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A sequence of binomial type is a basis for RB[x] satisfying a binomial-like identity, e.g. 
powers. rising and falling factorials. Given two sequences of binomial type, the authors describe 
a totally combinatorial way of finding the change of basis matrix: to each pair of sequences is 
associated a poset whose Whitney numbers of the 1st and 2nd kind give the entries of the 
matrix and its inverse. 

1. Intmduction 

In the paper “On the foundations of combinatorial theory III. Theory of 
binomial enumeration” [7-j, Mullin and Rota developed the theory of polynomials 
of binomial type (definitiou below). They observed that in many cases these 
sequences of polynomials and the linear relations between them, given by the 
so-called connection constants, could be treated set-theoretically. But the prob- 
lem of extending this approach to all sequences of bincmial type remains open. 

In this note--with a view towards understanding the tools required for such a 
set-theoretic alpproach-we will treat completely three sequences of binomial type 
and their connection constants: the power sequence, lower, and upper factorials. 
None of our Formulae are new, but sc:me of the underlying combinatorics is. 
Specifically, it will be seen that each pair of the above sequences is associated with 
a partially ordered set and certain ‘functinns’ (actually special cases of Mullin and 
Rota’s reluctant functions). Thes? the two iDverse connection constants formulae 
for the given sequence pair will be obtained in one case by summing over the 
poset, land in the other by differentiating i.e. Miibius inversion. Although these 
polynomial identities are proved only for positive integral values of thL variable x, 
it immediately follows that they hold for all x E @. 
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The most difficult part of this program is to guess the correct poset. We hope 
that our work will eventually throw some light on this mysterious step. 

2. eliminti~s 

We first consider three sequences of polynomials which are of common occur- 
rence in combinatorics. The first sequence is the power sequence 

X”, n=0,1,2,... (2.1) 

which counts the number of functions from a set with n objects to a set with x 
objects. Informally we often say that x” counts the number cf ways of placing IZ 
distinguishable balls into x distinguishable boxes (the occlapancy interpretation) or 
t:lse the number of words of length n from an alphabet with x letters (the 
&strtbution interpretation). 

The second sequence is the lower fnctoriaI sequence 

(xl,, =x(x-l) l * ‘(X-n++), rz=0,1,2 ,... (2.2) 

which counts the number of one-to-one functions from a set with n obje.:ts to a 
set with x objects. In the occupancy interpretation, (x),, counts the number of 
ways of placing H distinguishable balls into x distinguishable boxes such tl-at each 
box contains at most one ball. In the distribution interpretation, we see that (x),, 
counts the number of words of length 11 made from an alphabet with x letters 
such that no word has a repeated letter. 

Our third sequence is the upper fuctorial sequence 

(x)“=x(x+l)‘* l (x+n- l), n =o, 1,2,. . . (2.3 

Unlike the first two sequences, these polynomials do not coun. functions. Instead, 
they count the number of dispositions from a set with n objects to a set with x 
objects. Dispositions can be visualized (occupancy interpretation) as all ways of 
placing n distinguishable flags on x distinguishable flagpoles. It is easy to see that 
(x)” counts all such arrangements: first we have x choices of a flagpole for the first 
flag. If flag 2 is on the s:ime pole as flag 1, then we can place it above or below 
flag 1. Otherwise, it is O.-I one of the x - 1 remaining poles. Thus there are x -+ 1 
choices for flag 2. SimiMy, there are x +2 choices for flag 3 and, in general. 
x + k - 1 choices for flag k. 

More precisely, let [II’] denote the set (1,2, . . . , n}. Then a disposition, d, is a 
function from [n] to [x] together with a linear order on the elements of each 
pre-image d-‘(y), y E [x]. For example, one possible dispcsition from [5] to [2] is 

or 
d-Q) = ?-,3; &‘(2)=5,1,4 

d(2,3)= 1; cl@, 1,4) := 2. 
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Note that this is different fron the disposition 

d’(3,2) = 1; d’(5,1,4) = :. 

since the linear order of 2 and 3 is reversed. 

