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Abstract

Recently the GMRESR method for the solution of linear systems of equations has been introduced by Vuik and Van
der Vorst (1991). Similar methods have been proposed by Axelsson and Vassilevski (1991) and Saad (1993) (FGMRES!).
GMRESR involves an outer and an inner method. The outer method is GCR, which is used to compute the optimal
approximation over a given set of search vectors in the sense that the residual is minimized. The inner method is GMRES,
which computes a new search vector by approximately solving the residual equation. This search vector is then used by
the outer algorithm to compute a new approximation. However, the optimality of the approximation over the space of
search vectors is ignored in the inner GMRES algorithm. This leads to suboptimal corrections to the solution in the outer
algorithm. Therefore, we propose to preserve the orthogonality relations of GCR in the inner GMRES algorithm. This
gives optimal corrections to the solution and also leads to solving the residual equation in a smaller subspace and with an
“improved” operator, which should also lead to faster convergence. However, this involves using Krylov methods with
a singular, nonsymmetric operator. We will discuss some important properties of this. We will show by experiments that
in terms of matrix~vector products, this modification (almost) always leads to better convergence. Because we do more
orthogonalizations, it does not always give an improved performance in time. This depends on the costs of the
matrix-vector products relative to the costs of the orthogonalizations. Of course, we can also use methods other than
GMRES as the inner method. Methods with short recurrences like BICGSTAB seem especially interesting. The
experimental results indicate that, especially for such methods, it is advantageous to preserve the orthogonality in the
inner method.
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1. Introduction

For the solution of systems of linear equations the so-called Krylov subspace methods are very
popular. However, for general matrices no Krylov method can satisfy a global optimality requirement
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and have short recurrences [7]. Therefore, either restarted or truncated versions of optimal
methods, such as GMRES [14], may be used. Alternatively, one may use methods with short
recurrences, which do not satisfy a global optimality requirement, such as BiCG [8], BiCGSTAB
[17], BiCGSTAB(]) [15], CGS [16] or QMR [10], which satisfies some quasi-minimization
requirement. Recently Vuik and Van der Vorst introduced a new type of method, GMRESR [18],
which is a nested GMRES method. Among various other nice properties, GMRESR is flexible in
the sense that a global minimization over some specific part of the Krylov space is done, and the
dimension of this space and the vectors that span it are controlled by the algorithm. The GMRESR
algorithm (with GMRES as inner method) is given in Fig. 1.

The GMRESR algorithm consists of GCR [6], Fig. 2, as the outer algorithm and m steps of
GMRES as an inner method for the computation of #,, ,(A)r,-. The inner GMRES method
computes a new search vector by approximately solving the residual equation, Ae, = r;, and then
the outer GCR algorithm minimizes the residual over the new search vector and all previously kept
search vectors u;. The algorithm can be explained as follows.

Suppose we are given the system of equations Ax = b, where A is a real, nonsingular, linear
operator and b is a given right-hand side. Furthermore, we have the two matrices

Uk =(u1 U, ... uk) and Ck =AUk (1)
with the property that C;J C, = I,. Consider the following minimization problem:
min  ||b — Ax|;. )
xerange (Uy)
The solution of this minimization problem is given by
x = U,C{b, 3)
and r = b — Ax satisfies
r=b— C,Cfb, rL range(Cy). 4
GMRESR: GCR:
1. Select xo, m, tol; 1. Select x,, tol;
ro=b-— Axy, k=0; ro=b—Axy, k=0
2. while ||r. |, > tol do 2. while | 7.[, > tol do
k=k+1, k=k+1;
Uy = Py (A - 1; U =Tg—y;
o = Au; o = Aty;
fori=1,...,k—1do fori=1,k—1do
o = CiTCk§ o = CiTCk§
Cp = G — UGy Cr = G — %Gy,
Uy = Uy — Al Up = U — Ol
=/l el 2 e =t/ | ¢ 25
e = a/llellz; = cpflcell2;
X = Xe—1 + (cFre—1) e X =Xy-1 + (cf re—1)us
Fe=re-1 — (i re—1) i rk="k—1—(CkTrk—1)Ck;

P k(A)ry indicates the GMRES polynomial that is impli-
citly constructed in m steps of GMRES.

