore, the measuremen t 
of suppressor activity in con-A-stimulated unseparat ed T cell 
populations (33] actually indicates only net suppressor activity. 

The sit uation in mice has been clarified fmth er by the use of 
an addit ional surface antigen, referred to as Qa1 (34]. Ly1-
positive cells can be further separated into Qa-posit ive and Qa
negative subpopulations [35]. T he Qa-posit ive cells apparently 
mediate feedback inhibition t hrough the Ly2,a-posit ive T cells, 
and cooperation between Ly, Qa,-posit ive and Ly, -posit ive-Qa1-
negative cells is required for optimal formation of antibody by 
B lymphocytes. Stan ton and Boyse (34] and Cantor et al [35] 
suggest that it may be the ratio of Qa,-positive to Qa1-negative 
T cells bearing receptors for specific ant igen that determines 
whether an antibody-producing or -suppressing effect predom
inates. Approximately 67% of t he Ly ,-posit ive cells are also Qa1-
posit ive. Furthermore, studies by Hayes and Bach [36] suggest 
that nonoverlapping pop ulations of mw·ine T lymphocytes ex
press surface antigens coded for by distinct subregions of the 
H -2 system. Antigens coded for by the 1-J subregion have been 
r eported to be preferentially exp ressed on su ppressor T cells 
[ 17, 18]. Hayes and Bach have reported the expression of surface 
de terminants coded for by the I-E region on a possibly separate 
subset of mmine T cells, and it will be important to determine 
whether these include the subset responsible for helper T cell 
activity. 

Certainly, the availability fi·om patients with CTCL of large 
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homogeneous populations of cells with helper activity offers a 
multitude of opportunities to cellular immunologists. Extrapo
lation from the above-described animal studies suggests that 
these populations of "helper T cells" may permit production of 
the human equivalent to anti-Ly, antibody and may facilitate 
isolation of helper T cell products. Of major concern is the 
possibility that CTCL cells are neoplastic equivalents of Ly 1 

Qa1-positive cells that might induce feedback suppression of 
desirable T cell function. 

A question that is central to efforts, such as ours, that attempt 
to produce antibodies reactive with subpopulations of T cells 
by immunization with neoplastic cells is: Do malignant T cells 
express membrane antigens distinctive of individual T cell 
subclasses? Again, an apparent answer has been provided by 
studies in a mw-ine system. Recently Mathieson et al [37] 
examined several mouse lymphocytic tumors for the expression 
of those ant igens recognized to be present in the cell membrane 
of normal mouse T lymphocytes. In addition to identifying 
Thy1 and TL antigens on the surfaces of neoplastic cells from 
thymic lymphocyte tumors, these investigators also identified 
restricted expression of Ly phenotypes. Most of the thymic 
tumors expressed either Ly, or Ly2 antigen, and the expression 
of these Ly antigens were stable over several transplant gener
ations, an indication that they were an intrinsic property of the 
individual neoplasm. In addi tion, Ly, and Ly2 were not identi
fied on non-T-cell tumors. These findings underscore the sug
gestion that neoplastic T cells of CTCL can be expected to 
continue to express the human equivalent ofLy~, and antigenic 
marker of helper T lymphocytes, if t hey are in fact derived 
from helper T cells. 

