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An edge-coloration theorem for bipartite graphs, announced in {4], is proved from which
some well-known theorems due to Konig [5] and the author [2, 3] are deduced. The theorem is
further applied to prove the “dual’ of a theorem due to Lovasz [6].

1. Bipartite graphs

All graphs consicdered below are non-null, finite and have no loops. Muitiple
edges are permitted.

Let G be a graph with vertex-set V(G) and edge-set E(G). A chain in G is a
sequence

M"__[xO’Alaxl’AQa--'sxrwhkra x,] (11)

where (i) xo, Xy, ..., x, € V(G), (ii) A, A,, ..., A, € E(G), and (iii) A, joins x;_, and
X, 1<si<sr If x, =x,, then p is called a cvcle in G of length r. A graph is bipartite
if it has no cycle of odd length.

Let G be anv graph. Let k be any non-negative integer and let C, ={a, B8, ..}
denote a set of k distinct elements callec ‘““‘colors”. Any mapping

o:E(G)— C, (1.2)

is called a k-coloration of G. If /. € E((3) and o(A’ = a, then A is called an a-edge.

Let o be any k-ccloration of G. For x € V(G), et v(x, o) denote the number of
distinct colors a such that there is at least one a-edge incident with x. Obviously,
v(x, g)<k. Also, v(x,o)<ds(x) where ds(x), called the degree of x, is the
number of edges incident with x in G. Hence, we have

v(x, o)<smin{k, d;(x)} forall xe V(G). (1.
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We shali prove the followiny;
Theorem 1.1. If G is a Liparite graph, then, for every non-negative integer k. ihere
exists a k -coloration o of G such that
ix, o)=min{k, d;(x)} forall xe V(o). ey
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; o ‘a-edges mcxdent ‘thh xo, also since v(xo, o') < k, there isa
color B suchthat there i is no B-edge mmdeni wnh xo Choose a, B as abeve und
let.

! *[xo, )51, X1y 'kzk,’- Lo xkr—-l’:An }—.r]y rk; 1,
be an (a, 3)»alt$mati,},lg'_:chains’whi;ré:"‘ Y3r Xiss v vy Xy ATE ‘distinct vertices, A,,
As, ... are a-edges, Ay, Ay, ... are :Bﬁ#é’dges- faxid}wtﬁ‘ch s'atiSﬁes at least one of the
following two conditions: - ‘
(i) A, is an a-edge [resp E-edge] and there is no —edge [resp. a-edge]
incident with x,;

(ii) A, is an a-edge [resp B-edge] and there is another a- edlge [resp B-edge]
incident wnth X

Since G is hmte, such a cham W can always be fuund Now mterchanoe colors
« and B on all edges bdongmg 10 w; leavmg th¢= colors of the rest of the cdges
unchanged and let p be the k-cecloration of G so obtamed Since the chain u
satisfies (i) or (ii), it is easily seen that »(x, p)> v(x; o-) for all vertices x ex-ept
possibly when x = x,. We ..ow observe that x, cannot coincide with x,. In fact if
x, = Xo, then, since there was no B-edge incident with x, with respect t0 o,
would ‘be a cycle of odd length in G contradicting the assumption that C+ is
bipartite. Hence, since there were two a-edges incident with x, with respect to o,
v(xo, p)> v(xo, o). But, then Y., . v(q) ¥(%, ) <Y:cvs) ¥(% p) which is contradic-
tory to the choice of o. Hence, o must satisfy (1.4) and the theorem is proved.

Let G be any graph and k be any non-negative integer. A k-coloration o of G
may be called “good” if »(x, o)=min (k, ds(x)} for all x € V(G). Theorem 1.1,
then, states that a bipartite grapn always has goed k-colorations for all k=0.

- 'The above theorem had been dliscovered by the author several years ago but
was first announced in [4].

In the following sections, we apply Theorem 1.1 to dcnve some well-known
results in the theory of graphs.

2. Thecrems of Konig and Gupts

let G be a graph with vertex-sct V(G) and edge-set E(G). Let FS E(G) Fis
called a matching {resp. cover] if for all xe V(G), F contains at most [resp. at
‘zast] cne edge incident with x. The chromatic index of G, denoted x,(G), is the
millest number k such that the edge-set E(G) can be partitioned into K
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,matchings. The cover index k(G) of G is the largest number k such that E(G) can
be partitioned into k covers. I A(G)=max.cyi ds(x) and 8(G)=
Min,.v(g) do(x) are the maximum and minimrun degrees in G respectively, then,
clearly

x1(G)=A(G), (2.1)
and

x(G)=8(G.. (2.2)

Now, let G be a bipartite graph. Let k = A(G). By Theorem 1.1, there exist: a
k-coloration o : E(G)-» {ay, as, . .., o, } of G such that »(x, 0) =min {k, d;(x)}=
dg(x) for all xe V(G). Let E, be the set of all a;-cdges, 1 <i<k. Then, =ach E,
must be a matching so that E,, E,, ..., E, form a partition of E(G) into
k = A{G) matchings. Hence, x,(G)=< A(G). Since x,(G= A(G) always, we obtain
the following theorem due to Konig [5].