Fig. 1. The GMRESR algorithm, Fig. 2. The GCR algorithm.
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We have constructed the inverse of 4 over the subspace range(C,). This inverse is given by
ATICCE=UCL. (5)

This principle underlies the GCR method, shown in Fig. 2, where for the preconditioned case
A denotes the explicitly preconditioned operator. In GCR the matrices U, and C, are constructed
such that the range(U,) equals the Krylov space K*(4,ry) = span{rq, Aro, ..., A* 'ry}, where
ro = b — Axg and Xx, is an initial approximation to the solution. Provided GCR does not break
down, it is a finite method and at step k it solves the minimization problem (2), with
range(U,) = K*(4,r). It is obvious from (1)~2) that in the step u, . ; = r, (in GCR) we can replace
rx by any other vector and the algorithm still works in the sense that it solves the minimization
problem (2). In this case range(U,) = K*(4,r,) no longer holds. In general the better the choice of
uy + 1 the faster the convergence. The optimal choice, of course, is u, 1 ; = ¢;, where e, is the error in
x;. Therefore, the key idea is to choose a suitable approximation to the error e,. In order to find
approximations to e, we use the relation

Aek = I, (6)

and any method which gives an approximate solution to this equation can be used to find good
choices for u; .. ;. We may also vary such methods from one step to the next and we can regard them
as preconditioners. These observations were made in [18] and lead to the formulation of the
GMRESR method, shown in Fig. 1, and its variants.

However, since we already have an optimal x, € range(U,) < (b — Ax;) L range(AU, ), we need
an approximation u + | to e, such that ¢, . | = Auy 4, is also orthogonal to range(Cy). This is done
explicitly by the orthogonalization loop in the outer (GCR) algorithm. Because this is not taken
into account in the inner method, the “wrong” minimization problem is solved, since it also
considers spurious corrections.

Consider step k + 1 in GMRESR. We have computed the matrices U,, C, and the vectors x; and
.. Then, in the inner GMRES loop (after m iterations) we solve the minimization problem

min [ry — AVayll2, (7
yeR"
where V,, is an orthogonal matrix such that range(V,,) = K™(A4,r,) (see [14]), and in the outer loop
we set

Ugr1 = Vmy — UkaTAme/II(I - CkCl;r)Ame||23
Cr+1 =(I‘"CkaT)AVmJ’/”(I*CkaT)Ameuz, (8)

ety =T — (rkTCk+1)Ck+1~
It is obvious that for optimality we should have solved the minimization problem
min ||, — (I — CG,C{) AV py |2, ©)
yeR™
which is equivalent to
min ||(I — C,Ci) [re — AVany1ll2, (10)

yeR™
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since r, L range(C,). The results of the minimization problems (7) and (10) are equal only if
range(AV ) L range(C, ), which is generally not the case. Also in GMRESR we search in principle
the entire Krylov space K(A,r.) = span{r, Ar,,A*r,,...} for an approximation u., X e,
whereas

e, € K(4,r,) n A range(C,)™, (11)
and therefore
ri € K(A, Ary) nrange(Cy)*t. (12)

Another disadvantage of GMRESR is that the inner loop is essentially a restarted GMRES with
the same operator A. It therefore also displays some of the problems of restarted GMRES; most
notably, it can have the tendency to stagnate in the inner loop (see Section 4). From this we infer
that it is favourable to preserve the GCR orthogonality relations also in the inner (GMRES)
method, at least for the speed of convergence, as we show in Theorem 2.2 in the next section. From
(8), (9), (11) and (12) we come to the idea of using (I — C,C{)A as the operator in the Krylov
method in the inner loop. This would generate corrections to the residual ¢, ., € K(A,b)n
range(C,)*. But it will search for updates to the approximation 4,4 € {r,(I — C,CH) Ary, ...} <
range(C;)*, whereas in general ¢, ¢ range(C,)*. We should note, however, that corrections to the
residual ¢+ correspond to corrections to the approximation

Uy = A—lck+1 EK(A,rk)mA_lrange(Ck)l,

which corresponds to (11). This may seem like a problem, since we have introduced the operator
A~ But over the space span{(I — C,C{) Ary, [(I — C, CJYA]*ry, ... } the inverse of A is known,
because we know the inverse of A over range(C,) (5):

AV - CCHA=A""A—A"1C,CT A
=1-UCTA. (13)

In Krylov methods the solution itself is not needed to continue the iteration, only the residual.
Therefore, we can use a Krylov method for the residual and find the corresponding updates to the
solution vector using (13). This leads to an extension of the GMRESR method, which has an
improved performance for many problems. In fact, this leads to a nested method, where the “inner”
Krylov method computes an approximation to the error in the “outer” Krylov method and the
information acquired in the “outer” method is used to speed up the convergence in the “inner”
method.

In this article we will consider as inner methods GMRES and BiICGSTAB. BiCGSTAB has the
advantage that its cost per iteration is low, so that we have a relatively cheap method to compute
approximations to the error. Using GMRES in the inner method has the following attractive
features. First, at the end of the inner iteration the error is minimized over the space spanned by the
search vectors of both the outer method and the inner method, as shown in Theorem 2.2. Second,
using a few parameters and truncation, we can control the sizes of the Krylov subspaces in both the
inner and the outer iteration and hence optimize the length of recurrences and memory require-
ments versus convergence speed: see [4,9].
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In the next section we will discuss the implications of the orthogonalizations in the inner method
more formally. We will prove that it leads to an optimal approximation over the space spanned by
both the outer and the inner iteration vectors. It also introduces a potential problem: the possibility
of breakdown in the generation of the Krylov space in the inner iteration, since we iterate with
a singular operator. We will show, however, that such a breakdown is rare, because it can only
happen after a specific (generally large) number of iterations. Furthermore, we will also show how
to remedy such a breakdown. In most of the following discussion we will consider m (not fixed)
steps of GMRES to be the inner method. The optimality of GMRES and the fact that for
a nonsingular operator GMRES does not break down permit some statements about optimality.
These characteristics of GMRES also isolate the breakdown of the Krylov space generated by
(I — C,CH)A from the other possibilities of breakdown in various Krylov methods.