In the context of these observations, several recent studies 
involving human normal and abnormal T lymphocytes are of 
major interest. Evans et al (38) produced a heterologous anti
serum against purified human normal peripheral blood T lym
phocytes and absorbed this antiserum with autologous B lym
phoblasts to remove the non-T-cell activity. This antiserum 
displayed activity preferentially directed against the T lympho
cytes responding in MLCs and producing lymphocyte mitogenic 
factor capable of nonspecifically "helping" B cells differentiate 
into antibody-forming cells. T cells that reacted more weakly 
or not at all with this ant iserum included those capable of 
responding in vitro to soluble antigens or suppressing immu
noglobulin production by normal B lymphocytes. Because of 
the analogy between the reactive cells with this particular 
antiserum and those mediating helper T cell activity in the 
mw-ine system, Evans et a! [39) referred to the population 
bearing antigenic determinants identified by that antiserum as 
"TH 1" cells. Reciprocal findings were identified by means of 
naturally occurring antibodies present in serum samples from 
selected patients with juvenile rheumatoid artluitis (JRA). 
Briefly, those T cells preferentially reacting with JRA naturally 
occw-ring antibodies included cells mediating nonspecific sup
pression of B cell differentiation or the response to soluble 
ant igens, but not those mediating nonspecific enhancement of 
B cell differentiation or the response in MLCs. Notably, the 
anti-"TH ," serum reacted with 50 to 60% of peripheral blood T 
cells and 90% of thymocytes. Subsequently, Evans et al [39) 
reported production of an additional anti-T -cell serum. Because 
further in vitro studies indicated that the anti-"THl " did not 
clearly identify nonspecific helper T cells, as had been initially 
thought, an antiserum was produced against the same pw-ified 
human T cells and then this antiserum was absorbed not only 
with autologous B lymphocytes but also with human leukemic 
T lymphocytes. The resulting anti-T-cell serum reacted in a 
bimodal fashion, as determined by experiments with a fluores
cence-activated cell sorter. Studies identifying "TH 1" involved 
complement-mediated lysis. Cells that fluoresced brightly con
stitu ted approximately 30 to 40% of the peripheral blood lym
phocytes and contained the majority of killer activity (as deter
mined in cell-mediated lympholysis reactions) and had de
creased activity in MLCs and to most soluble antigens. The 
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more weakly fluorescing cells, as studied after cell sor ting, 
responded well in MLCs and to soluble antigens, and amplified 
the cytotoxicity manifested by the other population. Results 
directly reflecting helper or suppressor T cell activity for B cell 
differentiation were not reported. In summary, highly absorbed 
heterologous Ig produced against a single pw-ified population 
of normal human T cells appears to have specificity for more 
than 1 subset ofT cells. These studies emphasize the difficulty 
of producing monospecific heteroantisera. 

In perhaps more definitive studies, antibodies were produced 
against purified sw-face antigens on human lymphoblastoid B 
lymphocytes and these may have had reactivity specifically for 
glycoprotein antigens sin1ilar to murine Ia antigens [ 40,41). 
Schlossman et al [ 40] found that their "anti-P23-30" antibodies 
were primarily reactive with human B lymphocytes, approxi
mately 15 to 20% of human null cells, neoplastic human B 
lymphocytes, and cells from the majority of patients with acute 
lymphatic leukemia and myelogenous leukemia. Recently, Fu 
et al [ 42] reported that a small percentage of normal circulating 
human T cells, cells from selected patients with T cell leukemia, 
and T cells gTown in long-term culture were reactive with "anti
Ia" lg. They also noted that the "!a-bearing" T cell population 
apparently contained cells responsible for the generation of 
helper activity dming MLC reactions. Clearly, it will be impor
tant to determine which of these various antisubpopulation 
antisera react with cells from individual patients with CTCL 
and whether other specific antisera can be produced with whole 
cells or isolated membrane components from such patients. 

MEMBRANE ANTIGENS OF THE NEOPLASTIC T 
CELLS OF CUTANEOUS T CELL LYMPHOMA 

Three distinct approaches have been taken in the investiga
tion of antigenicity of CT CL neoplastic cells. First, circulating 
anti-T -cell antibodies from patients with systemic lupus ery
thematosus were used as probes. Second, Con A binding pro
teins in the cytoplasmic membranes of the cells were precipi
tated and studied by means of specific antisera. Third, heter
ologous antisera were produced by in1munization with these 
neoplastic cells and subsequent absorption to increase the spec
ificity of the resulting antibodies. 

The study with lupus antibodies [ 43) was possible because of 
enormous numbers of cells obtained through therapeutic Jeu
kapheresis. Over a 35-day period, 36 X 1011 peripheral blood 
leukemic T lymphocytes were removed by leukapheresis from 
an otherwise untreated patient with CTCL. The recovered 
leukemic T cells, which were identified by their deeply indented 
nuclei, constituted at least 95% of the patient's circulating 
mononuclear leukocytes and had the T cell membrane proper
ties of binding sheep erythrocytes and susceptibility to lysis by 
specific anti-human-T-cell serum and complement. These cells 
Jacked the capacity to proliferate in response toT cell mitogens, 
soluble microbial antigens, or allogenic leukocytes. They also 
failed to stimulate normal allogeneic lymphocytes to proliferate 
in MLC, apparently because of a lack of the necessary mem
brane antigens rather than the production of inhibitory material 
since they failed to inhibit as 3rd parties to an otherwise normal 
MLC. Ohter characteristi'cs of these lymphocytes included the 
ability to enhance B cell polyclonal immunoglobulin production 
in response to pokeweed mitogen and the in vitro production of 
a substance (or substances) that inllibited macrophage migra
tion. B celllymphoblasts were harvested from continuous cell 
cultures of human peripheral blood lymphocytes from a single 
normal donor. T hese B cells had receptors for C3 and readily 
detectable sw-face immunoglobulin; they were lysed by rabbit 
an t i-human-B-cell serum, but were not lysed by rabbit anti-T
cell serum and did not form rosettes with sheep erytlu·ocytes. 