Let ([J,,(X)) and (q,,(x)) be two polynomial sequences such that for all n > 0, 
deg(y, 6)) = deg(q, (x)) = n. By elementary linear algebra. there exists two sequ- 
ences of connection constants (c,,,~ ) and (dn,k ) such that for all n 

P’,(X) = c c,, k&(X) 
k - 

(2.4 

and 

q,(x) = c d,,.&(X). 
k 

(2.5) 

When the polynomial sequences in question are OF binor~i(~l type [7], that is, when 
for all )I 

(2.6) 

these connection constants have been extensively studied; operator theoretic 
methods yield formulae for the constants [2,8]. It is well known that the 
sequences introduced in (2.1), (2.2j, and (2.3) are all of binomial type. ,4s stated 
in Section 1, the purpose of this paper is to give set-theoretic proofs of the 
corresponding connection coefficient formulae. In each case we shall give a direct 
counting argument for one of the connection formulae (2.4), (2.5) and realize the 
inverse formula via Mobius inversion over a suitably constructed poset. 

So that this work be reasonably self-contained, we shall state the Mobius 
inversion theorem. The reader is referred to [l], [3], [4], and [Y] for further study. 
A poset P is said to have a 0 if it nas 
will have a 0. 

a unique minimal element. All our posets 

Miibius iuversion theorem. Let P 5e a given poset having a 0, and let f and g be 
maps from P to a field F such that for all 7 E P 

Then there exists a unique function E_L : P ---, F swh that 

(2.7) 

(2.8) 

The function p is called the Miibius function; of P. 
Given u E P, the interval [0, (T] is the subposet (7 E P 1 T 6 a}. P is said to satisfy 

the clzairl condition if for each (+ E P, all maximally total ordered subsets of 
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[0, u] have the same cardinality. In this case the rank of cr, r(a), is defined as one 
less than the number of elements in a maximal chain (totally ordered subset) of 
[0, a]. For these posets we also have Imimey numbers of the I%% and second kind, 
wk(P) and W,(P) respectively, defined by 

wFm= c f&d 
CCP 

r(w)-k 

(2.9) 

and 

(2.10) 

3. P,,ers and lower factorials 

The simplest connection constants are these associated with the polynomial 
sequences (x”) and t(x),,). One szt of constants is given by the classical formula 

xn = c s(n, k)(x)k. 
k 

(3.1) 

Here S(n, k) denotes a Stirling number of the second kind, and counts the number 
of partitions of [n] into k parts or blocks. The S(n, k) are the Whitney numbers 
of the second kind for the poset II,,, where ZI, is the poset of all partitions of [n] 
ordered by refinement. Thus in Z7, we say that (TS z if each block of 7r is the 
union of blocks of CT. We repeat a well-known proof of formula (3.1). Corres- 
ponding to each function f mapping [n] to [xl, there exists a unique partition q 
of [n]. wf is obtained by plazing & j in the same block of vf if and only if 
f(i) -f(j). Let rr be an element of .Q, and suppose v has b: blocks. Since (A); 
counts the number of one-to-one maps of [k] to [xl, there are (x), maps f from 
[n] to [x] such that rrf = T-. Therefore we see that 

(3.2) 

where V(V) is the number of blocks of r. Collecting all terms such that the value 
of ~47~) = k in formula (3 2) immediately yields (3.1). 

The inverse connection formula corresponding to (3.1) is 

(x), = c s(n, k)x” (3.3, 
k 

where the s(n, k) denote the Stirling numbers of the first kind. We derive this 
formula by using Mobius inversion on I?,, as follows. Fcjr ali 71 E II,,, set 
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Then formula (3.2) <an be rewritten as 
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g(O)= c f(n) (3.4) 
ITa0 

where the finest partition 0 is the partition each of whose blocks contain only one 
element, i.e. l/2/ l l l In. Since for all a E 111, the poset P,r = {n E Q, 1 T 2% a} is 
isomorphic to nvfai, formula (3.4) can be generalized to 

g(o)= c f(n)* (3.5) 
m=(r 

Consequently, using the Mobius inversion theorem (formula (2.$)), we have 

(x),, =f(O) = c p(7r)xa’(=)= c Xk c y(7T) 
R E II,, k ncIf, 

u(m)= k 

(3.6) 

However as it is well known and easily shown [9] that the Whitney numbers of the 
first kind for Q, are the Stirling numbers of the first kind, and our proof is 
complete. 

The very simple pattern of this example will be seen to hold for our other two 
cases although the corresponding posets will, of course, be different. 

