Discrete Mathematics 23 (1978) 229-233. © North-Holland Publishing Company

AN EDGE-COLORATION THEOREM FOR BIPARTITE GRAPHS WITH APPLICATIONS

Ram Prakash GUPTA

Ohio State University, Columbus, OH 43210, U.S.A.

Received 2 February 1978

An edge-coloration theorem for bipartite graphs, announced in [4], is proved from which some well-known theorems due to König [5] and the author [2, 3] are deduced. The theorem is further applied to prove the "dual" of a theorem due to Lovász [6].

1. Bipartite graphs

All graphs considered below are non-null, finite and have no loops. Multiple edges are permitted.

Let G be a graph with vertex-set V(G) and edge-set E(G). A chain in G is a sequence

$$\boldsymbol{\mu} = [\boldsymbol{x}_0, \boldsymbol{\lambda}_1, \boldsymbol{x}_1, \boldsymbol{\lambda}_2, \dots, \boldsymbol{x}_{r-1}, \boldsymbol{\lambda}_r, \boldsymbol{x}_r]$$
(1.1)

where (i) $x_0, x_1, \ldots, x_r \in V(G)$, (ii) $\lambda_1, \lambda_2, \ldots, \lambda_r \in E(G)$, and (iii) λ_i joins x_{i-1} and $x_i, 1 \le i \le r$. If $x_r = x_0$, then μ is called a cycle in G of length r. A graph is *bipartite* if it has no cycle of odd length.

Let G be any graph. Let k be any non-negative integer and let $C_k = \{\alpha, \beta, \ldots\}$ denote a set of k distinct elements called "colors". Any mapping

$$\boldsymbol{\sigma}: \boldsymbol{E}(\boldsymbol{G}) \to \boldsymbol{C}_{\boldsymbol{k}} \tag{1.2}$$

is called a *k*-coloration of G. If $\lambda \in E(G)$ and $\sigma(\lambda) = \alpha$, then λ is called an α -edge.

Let σ be any k-coloration of G. For $x \in V(G)$, let $\nu(x, \sigma)$ denote the number of distinct colors α such that there is at least one α -edge incident with x. Obviously, $\nu(x, \sigma) \leq k$. Also, $\nu(x, \sigma) \leq d_G(x)$ where $d_G(x)$, called the degree of x, is the number of edges incident with x in G. Hence, we have

$$\nu(x,\sigma) \le \min\{k, d_G(x)\} \quad \text{for all} \quad x \in V(G). \tag{1.3}$$

We shall prove the following

Theorem 1.1. If G is a Lipartite graph, then, for every non-negative integer k, there exists a k-coloration σ of G such that

$$\nu(\mathbf{x}, \boldsymbol{\sigma}) = \min\left\{k, d_{\mathbf{G}}(\mathbf{x})\right\} \quad \text{for all} \quad \mathbf{x} \in V(G). \tag{1.4}$$

Proof. If k = 0 or 1, then any k-coloration σ of G satisfies (1.4). It is, therefore, enough to consider $k \ge 2$. Let σ be a k-coloration of G such that $\sum_{x \in V(G)} \nu(x, \sigma)$ is largest possible. Since G is finite, such a σ exists. We shall prove that σ satisfies (1.4).

Let, if possible, σ not satisfy (1.4). Then, there is a vertex $x_0 \in V(G)$ for which $\nu(x_0, \sigma) < \min\{k, d_G(x_0)\}$. Since $\nu(x_0, \sigma) < d_G(x_0)$, there is a color α such that there are at least two α -edges incident with x_0 ; also, since $\nu(x_0, \sigma) < k$, there is a color β such that there is no β -edge incident with x_0 . Choose α , β as above and let

$$\mu = [x_0, \lambda_1, x_1, \lambda_2, \ldots, x_{r-1}, \lambda_r, x_r], \quad r \ge 1,$$

230

be an (α, β) -alternating chain where $x_0, x_1, \ldots, x_{r-1}$ are distinct vertices, λ_1 , λ_3, \ldots are α -edges, $\lambda_2, \lambda_4, \ldots$ are β -edges and which satisfies at least one of the following two conditions:

(i) λ_r is an α -edge [resp. β -edge] and there is no β -edge [resp. α -edge] incident with x_r ;

(ii) λ_r is an α -edge [resp. β -edge] and there is another α -edge [resp. β -edge] incident with x_r .

Since G is finite, such a chain μ can always be found. Now, interchange colors α and β on all edges belonging to μ , leaving the colors of the rest of the edges unchanged and let ρ be the k-coloration of G so obtained. Since the chain μ satisfies (i) or (ii), it is easily seen that $\nu(x, \rho) \ge \nu(x, \sigma)$ for all vertices x except possibly when $x = x_0$. We now observe that x, cannot coincide with x_0 . In fact if $x_r = x_0$, then, since there was no β -edge incident with x_0 with respect to σ ; μ would be a cycle of odd length in G contradicting the assumption that C is bipartite. Hence, since there were two α -edges incident with x_0 with respect to σ , $\nu(x_0, \rho) > \nu(x_0, \sigma)$. But, then $\sum_{x \in V(G)} \nu(x, \sigma) < \sum_{x \in V(G)} \nu(x, \rho)$ which is contradictory to the choice of σ . Hence, σ must satisfy (1.4) and the theorem is proved.