Briefly, immunoabsorbent columns were produced as follows. 
Membrane fragments from hypotonically lysed human leu
kemic T cells or cultured human B lymphoblasts were conju
gated to CNBr-activated Sephadex G-100 columns. Antibody 
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applied to these columns passed through them at a rate related 
to the molecular weight of the immunoglobulin unless the 
immunoglobulin specifically bound to the attached membrane 
fragments. The adherent antibodies were eluted from the col
umns by application of glycine-HCl buffer (pH 2.5). Preparation 
of each column required 1.5 X 108 cells/rnl of Sephadex G-100; 
a total of approximately 225 X 109 cells were used to form each 
immunoabsorbent column. Unfractionated, fractionated, and 
eluted antibodies were tested for inhibitory activity in MLCs 
and microbial antigen-stimulated cultures of normal peripheral 
blood mononuclear cells. Both systemic lupus erythematosus 
plasmas had been selected for study because they contained 
IgG that inhibited both sets of reactions. The results of the 
study indicated that both plasmas contained lgG that bound to 
and could be eluted from the T cell column. The anti-T, but 
not anti-B, antibodies significantly inhibited normal lympho
cyte proliferative responses to microbial and alloantigens. These 
findings suggest that neoplastic T cells from the CTCL patient 
expressed membrane antigens that were closely associated in 
the normal T cell membrane with receptors for soluble and 
alloantigens. 

In the 2nd study, the Con A binding glycoproteins were 
isolated from leukemic cells of 7 patients with chronic lympho
cytic leukemia (CLL) and from 3 patients with leukemic phase 
of CTCL. These con A binding glycoproteins were then com
pared to the Con A acceptors expressed on cultured B cell lines 
and on normal thymus-dependent T cells. Cell proteins were 
radiolabeled by incubation either with tritiated leucine or with 
1251 by means soluble lactoperoxidase. To specifically isolate the 
con A binding proteins, the Nonidet-p-40-solubilized cell mem
brane proteins were applied to columns of Con A-sepharose. 
The specifically bound cell proteins were eluted with TKM
MP-40, containing a-methylmmannoside (a-MM), and identi
fication of radiolabeled cell membrane protein present in the 
a-MM eluates w.as achieved by means of specific antisera (al
loantiserum obtained from a multiparous Amish woman and 
directed against certain human-E-cell-associated alloantigens; 
rabbit class-specific antisera against lgD and lgM or rabbit 
anti-,8-2-microglobulin serum). Immunoprecipitation of the 
complex was induced by incubation with formaldehyde-fixed 
Staphylococcus aureus Cowan 1 strain bearing protein A, which 
binds the Fe portion of IgG. Eluates from affinity resins and 
specifically immunoprecipitated proteins were then subjected 
to separation on discontinuous sodium dodecyl sulfate-poly
acrylamide gel electrophoresis (SDS-PAGE) . The results indi
cated that HL-A antigens and ,B-2-microglobulin were present 
on the leukemic T cells. Two proteins with lower molecular 
weights (28,000 and 32,000) were seen in the SDS-PAGE pro
flies of the con A binding proteins of both malignant and normal 
T cells. Large peaks of 33,000- and 25,000-mol wt components 
were observed with the B cell sources, probably representing Ia 
antigens, but were absent in preparations from normal and 
malignant T cells. Therefore, although this study did not prove 
that the leukemic T cells failed to express Ia antigens, it did 
suggest that such antigens were not expressed in a large quan
tity. Furthermore, the failure of the leukemic T cells to prolif
erate in response to Con A could not be explained by any clear 
difference between the type of Con A binding protein on their 
surfaces and that found on normal T cells in the same study. 