2. Consequences of inner orthogonalization

This section involves a theoretical discussion of optimality, the possibility of breakdown, and the
continuation after breakdown. For the practical use of the methods this will in general not be too
important, and readers interested mainly in using these methods might want to skip this section,
and proceed to Section 3.

We will now formally define the elements of our discussion, repeating some of the previous
section for the sake of clarity.

Definition 2.1. The matrix A is a nonsingular linear operator and the vector b is the given
right-hand side of the system of equations Ax =b. We define the Krylov space
K(B,x) = span{x, Bx, Bx, ...} and the Krylov subspace K*(B,x) = span{x, Bx, B*x,..., B*~'x}
for any linear operator B and any vector x. Furthermore, the matrices U, and C; satisfy the
relations

U=y uy - wy), (14)

C, =AU, (15)
with the property

CiC =14, (16)

and u;,c; € K(A,b). We also have the vectors x; and r, satisfying

xy=arg min |[|b— Ax|, < (17)
xerange(U,)

x, = Uy CFb. (18)

re =b— C,Clb, (19)

re L range(Cy). (20)

Next, we define the operators

Pc, = CC{ 21
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and
Ac, = (I — Pc)A. (22)

Because range(C,) = K(4, b), K(A,b)nrange(C,)* is an invariant subspace of A¢,. We use m (not
fixed) steps of the GMRES algorithm to compute the optimal approximation to r, in the space
span{Ac,ri, Aéri, ..., A& 1} = K™(Ac,, Ac,ri). This leads to the optimal approximation to the
solution over the (global) space

range(U,) + A~ K™(A¢,, Ac,Te)

as follows.

Theorem 2.2. Let A, Uy, Cy, 1y, Xi, Ac, and P, be as in Definition 2.1. Let {ry, Ac,rx, A& Tis ..., A8 T3}
be independent and {v,,...,0+} be an orthonormal basis for K™*'(Ac,, 1), with vy = r,/|Ire|l2,
generated by m steps of GMRES. This defines the relation Ac,Vy = V s+ 1Hp; see [14]. Let y be
defined by

y =argmin |r, — Ac,VnJll, = argmin |1y = Viy 1t HuF 2. (23)

yeR" yeR"

Then the minimal residual solution of the (inner) GMRES method, A~'Ac,V ny, gives the outer
approximation

Xes1 =X+ A7 A VY, (24)
which is also the solution to the global minimization problem

min{ | b — AX||,: X e range(U,) @ range(V,)}. (25)

Proof. The solution x,,, to the global minimization problem satisfies
Xopt = argmin{ ||b — AX||,: X € range(U,) ® range(V,,)} <
Xopt = Upz + Vy,
where
y,z=argmin{||b — AUz — AV, yll.:z€e R* ye R"}. (26)

Furthermore, we. have by construction of GMRES that AcVy=Vyu+1H, < AV, =
Pc, AV + Vs 1 Hy, so that the minimization problem in (26) is equivalent to

y,z =argmin{||b — C(z + CF AV py) = Vs 1 Huy |2 :z€ RE, y e R™}. (27)

Because range(Cy) L range(V,,+ ), the minimization (27) can be solved by two separate minimiz-
ations for z and y, respectively:

24+ CIAV,y=Cib <= z=Cl(b— AV,,y), (28)
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and by (19),
y =argmin ||(I — CkaT)b - Vm+1ﬁm,)~’||2 had
yeR™
y =argmin ||r, — Vm+1ﬁm,J7||2- (29)
yeR™

This results in
Xopt = UkZ + mes (30)

where y is given by (29), which is equivalent to (23), and z is given by (28). For x; ;. we have, using
(18), (23) and (24),

Xps1 =X+ A I — C,CHAV,y (23)and (24)
=UC{b+V,y — U CFAV,y (18)
= Uy Ci(b — AVmY) + Vimy
=Ugz + V,y. O (31
It also follows from this theorem that the GCR optimization (in the outer iteration) is given by

(24), so that the residual computed in the inner GMRES iteration equals the residual of the outer
GCR iteration:

M1 =b—Axps1=b —Axy — Ac,Vmy=ri— AcVay =1 — Vms1Hpy. (32)
So the outer method only needs to compute the new u, 4 ; and ¢4, by

Cer1 = (A V) N AcVmy 2 = (I — CCO AV my)/ I — CLCE AV my |2, (33)

ey = (A7 AV D N AV myll2 = Viy — Ul AV iy /I — CCEH AV my |2, (34)

where A, V,,y and A™ ' A¢ V,y = (I — U, C{ A)V,,y have been computed already as the residual
update and the solution in the inner iteration; see (23) and (24). The outer GCR method
consequently becomes very simple. We will now consider the possibility of breakdown, generating
a Krylov space with a singular operator. The following theorem may not be a surprising one, but it
is given because it captures the essence of the following discussion.