Let G be any graph and k be any non-negative integer. A k-coloration σ of G may be called "good" if $\nu(x, \sigma) = \min(k, d_G(x))$ for all $x \in V(G)$. Theorem 1.1, then, states that a bipartite graph always has good k-colorations for all $k \ge 0$.

The above theorem had been discovered by the author several years ago but was first announced in [4].

In the following sections, we apply Theorem 1.1 to derive some well-known results in the theory of graphs.

2. Theorems of König and Gupta

Let G be a graph with vertex-set V(G) and edge-set E(G). Let $F \subseteq E(G)$ F is called a matching [resp. cover] if for all $x \in V(G)$, F contains at most [resp. at 'east] one edge incident with x. The chromatic index of G, denoted $\chi_1(G)$, is the mallest number k such that the edge-set E(G) can be partitioned into k

matchings. The cover index $\kappa(G)$ of G is the largest number k such that E(G) can be partitioned into k covers. If $\Delta(G) = \max_{x \in V(G)} d_G(x)$ and $\delta(G) = \min_{x \in V(G)} d_G(x)$ are the maximum and minimum degrees in G respectively, then, clearly

$$\chi_1(G) \ge \Delta(G), \tag{2.1}$$

and

$$\kappa(G) \leq \delta(G). \tag{2.2}$$

Now, let G be a bipartite graph. Let $k = \Delta(G)$. By Theorem 1.1, there exists a k-coloration $\sigma: E(G) \rightarrow \{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ of G such that $\nu(x, \sigma) = \min\{k, d_G(x)\} = d_G(x)$ for all $x \in V(G)$. Let E_i be the set of all α_i -edges, $1 \le i \le k$. Then, each E_i must be a matching so that E_1, E_2, \ldots, E_k form a partition of E(G) into $k = \Delta(G)$ matchings. Hence, $\chi_1(G) \le \Delta(G)$. Since $\chi_1(G) \ge \Delta(G)$ always, we obtain the following theorem due to König [5].

Theorem 2.1. For any bipartite graph G,

$$\chi_1(G) = \Delta(G).$$

Just as above, by taking $k = \delta(G)$, from Theorem 1.1 we obtain the following theorem due to the author [2, 3].

Theorem 2.2. For any bipartite graph G,

$$\kappa(G) = \delta(G).$$

3. Digraphs

We consider below digraphs which are non-null and finite. Parallel arcs and loops are to be permitted.

Let D = (X, A) be a cigraph with vertex-set X and arc-set A. Let $F \subseteq A$. For any vertex $x \in X$, the out-degree $d_F^+(x)$ of x in F is the number of arcs in F with initial vertex x and the in-degree $d_F^-(x)$ is the number of arcs in F with terminal vertex x. F is called a matching of D if $\max\{d_F^+(x), d_F^-(x)\} \le 1$ for all $x \in X$; F is called a cover of D if $\min\{d_F^+(x), d_F^-(x)\} \ge 1$ for all $x \in X$. The chromatic index $\chi_1(D)$ of D is the minimum number k such that A can be partitioned into k matchings; the cover index $\kappa(D)$ of D is the maximum number k such that A can be partitioned into k covers. Let $\Delta(D) = \max_{x \in X} \max\{d_A^+(x), d_A^-(x)\}$ and $\delta(D) =$ $\min_{x \in X} \min\{d_A^+(x), d_A^-(x)\}$. Then, obviously,

$$\chi_1(D) \ge \Delta(D), \tag{3.1}$$

and

$$\kappa(D) \leq \delta(D). \tag{3.2}$$

R.P. Gupta

In fact, we shall prove that equalities in (3.1) and (3.2) always hold. To this end, we associate to the digraph D = (X, A) a graph G as follows: $V(G) = \{x', x'': x \in X\}$ and for each arc in A with initial vertex x and terminal vertex y, there is an edge joining x' and y'' in E(G). It is easy to see that G is a bipartite graph with $\Delta(G) = \Delta(D)$ and $\delta(G) = \delta(D)$. Also, a set of edges F of G is a matching [resp. cover] of C if and only if the corresponding set of arcs is a matching [resp. cover] of D. Hence, from Theorems 2.1 and 2.2, we easily obtain the following,

Theorem 3.1. For any digraph D,

$$\chi_1(D)=\Delta(D).$$

Theorem 3.2. For any digraph D,

$$\kappa(D) = \delta(D). \tag{3.4}$$

ant des des dés de

A digraph D = (X, A) is said to be regular of degree *n* if $d_A^+(x) = d_A^-(x) = n$ for al^{*} $x \in X$. The following theorem is an immediate consequence of Theorem 3.1 or Theorem 3.2.