The 3rd study, which investigated surface antigenicity of 
these neoplastic cells, involved the production ofheteroantisera 
by immunization with homogeneous populations of abnormal 
T lymphocytes [ 44]. Rabbit anti-human-normal-thymocyte 
(HTLA) sera, anti-human-B-lymphocytoblast sera, and anti
human-brain-tissue sera were tested in parallel. Prior to use in 
vitro, all of these antisera were extensively absorbed by means 
of human lymphocytoblasts bearing surface immunoglobulin 
and receptors for C3 and together expressing HL-A antigens 
identified on the immunizing cells. In this study, anti-HTLA 
caused significantly greater chromium release in 2 of the 3 
patients tested, who had mean values of 92 and 89% as com-
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pared to 63.2% for the normal controls. Although anti-B-lyrn
phoblast sera in l:uge concentrations caused similar cytotoxicity 
with all cells tested, when diluted 1:128 they caused significantly 
greater chromium release by normal lymphocytes (mean 29.6%) 
than by CTCL cells (4 to 7%). Anti-CTCL-cell antiserum was 
less specific than anti-HTLA since it induced less chromium 
release from the CTCL cells, and in an associated study signifi
cantly decreased rosette formation with IgM-antibody-and
complement-coated sheep erythrocytes (lgM EACs). Together 
these data suggest that in addition to expressing T cell differ
entiation antigens, abnormal cells from some patients with 
CTCL may express antigens not found on the absorbing or 
immunizing B cell lymphoblast lines but expressed on normal 
circulating B cells. These findings also highlight the difficulties 
frequently associated with the production of heteroantisera in 
that activity is produced against several poorly understood 
membrane components. 

CLONAL ORIGIN OF CUTANEOUS T CELL 
LYMPHOMA 

Previous efforts to prove monoclonality of CTCL were un
successful. Probably because of both longstanding clinical dis
ease and prior treatments with chemotherapeutic agents known 
to induce additional chromosome abnormalities, karyotypic 
analysis of CTCL cells yielded inconclusive results. The earlier 
studies also failed to use chromosome-banding techniques that 
permit identification of individual chromosomes rather than 
groups of chromosomes of similar size and centromere location. 

We have recently completed a study that was possible be
cause of special opportunities provided by 3 previously un
treated patients [ 45]. In addition to widespread cutaneous inftl
tration, 2 of the 3 patients had at least 2 distinct body regions 
from which large numbers of neoplastic cells could be recovered. 
The 3rd patient was leukemic and had extensive bone marrow 
involvement. Doses of mitogens that had been predetermined 
to optimally induce mitosis in these cell populations were used 
to stimulate metaphase. Direct preparations were du·omosome
banded with quinacrine staining and examined with ultraviolet 
microscopy. Direct observation was achieved with a trypsin
Giemsa technique. Remarkably consistent chromosome struc
tural changes and karyotypes were identified in abnormal cells 
from each individual patient, an indication of the monoclonality 
of the malignancy. However, no single aberration was charac
teristic of the 3 individuals as a group. These observations, 
which suggest that CTCL is, in at least certain instances, a 
monoclonal neoplasm, are not consistent with the suggested 
staging system of CTCL, which is based on the concept that 
the process begins multifocally in skin. Cutaneous T cell lym
phoma appears to be derived in a stepwise fashion from cells 
that normally have a propensity to inftltrate skin. Progressively 
more malignant subclones evolve and ultimately can be char
acterized by chromosome breaks and rearrangements. An in
dividual and highly malignant subclone ultimately overgrows 
the original populations and causes widespread, frequently fa
tal, disease. 