Theorem 2.3. Let B be a linear operator such that {y,By,B*y,...,B™y} is independent and
K™*1(B,y) is an invariant subspace of B, so that {y, By,B*y,...,B™*'y} is dependent. Then:

(1) B is nonsingular over K™*1(B,y) and therefore has an inverse over this space if and only if
{By,B%y,...,B"" 'y} is independent.

(2) Let B™" 'y be given by

B™tly =Y wB'y, (39)

i=0
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where B® = I. Then B is nonsingular over span{B’y, B'* 'y ... B™y}, and therefore B has an inverse
over this space if and only if in (35) a; #0 and ; =0,0<i<j— L

(3) Let B™*'y be given by (35), and a; # 0, and a; =0, 0 < i <j— 1. Then B is singular over
span{B’~ 'y, By, ..., B™y}. More specifically

3z espan{B’y,...,B™y} such that Bz = By,
and therefore (B~ 'y — z) € null(B).

Proof. (1) Assume that B is nonsingular over K™"!(B,y). Then dimBK™"!(B,y)=
dim K™**(B,y), and hence {By,B%y,...,B™*'y} is independent. Conversely, assume that
{By,B%y,...,B™*!y} is independent. Then V' x € BK™*!(B,y), x = Y-, ¢;B'* 'y, where the ; are
uniquely determined, and we can construct X = ¥/~ , a;B'y, so that BX = x. Because the «; are
unique and both {y, B,, ..., B™y} and {By, B%y, ..., B™*!y} are independent, this defines a one-to-
one correspondence and hence B must be nonsingular over K™ (B, y).

(2) First assume that in (35 o;#0 and o;=0, 0<i<j—1. Then B""ly¢
span{B’*'y, ..., B™y} since {B’y, ..., B"y} is independent. Let y = B’y, then {3, By, ..., B™ 7y} is
independent, K™*!~/(B, 3) is an invariant subspace of B and {Bjy, B*y,...,B™ "' 7/} is indepen-
dent. By case (1) of this theorem we can conclude that B is nonsingular over
K™*17i(B,7) = span{B’y, B’*'y, ..., B™y}, and therefore B has an inverse over this space.

Second assume that span {B’y, B'"!y, ..., B™y} is an invariant subspace of B and B is nonsingu-
lar over this space. Then obviously B™*'yespan{B’y,B’*'y,...,B™y} so that in (35) o; =0,
0 <i<j— 1. Againlet y = B'y so that {§, By, ..., B" 3} is independent and K™*! ~/(B, 7) is an
invariant subspace of B. Then by case (1) of this theorem {By,B*jy,...,B™*"!7/j} =
{B/*1y, Bi*?y, ...,B™*1y} is also independent. Therefore B™*'y¢span{B/*1y, Bi*2y ... B™y}
so that «; # 0.

(3) Since B is nonsingular over span{B’y,B’*'y,...,B™y}, B has an inverse over
span{B’y,B’*'y ...,B™y}, so that case (3) of the theorem follows trivially. []

Now although GMRES is still optimal in the sense that at each iteration it computes the
minimal residual solution over the generated Krylov subspace, the generation of the Krylov space
itself, from a singular operator, may break down. The following simple example shows that this
may happen before the solution is found, even though both the solution and the right-hand side are
in the range of the given (singular) operator. Define the matrix A:

A =(e; e3 e4 0),

where e; denotes the ith Cartesian basis vector. Note that 4 = (I — e;ef) (e;e3e4e,), which is the
same type of operator as Ac,, an orthogonal projection times a nonsingular operator. Now
consider the system of equations Ax = e;. Then GMRES (or any other Krylov method) will search
for a solution in the space

span{es, Aes, A%es, ... } = span{es,e,,0,0,...},

so we have a breakdown of the Krylov space and the solution is not contained in it, even though the
solution exists and is an element of the range of 4 (4e, = e;), and the right-hand side is in the
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orthogonal complement of null(A4). So the singular nonsymmetric case is quite different from the
symmetric one. We will now define breakdown of the Krylov space for the inner GMRES iteration.