Theorem 3.3. If D = (X, A) is a digraph which is regular of degree n, then A can be partitioned into n sets A_1, A_2, \ldots, A_n such that each of the digraphs $D_i = (X, A_i), 1 \le i \le n$, is regular of degree 1.

It may be noted (see, e.g. [1, p. 230]) that the above theorem implies the well-known theorem due to Petersen [8].

Theorems 3.2 and 2.2 were motivated by a problem suggested by Ore [7, Problem 4, p. 210]. The results contained in this section and the previous section were announced in [2] and are included in [3].

4. A theorem of Lovász and its dual

Let G be a graph with vertex-set V(G) and edge-set E(G). A graph H is called a factor (spanning subgraph) of G if V(H) = V(G) and $E(H) \subseteq E(G)$. If H and K are factors of G such that $E(H) \cap E(K) = \emptyset$, $E(H) \cup E(K) = E(G)$, then we write G = H + K and call it a decomposition of G.

The following theorem is due to Lovász [6].

Theorem 4.1. Let G be any graph with maximum degree $\Delta(G)$. For any nonnegative integers h and k with $h+i:=\Delta(G)+1$, there exists a decomposition G = H+K such that $\Delta(H) \leq h$ and $\Delta(K) \leq k$.

(3.3)

The original proof of Theorem 4.1 seems complicated. A simpler proof, using the König's Theorem 2.1, was shown to the author by Berge. We shall apply Theorem 1.1 to prove the following "dual" of Theorem 4.1.

Theorem 4.2. Let G be any graph with minimum degree $\delta(G)$. For any nonnegative integers h and k with $h+k=\delta(G)-1$, there exists a decomposition G = H+K such that $\delta(H) \ge h$ and $\delta(K) \ge k$.

Proof. The theorem is proved by induction on h. If h=0, then, we may define H and K so that $E(H) = \emptyset$, E(K) = E(G) and the theorem is true. Assume, as induction hypothesis, that the theorem holds for some integer h = l, $0 \le l < \delta(G) - 1$ We shall prove the theorem for h = l + 1.

Now, by hypothesis, there exists a decomposition G = H + K such that $\delta(H) \ge l$, $\delta(K) \ge \delta(G) - l - 1$. We choose the decomposition G = H + K such that K has the smallest number of edges possible.

Let $S = \{x : d_H(x) = l\}$ and $\tilde{S} = V(G) - S$. If $S = \emptyset$, then the present decomposition G = H + K meets our requirement with h = l + 1. Let $S \neq \emptyset$.

Now, define a graph B as follows: V(B) = V(K) = V(G), E(B) consists of precisely those edges of K which have exactly one endpoint in S and the other in \overline{S} . Clearly, B is a bipartite graph which is a factor of K. Now, we observe that, by our choice of K, S must be independent in K so that for all $x \in S$,

$$d_{\mathbf{B}}(x) = d_{\mathbf{K}}(x) = d_{\mathbf{G}}(x) - d_{\mathbf{H}}(x) \ge \delta(\mathbf{G}) - l.$$

By Theorem 1.1, there exists a $(\delta(G)-l)$ -coloration σ of B such that $\nu(x, \sigma) = \min \{\delta(G)-l, d_B(x)\}$ for all $x \in V(B) = V(G)$. Let E_1 be the set of edges of B (and hence of K) of one of the colors with respect to σ . Define factors H_1 and K_1 of G as follows: $E(H_1) = E(H) \cup E_1$, $E(K_1) = E(K) - E_1$. It is now easy to verify that the decomposition $G = H_1 + K_1$ meets our requirement with h = l + 1.

Hence, the theorem is proved.

References

- [1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
- [2] R.P. Gupta, A decomposition theorem for bipartite graphs, in (P. Rosenstiehl, Ed.,) Theorie des Graphes Rome I.C.C. (Dunod, Paris, 1967) 135–138.
- [3] R.P. Gupta, Studies in the theory of graphs, Thesis, Tata Inst. Fund. Res., Bombay (1967) mimeographed.
- [4] R.P. Gupta, On decompositions of a multigraph into spanning subgraphs, Bull. Am. Math. Soc. 80
 (3) (1974) 500-502.
- [5] D. König, Theorie der endlichen und unendlichen Graphen (Leipzig, 1935).
- [6] L. Lovász, Subgraphs with prescribed valencies, J. Combinatorial Theory 8 (1970) 391-416.
- [7] O. Ore, Theory of Graphs, Am. Math. Soc. Colloq Publ. 38 (A.M.S., Providence, RI, 1962).
- [8] J. Petersen, Die Theorie der regularen Graphen, Acta Math. 15 (1891) 193-220.