PATTERNS OF CELL PROLIFERATION IN CELL 
MIGRATION IN CUTANEOUS T CELL LYMPHOMA 

In view of the possibility that CTCL is a monoclonal process 
in which widespread dissemination occurs hematogenously, it 
is important to discover where the cells preferentially prolifer
ate and to which tissues the newly formed cells migrate. We 
studied the patterns of cell proliferation and migration in 2 
patients with the leukemic phase of CTCL by obtaining serial 
skin biopsy samples and peripheral blood samples after intra
venous administration of a pulse dose of tritiated thymidine 
[ 46]. At each sample time point, grain counts were performed 
on mitotic and interphase basal epidermal cells, on mitotic and 
interphase cutaneous neoplastic T cells, on circulating inter
phase leukemic T cells, and on circulating neutrophilic granu-
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locytes. Average cell cycle times in these various cell popula
tions were estimated from mean grain count halving times by 
a least-squares fit with an M lab computer modeling program. 
Cell la beling patterns indicated that the primary site of neo
plastic T cell production was extracutaneous, with secondary 
migration into the blood and then to the skin. Rates of neo
plastic cell replication were markedly greater in the extracuta
neous sites. The data also indicated that the leukemic T cells 
appeared in the blood rapidly, in contrast to the neutrophilic 
granulocytes. Proliferating granulocyte precursors are known 
to undergo several maturational divisions in the bone marrow 
before being released into the blood. It appears that the leu
kemic T cells that were proliferating at their primary site of 
production were under no such constraints and were able to 
migrate into the blood at random. Since the circulating leu
kemic T cell counts did not change appreciably over the course 
of the study in these 2 patients, cell influx into the peripheral 
blood must have been balanced by cell outflow from this 
compartment. Therefore, rapid changes in the labeling index 
and particularly in the cell labeling intensity must reflect high 
rates of leukemic T cell migrat ion through the various tissue 
compartments. 

These observations scientifically substantiate 3 of our above
described impressions. First, the neoplastic T cells sequestered 
in skin appear to belong to a slowly proliferating cell population. 
Second, rapid rates of cell renewal occur in extracutaneous 
sites. Third, the neoplastic T cells appear to move rapidly into 
and out of the blood compartment. 

On the basis of the results of autoradiographic studies being 
prepared for publication, we think the peripheral lymph node 
is the major candidate for the primary site of cell renewal in 
advanced stages of disease. Dermatopathic lymph nodes from 
patients eventually shown not to have CTCL had spontaneously 
labeled cells consistently constituting less than 2% of the total 
population; in contrast, histologically involved lymph nodes 
from patients with cutaneous T cell lymphoma had la beling 
indices consistently in excess of 5% and frequently as high as 10 
to 12% of the total cells. 

EPIDERMAL-T CELL INTERACTIONS 

It will be important to determine whether what we clinically 
recognize as CTCL is a neoplastic amplification of an underlying 
skin-T cell interaction. Because the abnormal cells of this 
disorder express membrane properties commonly attributed to 
T cells, it is possible that the "epidennotropism" they exhibi t 
by forming their characteristic intraepidermal clusters (Pau
trier's microabscesses) may also be a phenomenon exhibited by 
their presumed normal ancestral T cells. Therefore, identifica
tion of the mechanisms underlying this T-cell-epidermal cell 
interaction not only may further our understanding of the 
pathogenesis of CT CL, but also may elucidate selected aspects 
of basic normal T cell biology. Certainly, one of the forces 
motivating cellular immunologists to investiga,te the cells of a 
wide variety of lymphoreticular malignant tumors is that infor
mation obtained from the study of these large homogeneous 
populations of abnormal cells presumably at fixed levels of 
cellular differentiation will be conducive to a better understand
ing of their normal counterparts [ 4 7]. 

Several possible explanations for this epidermal-T cell inter
action have already been proposed [ 48]: the techniques needed 
to test their validity are now available. The various proposed 
explanations can be broadly divided into 2 major groups. F irst, 
CTCL may result from the expansion of malignant clones 
originally derived from normal T cells reactive against either 
epidermal antigens or extrinsic antigens that have become 
localized in skin. Second, the neoplastic T cells may "home" in 
skin for reasons completely independent of antigen presentation 
i.e., it is conceivable that both the abnormal T cells and their 
presumed normal ancestral (helper?) T cells express membran e 
determinants for which cells in the skin have complementary 
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structm es, and that both t he epidermal and T cells are affected 
by the interaction. We favor the 2nd broad explanation because 
it seems quite unlikely that a majority of those T cell neoplasms 
of adults identified to date came from the clonal expansion of 
cells autoreactive against differentiation an tigen (or antigens) 
on a particular t issue (the epidermis), and it seems equally 
unlikely that extrinsic antigens eliciting an irnmune reaction 
from these neoplastic T cells could be so universally expressed 
in skin as to cause the total body involvement frequently 
observed. H owever, both sets of possible explanations merit 
investigation, and they may not, in fact, be mutually exclusive. 

