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An edge-coloration theorem for bipartite graphs, announced in [4], is proved from which 

some well-known theorems due to Kiinig [S] and the author [2, 31 are deduced. The theorem is 
further applied to prove the “dual” of a theorem due to Lo&z [6]. 

1. Bipartite graphs 

All graphs considered below are non-null, finite and have no loops. MuXple 
edges are permitted. 

Let G be a graph with vertex-set V(G) and edge-set E(G). A chain in G is a 
sequence 

P =[xo, Al, Xl, A;?, - - - ,X,-l, A,, x,1 (1.1) 

where (i) x0, xl, . . . 9 x, E V(G), (ii) Al, &, . . . , A, E E(G), and (iii) hi joins Xi -_, and 

Xici, 1 s i s r. If X, = x0, then p is called a cvcle in G of length r. A graph is bipartite 
if it has no cycle of odd length. 

I& G be anxl graph. Let k be any non-negative integer and let C; = {a, p, . . _) 

denote a set of k distinct elements callecl “colors”. Any mapping 

a:E(G)+ C, (1.2) 

is called a k-cotoration of G. If i, E E(G) and cr(AJ = cy, then A is called an a-edge. 
Let CT be any k-c&ration of G. For x E- V(G), ,et V(X, a) denote the number of 

distinct colors cu such that there is at least one cw-edge incid.ent with X. Obviously, 
V(X, a) s k. Also, V(X, a) s &(x) wht:re d&x), c:#ed thjz degree of x, is the 
number of edges incident with x in G. Hence, we Fave 

v(x, c)dmin{k, d,(x)} for all x E V(G). i: 3) 

We shali prove the followint; 
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32. Let cr be a k-colutatbn of G such that zXev(GI u(x, cr) 
is__l$@g@ @os&&. Since G is finite, such a c exists. We shall prove that c satisfies 
.(L4?* * -- ‘?‘b’_, ( I /;I, ’ , , ” . I ’ 

.~~~~:~~~~~; ‘& &i &+&&@j$ *wen,., $& & ~ .verr~ex~~xo E vtG, fcri* wjlichy 

v(;r;o, b) s,&{k, &&T$$ $&we P(& k) k i&&J, &&t?is a CC&& Q! s&k ?‘hat 
&we aqe at .kast txb n-edges b_@ient with x0; also, since &, a),< k, there ,is a 
color & such that there b no p-edge kident with x0. Choose tx, /3 as above and 
l&t T 

p=~XO,~f,~~19 k2, l l l 9 GdrY 4, pa -I, 
be an (a, @alternz&g cl&n. where & xlr’. + . , x~__~ are distinct vertices, hI, 
A 39 ’ ’ l are a-edges, At, A&. * .( are fhzdges and Which satisfies at least one of the 
following two conditions: 1 

(i) & is an a-edge [resp. P-edge] and there is no @edge [resp. q-edge] 
incident with &; :\ . ‘ 

(ii) A, is an at-edge [resp. p-edge] and there is another cu-edge [resp. P-edge] 
incident with q. 

Since G is kite, such a chain 1-1 can always be fttund. Now, interchange colors 
LY and #3 on ail edges’ belonging to cc, leaving the colors .of the rest of the edges 
unchanged and let p be the k-coloration of G so obtained. Since the chain p 
satisfies (i) or (fi}, it ti easily seen that V(X, p) 2 V(X, O) for all vertices x except 
possibly when x = G. We Jdow observe that x, cannot coincide with ;I;~. In fact if 
x, = ~0, then, since there :‘r as no p-edge incident with ‘x0 with respect to o; lu. 
would be a cycle of odd kngth in G contradicting the assumption that C: is 
bipartite. Hence, &xe there were two a-edges incident with x0 with respect to U, 
r&p)> d~o,Of. But., then LeV(G) v(x,d(C, EvcG) v(x, p) 3which is contr&ic- 
tory to the choice of cr. Hence, Q must satisfy (1.4) and the theorem is proved. 

Let G be any graph and k be any non-negative integer. A k-colgration o of G 
may be called “good” if v(x, (T) = min (k, k(x)} for all x E V(G). Tireurem 1.1, 
then, states that a bipartite graph always has good k-colortitions for all k 3 0. 

‘The above theorem hdd been &covered by *the author several years ago but 
was fk& announced in [4]. 

In the following sections, we i;~pply Theorem 1.1 to derive some well-known 
rer;zlts in the theory OF graphs. 