Definition 24. Let A, U, C;, Ac, and r, be as in Definition 2.1. Let {r, Ac,rx, ..., A& '} be
independent and {v;,v,,...,v,} be an orthonormal basis for K™(Ac,r:) with vy =r /{72,
generated by m — 1 steps of GMRES. We say we have a breakdown of the Krylov subspace if
Ac,vm € range(V ), since this implies we can no longer expand the Krylov subspace. We call it
a lucky breakdown if v, € range(Ac, V ), because we then have found the solution (the inverse of A is
known over the space range(Ac, V). We call it a true breakdown if v, ¢range(Ac, V), because then
the solution is not contained in the Krylov subspace.

The following theorem relates true breakdown to the invariance of the sequence of subspaces in
the inner method for the operator Ac,. Case (3) indicates that it is always known whether
a breakdown is true or lucky.

Theorem 2.5. Let A, Uy, Ci, Ac, and r, be as in Definition 2.1. Let {r,, Ac,re, ..., A& 'r,} be
independent and {v,v,,...,v;} be an orthonormal basis for K'(Ac,ry), for i=1,...,m, with
vy = 1/ |72, generated by m — 1 steps of GMRES. Then at step m:

(1) A true breakdown occurs if and only if range(Ac, Vn—1) is an invariant subspace of Ac,.

(2) A true breakdown occurs if and only if Ac v, € range(Ac,Vm-1)

(3) A breakdown occurs if and only if we can define H,, by Ac,V,y =V uH,,. Furthermore, it is

a true breakdown if and only if H,, is singular.
Proof. (1) Assume that a true breakdown occurs. By assumption, {r, ..., A& ' r;} is independent
and breakdown implies that K™(Ac,,r,) is an invariant subspace of A¢,. So v ¢range(Ac V)
implies that A, is singular over K™(Ac,,r;). By Theorem 2.3 {A¢,ry, ..., A& ri} is dependent, and
therefore A% r, € span{Ac,ry, ..., A% 'r,} = range(Ac, V- 1), and range(Ac, V,,— 1) is an invariant
subspace of Ac,.

Conversely assume that range(Ac, V- 1) = span{Ac,ri, ..., A2~ 'r;} is an invariant subspace of
Ac,. Then span{ry,...,AZ 'r,} is an invariant subspace of Ac,, so a breakdown will occur.
Furthermore, range(Ac, V) = span{Ac,ry, ..., A&r,}, and since AZry e span{dc,ry,..., AL "1}
by assumption, we have range(Ac, V,,) = range(Ac, Vm-1). Because {r;,..., A2 'r,} is indepen-
dent by assumption, r, ¢ range(Ac, V), so that a true breakdown occurs.

(2) Assume a true breakdown occurs. Then by case (1) of this proof range(A¢, V,—1) 1s an
invariant subspace and hence range(Ac, V,,) = range(4c, V,u—1), SO that Ac, v, € range(Ac, Vin-1)

Assume, on the other hand, that A v,erange(Ac, Vm-1). Then Acv,espan{dcry, ...,
A2 'r,} < range(V,,), so that a breakdown occurs. Furthermore A, v, € range(Ac, V., — 1) implies
range(Ac, V) = range(A¢, Vm—1). Because {ri,...,AZ 'r,} is independent by assumption,
ry¢range(Ac, V- 1) = range(Ac, V). Consequently a true breakdown occurs.

(3) Assume first that a breakdown occurs. Then by Definition 2.4, A¢, v, € range(V,,), GMRES
defines the relation A¢ V,—1 = VHn,-1 and therefore we can define an H,, € R™*™ such that
AcVi=VuHp.

Second, assume that an H,, exists that satisfies A¢, V,, = V,, H,,. Then A¢, vy, € range(V ), so that
a breakdown occurs. Assume that a true breakdown occurs. Let H,, be nonsingular. Then 3 x such
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that H,,x = e,, where e; denotes the first Cartesian basis vector, so that
vy = VuHpux = Ac, Vax = vy erange(Ac V).

This contradicts our assumptions, which implies that H, must be a singular.

Assume that H, is singular. Then dimV,H, =dimAcV, <m, which implies that
{Ac,7e, ..., A1} is dependent. This in turn leads to range(Ac, V) =span{Acr,...,
A2 'r.} = range(A¢, Vm-1), S0 that a true breakdown occurs (see above or Theorem 2.3). []

From the previous theorem and its proof one can already conclude that a true breakdown occurs
if and only if A, is singular over K™ (A¢,, ;). From Definition 2.1 we know null(4¢,) = range(U,).
We will make this more explicit in the following theorem, which relates true breakdown to the
intersection of the inner search space and the outer search space.

Theorem 2.6. Let A, U, C;, Ac, and r, be as in Definition 2.1. Let {r,, Ac,rx,..., A& 1.} be
independent and {v,,v,,...,v;} be an orthonormal basis for K'(Ac,r:) for i=1,...,m, with
vy =1/l 2, generated by m — 1 steps of GMRES. A true breakdown occurs at step m if and only if

Ju # 0, u e range(V,,) such that u € range(U,).