Substantial developmental and structmal similarities exist 
between the major component of epidermis, keratinocytes, and 
thymic epithelial cells. H assall's corpuscles of the mammalian 
thymus display an ultrastructural organization closely resem
bling that of keratinizing stratified squamous epidermis [ 49]. 
Specifically, t he core of each corpuscle is composed of eosino
philic material arranged in layers suggestive of keratin and is 
surrounded by cells containing numerous cytoplasmic granules 
ultrastructurally indistinguisha ble from the keratohyalin gran
ules of t he stratum granulosum of normal epidermis [50]. The 
outermost cell layer of Hassall's corpuscle resembles the basal 
or germ layer of the epidermis. Well-developed desmosomes 
connected to cytoplasmic tonofilaments within the cytoplasm 
of the thymic epithelial cells closely resembling those of the 
epidermis h ave also been noted. Keratinocytes express mem
brane differentiation an tigens identifiable with appropriate sera 
[51]. Therefore, it is of further interest that heteroantibodies, 
produced by immunization of ra bbits and reactive with the 
membranes of epidermal keratinocytes, cross-react with thymic 
epithelial cells, in particulaT wi th those constituting Hassall's 
corpuscles [52]. Specific antibodies produced by immunization 
of rabbits with pmified keratin react very strongly by immu
nofluorescence with epidermal keratin and with material in the 
center of Hassall's corpuscles (53). Finally, "nude" mice in 
which thymic epithelium fails to develop derive their name 
from the markedly abnormal development of the epidermal 
derivative, hair. 

These similarities between epidermal keratinocytes and 
thymic epithelial cells raise th e possibility that cutaneous epi
thelium shares one functional property with thymic epithelium: 
an inductive influence on T cell differentiation. Certainly, skin 
is n-ot a genuine "sunogate" thymus since thymectomized mice 
have intact skin but lack T cell function. 

The h ematopoietic precw-sor of the thymocyte (prothymo
cyte) is appar ently already committed to further thymocyte 
differentiation [54] and can be induced in vitro to undergo 
further T cell differentiation by thymoepithelial cell monolayers 
[55-57), by fetal thymus in organ culture [58], and by thymic 
hormones [59-61]. If the epidermis actually has an inductive 
effect on T cell differentiation, it is more likely to be on "post
thymic" T cells that have already received some form of thymic 
influence (either by traffic through that tissue or by action of 
thymic hormones) and that complete their differentiation in 
extrathymic sites [62]. Immunoincompetent thymocytes have 
been shown to emigrate fro m the thymus [63], and such post
t hymic cells can appru-ently be dTiven to differentiate fw-ther in 
the periphery by repeated exposure to antigen (62]. T hat post
thymic differentiation can be influenced in peripheral blood 
human lymphocytes has been demonstrated by Vogel, Incefy, 
and Good, who induced the development of sheep erythrocyte 
receptors in a popula tion of human blood lymphocytes by 
exposm e to human thymic extract (64]. Therefore, a possibility 
investigators must explore is that post-thymic T lymphocytes 
can be induced to undergo further differentiation through in
teraction with epidermal cells, through either antigen-depen
dent or -independent mechanisms. 

Recent studies on the membrane and functional properties 
ofLangerhans cells (LCs) have suggested that these cells, which 
constitute between 2 and 4% of all epiderr;nal cells, belong to 
the macrophage-monocyte series. In additiop to bearing mem-
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FIG 3. Production of monospecific antibody in a mw-ine hybridoma 
system. After immunization of a mouse from an inbred strain with the 
desired antigen, a single-cell suspension of the mouse's spleen is pre
pared. The splenic B cells are then hybridized with multiple myeloma 
cells (originating from the same strain) by means of polyethylene glycol 
(PEG). The tetraploid hybridoma cells, programmed to produce unlim
ited amounts of Ig of the desired specificity, are isolated and then 
injected intraperitoneally into a mouse of the same strain. The cells 
proliferate and produce ascites containing high-titer monoclonally de
rived antibody, which can be easily harvested by peritoneal tap. 

brane receptors for the Fe fragment oflgG and for C3 [65], LCs 
also express Ia [66]. These dendritic cells are usually found in 
a suprabasal position within the epidermis and have numerous 
widely branched, tapering processes in broad communication 
with keratinocytes, the major cellular component of the epider
mis [67]. Involvement of LCs in contact sensitivity to allergens 
has been suggested because mononuclear cells accumulate 
around antigen-binding LCs in such reactions [68]. Guinea pig 
LCs stimulate allogeneic T cells effectively in mixed leukocyte 
reactions and are effective antigen-presenting cells [69]. 