Let G Se a graph with vertex-set V(G) and edge-set E(G). Let F’QZ(G) F is 
cakd a makhing [resp. CONY] if for all x: E V(G), F contains at most [resp. at 
‘east] cne edge incident with x. T?e chr~llwzatic in&x of G, denoted x,(G), is the 
;rrl~lEest nun&r kc such that the tJge-set E(G) can be partitioned into i:: 
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matchings. The cover index K(G) of G is the largest number k such that E(G) can 
be partitioned into k covers. If A(G)=maxXEv,,, C&&C) and S(G) = 

Fninxdm3 43t x are the maximum and minirmun degrees in G respectively, then, 1 
TWrLy 

x,KW A(G), (2.1) 

and 

u(G)=a(G:. (2 2 

NW, Let G be a bipartite graph. Let k = A(G). By Theorem 1.1, there exist; a 
k-coLoration o : E(G) -+ ((~1, a2, . . . , q > of G such that V(X, a) = min (k, d&x)} = 
da(~) for all. x E V(G). Let Ei be the set of all ai-ddges, 1. s is k. Then, ?ach Ei 
must be a matching so that El, E2, . . . ,I& form a partition of E(G) into 

k = A(G) matchings. Hence, x1(@& A(G). Since x1(G)> A(G) always, we obtain 
the following theorem due to Kiinig [5]. 

Thmrern 2.1. For any b@atite graph G, 

x,(G) = A(G). 

Just as above, by takirlg k = S(G), from Theorem 1.1 we obtain the following 

theorem due to the authl~r [2,3]. 

I%eorerm 2.2. For any bipartite graph G, 

u(G) = S(G). 

3. Digraphs 

We consider below d!graphs which are non-null and finite. Parallel arcs and 
loops are to be permitted. 

Let D = (X, A) be a <:igraph with vertex-set X and arc-s& A. Let F c kl. For 
any vertex x E X, the out-degree d;(x) of v in F is the number of arcs in F‘ with 

initial vertex 3c and the n-degree d&) is the number of arcs in F with terminal 
vertex x. F is called a matching of D if max (d:(x), L&(X)) s 1 for all x E X; F is 
called a covet of D if min {d:(x), &(~:))a I for all x E X. The chromatic index 
xl(D) of D is the minlmum number k such that A cm be partitioned into k 
matchings; the cover index u(D) of 23 is the maximum number k such that A c‘an 
be partitioned into k covers. L,et A(D) =rn3ixxEx max {d:(x), 4,.,(si) and 6(D) =- 

minJK,, min (d&;:), d& )). Then, obviously, 

and 



It may be noted (see, e.g. [I, p+ 2301) that the above theorem implies the 
well-known theorem due to Petersen [8]. 

Theorems 3.2 and 2.2 were motivated by a problem suggested by Ore 1% 
problem 4, p+ 21.05 % res~rllts mntained in this section and the previous section 
were announced in’[2] and are included in [3]. 

Let G be a graph with vertex-set V(G) and edge-st:t E(G). A graph 2% is called 
a factor (spanning subgraph) of G if t”(H) = V(G) and E(H) c E(G). If N and K 
are factors of G such that E(H) n E(+C‘J = p)? E(H)U E(.K) = E(G), then we write 
G = H+ K and cab it a de&mpositi& of * G. 

The following theorem is due t> lCxrv&sz [6]. 

I)lbsbrem 4.1. Let G-be any graph with m_aximum degree A(G). For any non- * :, 
negative integel’s h and k with h + ic = A(G)+ 1, there exists a decowapition 
G=H+K such that d(H)=~h aud A(K&k. 
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The original proof of Theorem 4.1 setems complicated. A simpler proof, using 
the Kijnig’s Theorem 2.1, was shown LO the author by Bergs. We shall apply 
Theorem 1.1 to prove the following “dual” of Theorem 4.1. 

Tkorem 4.2. Let G be any graph with minimum degree S(G). For any non- 
negative integers h and k with h + k = S(G) - 1, there exists a decomposition 
G=H+K such that S(H)>,h and S(K)ak. 

proof. The theorem is proved by induction on h. If h = 0, then, we may define: ;Y 

and K so that E(H) =f$ E(K) = E(G) and the theorem is true. Assume, as 
induction hypothesis, that the theorem holds for some integer h = I, 0 s I < 

8(G)- i We shzll prove the theorem for h = 1 + 1. 
Now, by hypothesis, there e::ists a decomposition G = H+ K such that 6(H) 2 I, 

6(K) 2 6(G) - 2 -- 1. We choose the decomposition G = H+ K such that K has the 
smallest number of edges possible. 

Let S ={x : d*(x) = 1) and 3: = V(G) - S. If S = 8, then the present decomposi- 
tion G = H+ K meets our requirement with h = I + I. Let S f $3. 

Now, define a graph B as follows: V(B)= V(K) - V(G), E(B) consists of 
precisely those edges of K which have exactly one endpoin: in S and the other in 
g Clearly, B is a bipartite graph which is a factor of K. Now, we observe that, by 
our choice of K, S must be independent in K so that for all x E S, 

d,(x)=d,(x)=d,(x)-d&)x3(G)-1. 

By Theorem 1.1, there exists a (S(G)- Z)-coloration u of B such that V(X, a) = 
min {S(G)- I, d&x)} for all x E V(B) = V(G). Let El be the set of edges of R (and 
hence of K) of one of the colors with respect to C. Define factors H, and K, of G 
as follows: E(N,) = E(H) U El, E(K,) = E(K)-El. It is now c;csy to verify that 
the decomposition G = E& + KI meets our requirement with h = I + 1. 

Hence, the theorem is proved. 
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