4. Lower factorials and upper fatctoriab 

The first connection constants formula for ((x)“) and t(x),,) is 

(4-l) 

A linear partition, A, is a partition of [n] together with a total order on the 
numbers in each block. The blocks themselves are unordered. Let Z,, denote the 
collection of all linear partitions of Ln] and let v(h) denote the number of blocks 
of A. In Section 3 we saw that each function f from [n] to [x) can be thought of as 
a pair (g, g) where g is a one-to-one map from [k] to [x] and 7r is a partitio;1 of 
[v] into k blocks. Similarly, each disposition can be thought of as a pair consi: ting 
of a one-to-one function g mapping [k ] to [x], and a linear partition A of [n] intO 

k blocks. Thus, since (x)” counts the total number of dispositions of [n], we have 

(4.2) 
AET” 

To obtain the number of linear partitions of [n] into k klocks, we first note that 
there are n ! (:I:) linear partitions of [n] with k ordered blocks. This can be 
visualized as all the ways of placing k - 1 slashes into the ra - 1 interior tipaces of a 
linear arrangement (or permutation) of [n]. Since we wish to count linear 
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partitions with unordereci blocks vvre divide by k!, obtaining the desired (n!/k!)x 
(:I:). These numbers are known as the kah nunzbers [6]. Thus, collecting terms in 
formula (4.2) according to the value, of v(A) we obtain formula (4.1). 

As in the previous section, we turn to proving the inverse connection constants 
formula by Mobius inversion. Our poset is the poset of linear partitions 9,,, where 
we set q s A if each block of A can be obtained by the juxtaposition of blocks of 
q. Note that S,, itself is not a lattice since it has ra. ! maximal elements, corresplond- 
ing to the n ! linear arrangements of [n]. Our inverse connection constants 
formula is 

(x),, = 1 (-l)“- k$ (I: 1 i)(x)k. 
k . 

(4.3) 

To prove formula (4.3) let us set for all A E%‘,,, 

f(A) = (x)u(,) and &A) = (x)“? 

The minimal linear partition 0 is the linear partition l/2/3/ l l l /n. Formula (4.2) 
car be rewritten as 

(4.4) 

In fact for any q 

since P,, = {A E de,, 1 A 2 q} is isomorphic to .ZZE,_+ Therefore Mobius inversion 
gives (cf. (2.8)) 

(x),, = c p(A)(xI”‘*‘. (4.5) 
hEzY& 

Moreover, we claim that for all A E JZ?,,, 

p,(A) = (- i)~‘-~(hJ. (4.6) 

This is easily seen once we observe that for all A E LIEn the interval I& = [0, A] is a 
Boolean lattice, and recall the well-known fact [o] that for all b in a Boolean 
iattic{; B CL(~)) = (- l)rank(h). Since the rank of A in B, is II - v(A), (4.6) is 
established, and combining this result with (4.5) gives 

(XL = ;: (_l)n- r~Lt)(~)u(A) 

A. r “Y,, 

=x(-l)+ (;-:)(x)k4 
k - . 

Whence our proof is complete. 



From wts 60 functions 199 

5. Upper factorhIs and powers 

The connectiD,n constants formulae we shall consider in our penultimat<s section 
are 

and 

W” = c Ish k)l Xk, 
k 

(5.1) 

x” = c (-l)“--ks(lz, IC)(X)k. 
k 

(5.2) 

Once again, the key to our proof is the discovery of the right poset. We denote 
the collection of all permutations (or linear arrangements) of [n] by G,. Each 
permutation u in G,, has a unique decomposition into disjoint cycles where 

(i,, iz, . . . , i,) is a cycle of o if u maps i, to iz, i2 to i3, . . . , and i, to iI. We shall 

make t/~e conuention that each cycle is written so that its leftmost entry is minimal. 

i.e., 
. 
11 = min{ i,, iz, . . . , i,}. 

Since it is well known that Is(12, k)l counts the number of permutations of [II ] 
with k cycles, formula (5.1) is established by demonstrating a bijection between 
dispositions of [n] and pairs (u, f) where for some 1 s k s n, (T E G, has k cycles, 
and f is a map from [k ] to [xl. We construct the disposition d from the pair (G, f) 
as follows: let cl, c2, . . . , ck denote the cycles oi; u labeled so that min cl = 1 < 

min cz+ l l <rein ck, and let {i, <j2<. l 9 Q} = f-‘(y) for some l< y S x. For 
f-‘(y) # (p}, we shall define d to map all elements of (cj,, cj,, . . . , cj?} to y. The 
linear order of d-‘(y) is obtained by the juxtaposition Cj,Cj, , - = l CjzCj, (where each 
cycle is written with smallest element first). For example, if u -= 
(1,6,2)(3,4)(5,7)(8)\9), f( 1) = f(3) = f(4) = y,, and f(2) = f(5) = y2, then the cor- 
responding disposition d is given by 

d(8,5,7, 1,6,2) = y1 and d(9,3,4) = y2. 