Proof. Let u # 0, u e range(V,,), and u € range(U,). By Definition 2.1, Ac,u = 0; consequently
dim(range(Ac, Vm)) <m = {Acti,..., AL 1} is dependent. This implies (see the proof of The-
orem 2.5 or Theorem 2.3) that range(A¢, V,,—1) is an invariant subspace of Ac,, so that a true
breakdown occurs.

Assume that a true breakdown occurs. Then by Theorem 2.5, range(Ac, V.- 1) 18 an invariant
subspace of A¢,, which implies that {Ac ry, ..., AZ ri} is dependent. Therefore,

Ju#0,uespan{r,..., A2 'r,} = range(V,): Acu=0.

Hence
uenull(4c,) = wuerange(U,). O
The following theorem indicates that breakdown cannot occur in the inner GMRES method

before the total number of iterations exceeds the dimension of the Krylov space K(4,b). This
means that, in practice, a breakdown will be rare.

Theorem 2.7. Let A, U,, Cy, Ac, and r, be as in Definition 2.1. Let m = dim(K (A, b)); that is,
m = max {s: {b, Ab, ..., A°" 'b} is independent}. Define P(A)b = ¥;_,y; A'b, with y, # 0, and let
ui=P1i..1(A)b, i=1,...,k,

l= max [;<m.
i=1,...,k

Then ry = (I — Pc,)b = P)(A)b. We call | the total number of iterations. If

j<m-—1I
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then
{ri, Ac,rxs - ,Aékrk} is independent,
and therefore no breakdown occurs in the first j steps of GMRES.
Proof. By definition, ¢; = Au; = c;espan{4b,...,A'b}. Further, r, = P(A)b = Acri=

(I — P¢,)Pi+1(A)b = P41 (A)b and analogously we find Aéry = Pio(A)bfori=1,...,j. Thus we
have

{VkaAckrk,---,Aék"k} = {PI(A)baPl+1(A)b:---aPl+j(A)b}

is independent by definition of m. Therefore no breakdown can occur. []

We will now show how a true breakdown can be overcome. There are basically two ways to
continue.

In the inner iteration: by finding a suitable vector to expand the Krylov subspace.

In the outer iteration: by computing the solution of the inner iteration just before breakdown
and continuing by making one LSQR step (see below) in the outer iteration.

2.1. Continuation in the inner iteration

The following theorem indicates how we can find a suitable vector to expand the Krylov
subspace.

Theorem 2.8. Let A, Uy, Ci, Ac, and ry be as in Definition 2.1, let {r,Ac, s, AR 11} be
independent and {vy,v,,...,v;} be an orthonormal basis for Ki(Ac,,ri), for i=1,...,m, with
vy =1/ |1l 2, generated by m — 1 steps of GMRES. If a true breakdown occurs then

Jc¢ e range(Cy) such that Accé¢range(Ac V1),
which implies

Ac; e {cy, ... i} such that Ac,c;¢range(Ac, Vim-1)-
Proof. By Theorem 2.5 we have A, v, € range (A, Vm-1)- Now assume that we would stop after
the last regular GMRES step, step (m — 1), and compute r, . ; using (32) and ¢+ using (33). Then
from riyy =1 — Ac, Vim-1y = rll2vy — VmHua_1y, we have r..; € range(V,) and therefore
Ac, 7+ € range(Ac, V- 1). Because A4 is a nonsingular operator 74+ 1 € span{Arys 1, ..., A i1},

f0r SOMEp = Frr+1 = Z;zlajAjrk+1 = Fg+1 = (I - Pck)rk+1 = Z;’:laj(l — Pck)Ajrk+1 and since
Fes1 #0, res 1 Lrange(Cy) and ry . L range(Ac, Vim-1):

3j such that (I — P¢)A'ry oy #0 and (I — Pc)A'r . ¢range(Ac, V1)
We also have Ac, 7+ € range(Ac, V- 1). Now let s be such that

(I — Pc)A’ry+ 1 ¢range(Ac, Vim-1)
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and
Vi, 1<j<s (I —Pc)Ar,,,erange(Ae, Vim-1).
Then
(I —Pe)A'ris i =(I — P YA — P ) A* 'y g + (I — Po)AP A% Tryy
where by assumption (I — P¢,)A°* ‘1., erange(de, Vim—y) = (I — Pc)A(I — Pc ) A 'revy €

range(Ac,Vm-1). This implies that (I — Pc)APc A" ' r,. ¢range(Ac,V,—y) and since
Pc A" 11,4 € range(Cy), we have

3¢ € range(C,) such that Accérange(dc, V,-1),
which in turn implies

Jc; € {cy,...,cx} such that Acc;¢érange(Ac, Vi-1). O

Not any c € range(C,) will do, as is shown by the following example. Let u; = b. Then
Ackrk = AC,,(b — CkC,;rb) = — ACkaCgb.