Theorem 2.1. For any binartite graph G,
x:(G) =A4(G).

Just as above, by taking k= 8(G), from Theorem 1.1 we obtain the following
theorem due to the author [2, 3].

Theorem 2.2. For any bipartite graph G,
x(G)=8(QG).

3. Digraphs

We consider below d:graphs which are non-null and finite. Parallel arcs and
loops are to be permitted.

Let D=(X, A) be a cigraph with vertex-set X and arc-sci A. Let F< A. For
any vertex x € X, the out-degree dr(x) of x in I is the number of arcs in F with
initial vertex x and the un-degree dz(x) is the number of arcs in F with terminal
vertex x. F is called a matching of D if max {d&(x), dp(x)}<1 for all xe X F is
called a cover of D if min{dg(x), dg(x)}=1 for all x e X. The chromatic index
x1(D) of D is the minimum number k such that A can be partitioned into k
matchings; the cover index k(D) of D is the maximum number k such that A can
be partitioned into k covers. Let A{D)=max,.x max {di(x). d.(xj} and 6(D) ==
min, ., min {d4(5:), d2(> )}. Then, obviously,

xi(D)=4A(D), (3.1

and

>
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k(D)< 8(D). (3.2)



1. _’For any dzgmph D

(D)= ao. e 63
, Theerem 3.2 For any dtgraph D ‘
k(D)= 8(D). . 3.4

A digraph D = (X, A) is said to be regular of degree n if d(x)=dz(x)=n for
" x 2 X The following: the orem is an immediate consequence of Theorem 3.1or
Tﬁeorem 32. ' . :

: Theorem 33. f D=(X, A)isa dzgraph which is regular of degree n, then A can
be partmoned into n sets Ay, A,, ..., A, such that each of the digraphs D, =
(X, A), 1<z<n,l is regular of degree 1.

It may be noted (see, e.g. [1, p. 230]) that the above theorem implies the
well-known theorem due to Petersen [8].

Theorems 3.2 and 2.2 were motivated by a problem suggested by Ore {7,
Problem 4, p. 210]. The results contained in this section and the prevmus section
were announced in [2] and are included in [3]

4. A theorem of Lovisz and fts dual

Let G be a graph with vertex-set ViG) and edge-sc:t E(G). A graph H is called
a factor (spanning subgraph) of G if V(H)= V(G)and E(H)c E(G).If Hand K
are factors of G such that E(H)ﬂE(‘{) !Zl, E(H)UE(K) E(G), then we write
G=H+K and call it a decompositioa of G.

The following theorem is due to Lovész [6].

Theorem 4.1. Let G be any ‘graph with maxxmum degree A(G). For any non-
negatme mtegers h and k with h+i: —A(G)+1 there exists a decomposition
G =H+K such that A(H)<h and AK)=k.
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The original proof of Theorem 4.1 seems complicated. A simpler proof, using
the Konig’s Theorem 2.1, war shown 10 the author by Berge. We shall apply
Theorem 1.1 to prove the following “dual” of Theorem 4.1.

Tlgéo:em 4.2. IL.et G be anv graph with minimum de
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egree 8(G). For

negative integers h and k with h+k=38(G)~1, there exists a decomposition
G = H+K such that 5(H)=h and §(K)=k.

Proof. The theorem is proved by induction on h. If h =0, then, we may definc H
and K so that E(H)=9, E(K)=E(G) and the theorem is true. Assume, as
induction hypothesis, that the thecrem: holds for some integer h=1 0<I<
8(G)—1 We shall prove the theorem for h=1+1.

Now, by hypothesis, there e:ists a decomposition G = H+ K such that §(H)= 1,
8(K)=8(G)—1-1. We choose the decomposition G = H+ K such that K has the
smallest number of edges possible.

Let S={x:dy(x)=1} and &= V(G)—S. If S=40, then the present decomposi-
tion G = H+K meets our requirement with h=1+1. Let S#0.

Now, define a graph B as follows: V(8)= V(K)= V(G), E(B) consists of
precisely those edges of K which have exactly one endpoint in S and the other in
S. Clearly, B is a bipartite graph which is a factor of K. Now, we observe that, by
our choice of K, S must be independent in K so that for all x€ S,

dg(x) = dg(x) = dg(x)— dy(x)= 6(G)— L

By Theorem 1.1, there exists a (6(G)— [)-coloration o of B such that v(x, o) =
min {§(G)—1, dg(x)} for all x € V(B)= V(G). Let E, be the set of edges of B (and
hence of K) of one of the colors with respect to o. Define factors H, and K, of G
as follows: E(H,)=E(H)UE,, E(K,)= E(K)—E,. It is now casy to verify that
the decomposition G = H, + K, meets our requirement with h =1[+1.

Hence, the theorem is proved.
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