Conversely, given a disposition d, the pair (a, f) is constructed as follows. Find 
the block of d containing 1, say d(. . . , 1, il,. . . , i,) = yl. Then cl, the first cycle of 
o is (1, il, . . . , i, ), and f( 1) = y,. Next locate the block of d containing the smallest 
integer nz in [n :---{ 1, il, . . . , I’,}. Either 

or 
d(. . . , 171, VI,. . . , v,)= y2 

d(. . . , II!, u,, . . . , u,, 1, i,, . . . , i, ) = y , . 

In either case the second cycle of a, c2, is (nz, ul, . . . , u,). Moreover, we set 

f(2) = Y2 in the first case or f(2) = y1 in the second. Continuing our above 
example, if 

d(8,5,7,1,6,2)=y, and d(9,3,4)=y,, 
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then cl = (1.6,2), c:! = (3,4). C3 = (5,7), c4 = (8), cs = (9), f( 1) = f(3) = f(4) = y,, 
and f(2) = f(5) = y2. 

Since it is easily seen that the above two constructions are inverses of each 
other, our proof is complete. 

To obtain formula (5.2) we consider the following partial order on G,,. (liven 
a, 7 in G,, we snail say ihat u s T if each cycle of (+ (written with smallest element 

first) is composed of a string of consecutive integers from some cycle of 7= For 
example, (12)(3) 6 (123), (1)(23) G (123), but (13)(2) 6 (123). The 0 of G,,, consi- 
dered as a poser, is the identity permutation (l)(2) l l l (n), and we shall set 
C(G) = the number of cycles of (T. This given, formula (5.1) can be rewritten 

This formula caq be generalized 
over & gives 

xn = c /J+)(x)C(o). 
CTEG” 

(5.3) 

to P, =(CEG,, 1 CT 2 T} and so Miibius inversion 

(5.4) 

We shall say that c E CZ$ is increasing if each of its cycles increases from left to 
right i.e. if (i,, i2, . . . , i,) is a cycle in a, then i, < i2 < - 0 9 < i,. The Mobius function 
for CZ, is given in the following: 

Lemma 5.1. Fsr each CJ- E G,,, 

! 
(__ 1)” -c(cr) 

do) = ,() 
if cr is increasing, 

otherwise. 
(5.5) 

Proof. Given G E G,,, consider the interval Ia = [0, (~1. It is easily verified that &, is 
a la.ttice. The atoms of 4, (or elements of rank 1) coliespond to the transpositions 
(i,, i,+,), where (i,, i,, *) is a substring of a cycle of a and i, < iT + 1. Thus, if (T is 
increasing the atoms of I0 correspond to all of the possible II - C(C) transpositions. 
Hence &, is a Boolean lattice, and so ~(0) = (-1)“-‘(? Moreover, if a is not 
increasing, then in some cycle of u we have a consecut . c pair (. . . , i,, i,. 1, . . .) 

such that i, > i,, , . Mence (T is not the joint of atoms of 1’,,, and consequently by 
Hall’s theorem [S] ,X((T) = 0. 

We apply Lemma 5.1 tc formula (5.4) and obtain 

X n = c (-1)” --4ayX)cw 

uce,, 
t-r increasing 

(5.6) 
m increasing 

c ttr ) = k 
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Table r 

Po,,,,rnIT Poset 
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II,,, the lattice of partitions of [r] 

Y,,, the poset of linear partitions of [n] 

Z,,. the poset of permutations of [n] 

Since the number of increasing permutations with k cycles is clearly equal to 
S(n, k) (i.e. the number of partitions of [n] with k blocks) our proof of formula 
(5.2) is complete. 

We have summarized the results of Sections 3 to 5 in Table 1. To further 
emphasize the similarities between the three cases, we note the following proper- 
ties of the posets P,, (n = 1,2,3, . . .) associated with any given pair of sequences. 

( 1) Each P, is a ranked poset having a 0. 
(2) The constant coefficient formulae are obtained by collecting all terms at 

given rank. Henct the constants are just the Whitney numbers of the second kind 
(when summing over P,,) or of the first kind (from Mobius inversion). 

(3) The Mobius function of P,, alternates from rank to rank. Here ‘alternates’ is 
taken in the weak sense where zero may be considered positive or negative. 

(4) For any 7~ E P,,, the poset P, = (a E P, 1 u 2 7~) is isomorphic to &_,(,,. It is 
this fact that permits us to use the Inversion theorem. 
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