These fmdings are of significance for several reasons. 
Through karyotype analysis of MLCs, we have preliminary 
evidence that the neoplastic cells of CTCL express receptors 
for Ia. The presence of cells in the epidermis that express this 
particular set of antigens makes it tempting to hypothesize that 
the T cell-skin interaction occurs, at least in part, through cell
to-cell contact involving binding of these complementary sur
face structures. Second, normal peripheral T cells are prepro
grammed to recognize selfMHC antigens even before encounter 
with hapten [70]. Although it is still not possible to choose 
between the dual recognition hypothesis [71,72], which suggests 
that each T cell has 2 receptors, 1 reactive with self MHC 
products and 1 reactive with specific antigen, or the altered-self 
hypothesis [73], which suggests that T cells have receptors 
specific for antigen-altered MHC, it seems likely that LCs can 
interact with either antigen-specific or uncommitted autologous 
T cells. 

Langerhans cell induction ofT cell differentiation must also 
be considered. Beller and Unanue [74] have demonstrated that 
a 40,000-mol wt factor derived from peritoneal exudate or 
thymic macrophages can stimulate T cell differentiation, as 
determined by alteration of membrane histocompatibility and 
differentiation antigens to more closely resemble those of ma
ture thymocytes. Van Den Tweel and Walker [75] have dem
onstrated that guinea pig peritoneal macrophages can induce 
maturation of thymic lymphocytes t9 cells capable of respond
ing to mitogens. These combined results extend those of Mosier 
and Pierce [76], who demonstrated macrophage induction of 
functional maturation of murine thymocytes in vitro. 

An additional intriguing finding is that murine T cells and 
epidermal keratinocytes share tissue-specific antigenic deter
minants, the Thy-1 determinants [77]. Does this similarity go 
further? Specifically, are LCs localized in the epidermis in 
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contact with keratinocytes, because these keratinocytes also 
express receptors for Ia? 

CONCLUSION 

Two recent scientific advances should facilitate an improved 
understanding ofT cell-keratinocyte interaction. 

First, Kohler and Milstein [78] discovered that appropriately 
hybridized cells can be programmed to produce enormous quan
tities of monospecific antibody directed against any desired 
immunogen. The method is summarized in Fig. 3. In essence, 
spleen cells from an immunized mouse are brought into suspen
sion and are then fused, by means of polyethylene glycol, with 
mouse myeloma cells from the same inbred strain. These tetra
ploid cells retain the propensity of the myeloma cells to produce 
unlimited amounts of immunoglobulin, the specificity of which 
is now controlled by DNA from the normal spleen cells. Clones 
of these hybridoma cells can be screened to identify those 
producing antibody monospecific for T cell or epidermal cell 
membrane differentiation antigens. These clones are isolated 
and injected intraperitoneally into normal mice, where they 
grow as neoplasms producing very large amounts of antibody 
that can simply be harvested as ascites fluid. In this manner, it 
is now possible to obtain truly specific antihuman antibodies 
that can be expected to permit identification of distinctive 
membrane antigens on normal and neoplastic T cells, as well as 
receptors for complementary structures on human epidermal 
cells. Studies presently being completed in our laboratory have 
already revealed that hybridoma antibodies are extremely use
ful in the diagnosis of CTCL and will be reported in detail 
shortly. 

Second, Eisenger [79] has developed a method of cultivating 
human keratinocytes in vitro, in the absence of feeder layers of 
fibroblasts and without addition of exogenous growth-promot
ing factors. These keratinocytes differentiate to a level appar
ently equivalent to that of cells grown in the system of Rhein
wald and Green [80], and they have desmosomes and tonoflla
ments. We have recently demonstrated that epidermal cells 
grown in these cultures produce a polypeptide, which so far has 
been indistinguishable from thymopoietin, * the hormone se
creted by thymic epithelial cells and capable of inducing early 
T cell differentiation [59]. These findings suggest the exception
ally exciting possibility that the epitheliotropism so character
istic of CTCL may represent a neoplastic amplification of a 
normal inductive influence of epidermal cells on T cell matu
ration. 
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Training courses in laboratory techniques including microbiology, immunology, parasitology, toxicol
ogy, and clinical chemistry are being offered throughout the year by the Bureau of Laboratories of the 
Center for Disease Control, Atlanta, GA. For information contact the Registrar, Bureau of Laboratories, 
Center for Disease Control, Atlanta, GA 30330 . 