Therefore, we must try the ¢; until one of them works.
2.2. Continuation in the outer iteration

Another way to continue after a true breakdown in the inner GMRES iteration is to compute the
inner iteration solution just before the breakdown and apply an LSQR switch (see below) in the
outer GCR iteration. The following theorem states the reason why the LSQR switch must be
applied.

Theorem 2.9. Let A, Uy, Cy, Ac, and ry be as in Definition 2.1, let {ry,Ac,ry,..., AR '} be
independent and {v,v,,...,v;} be an orthonormal basis for K'(Ac,r), for i=1,...,m, with
vy = rx/ 7|2, generated by m — 1 steps of GMRES. Let a true breakdown occur at step m, and
assume that we compute the solution at the previous GMRES step, switch to the outer method, and
make one GCR step (24), (32), (33) and (34). So we compute ryyy =ri,—V,H,_1y and
1 = A, Vm-1Y/ Ac, Vim-1Y|l. Then we will have stagnation in the next inner GMRES iterations;
that is,

2
Fr+1 1 span{ACMrk+1,Acmrk+1, }

Proof. We have c¢,.,erange(Ac,V,—1). Furthermore, r..; erange(V,) and Acris;€
range(Ac, V- 1) by Theorem 2.5. A¢,,, = (I — cx+1¢8+1) Ac, and from this and Theorem 2.5 it
follows that range(4c,V,.—1) is also an invariant subspace of A., and
Ac,, Te+1 €1a0ge(AC V1), O

The reason for the stagnation is that the new residual r; ., ; remains in the same Krylov space
K (Ac,, ), which contains a nonzero u € range(U,). So we have to “leave” this Krylov space. We
can do this using the so-called LSQR switch, which was introduced in [18] to remedy stagnation in
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the inner method. As in the GMRESR method, stagnation in the inner method will result in
a breakdown in the outer GCR method, because the residual cannot be updated. The following
theorem indicates that the LSQR switch always works.

Theorem 2.10. If stagnation occurs in the inner GMRES method, that is

min [|reey — A, Vm-17l2 = [1e+1ll2,
yeR™!

then we can continue (LSQR switch) by setting
vz = (I — Ck+1CkT+1)AAT"k+1

and
— -1 T T
Ur2 =PA7 (I — Cr 1 Cis 1) AA 1ty

where y is a normalization constant. This leads to
— T
Fev2 = Tie1 — (Fer 1G4 2)Crr 2

and

T
Xe+2 = Xgs1 + (Pt 1Ck+2) Uit 2,

which always gives an improved approximation. Therefore, these vectors can also be used as the start
vectors for a new Krylov subspace in the inner GMRES method if desired.

Proof. (Following the proof in [18]).
Clralir1 = Vw1 AA Ty,

because r, 4, L range(Cy+4), and so
chrater1 =71 A 113 #0.

So, this step will always give an improvement to the residual. This also proves that
(I — Cis1C81)AA r 4 ¢range(Ac, Vim-1), because 14y L range(Ac, V- 1), so that we may also
use this vector to build a Krylov subspace in the inner iteration after a true breakdown in the
previous inner iteration. [

3. Implementation

A straightforward implementation of the GCR method and an orthogonalizing inner method
will obviously result in a large number of vector updates, inner products and vector scalings. We
will therefore describe an implementation which greatly reduces this work. This implementation is
mainly due to Fokkema [9]. First we will consider the outer GCR method, next the inner GMRES
method, and finally the implementation of BICGSTAB as the inner algorithm.
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Instead of the matrices U, and C; (see Definition 2.1) we will use in the actual implementation the
matrices Uy, Ci, Ny, Zi and d, which are defined below.

Definition 3.1. Let A, U,, C;, b and r, be as in Definition 2.1. Then U,, C;, N,, Z, and d, are defined
as follows:

C. = GiN,, (36)
where

Ny =diag(lellz ez lz s Gl ), (37)

AU, = C, Z,, (38)

where Z, is assumed to be upper-triangular. Finally d, is defined by the relation

r=>b— Cudy. (39)
From this the approximate solution x;, corresponding to ry, is implicitly represented as

X = U Z7 V. (40)

Using this relation, x; can be computed at the end of the complete iteration or before truncation
(see the end of this section). This implicit representation of U, saves all the intermediate updates of
previous u; to a new i+, which saves about 50% of the computational costs in the outer GCR
iteration.

3.1. Initialization and restart

If the method is started with an initial guess x, # 0, instead of x, = 0 as defined in Definition 2.1,
we must compute ro = b — Axo and change the updates to

¥p =Fro — C_kdk and Xy = Xo + Uka_ldk.

The rest of the algorithm remains the same. Also after a restart (see Section 3.7) we compute a new
result by adding a correction to the previously computed x,.

3.2. GMRES as inner iteration

Assume we have made k outer iterations, so that U,, C, and r, are given. Then, in the inner
GMRES iteration, the orthogonal matrix V,, . is constructed such that CfV,,., = O and

AVm = CkBm + Vm+1gm, (41)
B, = NZCrAV,,. (42)

This algorithm is equivalent to the usual GMRES algorithm, except that the vectors Av; are first
orthogonalized on Cy. From (41) and (42) it is obvious that AV, — C,B,, = Ac, Vi = Vs 1 Hp, cf.



E. de Sturler | Journal of Computational and Applied Mathematics 67 (1996) 1541 29

Theorem 2.2. Next, we compute y according to (23), and we set (cf. (33) without normalization)
Ch+1 = Vm+1Hmya (43)
s = V. (44)

This gives Atix+1 = AV y = CuBuy + Vs 1Huy = CiBny + Gt 1, so if we set

Bny
Zg+1 = 1)

then the relation AU, ,; = Cyy  Zi+ is again satisfied. It follows from Theorem 2.2 that the new
residual of the outer iteration equals the final residual of the inner iteration, ry,,; = ri™**, and is
given by

Fkv1 =Tk — Chi 1, (45)

so that d; . ; = 1. Obviously the residual norm only needs to be computed once. If we replace the
new residual of the outer iteration r,, ; by the residual of the inner iteration ri*°*, then we get from
(45) an important relation that holds more generally,

inner

Cre1 =T —Tm . (46)

This relation is important, since in general (when other Krylov methods are used for the inner
iteration) ¢, 4 ; Or ¢; + 1 cannot be computed from u, ;. ; , because u, . ; is not computed explicitly, nor
does a relation like (43) exist. However, the (inner) residual is always known, because it is needed for
the inner iteration itself. See also the part on BICGSTAB. Therefore in our current implementation
(45) is replaced by

inner

e+l =Tm =rk—Vm+1Hmy, (47)

and (43) by (46). Finally, we need to compute the new coefficient of Ny 41, ||Cc+1 ]2 *, in order to
satisfy the relations in Definition 3.1. The outer iteration then consists only of (45) or (47),d; 1 = 1,
the computation of || x4 ||5 * and (40) at the end.

3.3. Algorithms for nested GMRES with inner orthogonalization

In Figs. 3 and 4 we give an outline of the inner GMRES algorithm for A, and two versions of the
outer GCR algorithm: GCRO (because of the implicit inner orthogonalization) and one generic
version with an arbitrary inner method, with only the requirement that on output the relation
Al =1 — 1™ + C,Z{ r.x+1 holds. The former version explicitly uses the relations that hold
after an inner iteration of (m steps of) GMRES to make a few more optimizations. However, for
some problems (with GMRES for A, as the inner method) the generic version turns out to be
slightly more stable and is then to be preferred. For the experiments discussed later, we used the
generic version, even with an inner GMRES for A, .

3.4. BiCGSTAB as inner iteration

For the sake of simplicity we will only consider nonpreconditioned BiCGSTAB here (or
explicitly preconditioned). The algorithm as given in [17] is listed in Fig. 5. The algorithm contains
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GMRES with Ac, (m steps):
(after k outer iterations)
1. Select tol;

vy =n/lnl2;
2.forj=1,...,mdo

vj+y = Avj;

fori=1,...,k do

bij=clvje1;

Vj+1 = Uj+1 — by jci;
fori=1,...,jdo

hij= v vjs1;

Vjv1 = Vje1 — P 055
hivrs=lvjrillz;

Virr = i 05 15 B
Ym=argmin, | [{r,ll2e; — Hpyll2;
vt = Vinhms
rinner = Iy — Vm+1Hmym;

Zy. kk+1=Bnym;

Fig. 3. The inner GMRES algorithm with Ac,.

GCRO, generic version: GCRO, with GMRES:
1. Select x,, tol; 1. Select x,, tol;
ro=b—Axe, k=0 ro=b—Axe, k=0
2. while |||, > tol do 2. while |||, > tol do
call inner( call gmres(
output: output:
ey, et 1,
rinner’ rinner,
Zy. kk+1) “rin"erﬂz,
Civr = — 1™, VAR TSVA
(Niex 1 ks1 = Gl Y Ciry = Iy — 10,
Zivi, k1 =15 (Netdest =(||"k”2 - ”ri""er”z)_l/z;
dk+1=(C_kT+1rk)'(Nk+1)k2+1; Zivy k1= 1
Tk+1 =T — dxs1Cis1s dy+y =1~;
k . k + 1; rk+1 — rmner;
X = X0 + UrZ Vdy; k=k+1;

xp =xo + Uy Z{

Fig. 4. GCRO: a generic version and a special version for inner GMRES with A, .

two matrix—vector products with A4, which must be replaced by A.,. The coefficients of the
orthogonalizations must be saved to satisfy relation (38) at the end of the iteration. This avoids the
explicit correction of x;, which will become #, +, in the outer iteration. The implementation is as
follows. On initialization we set z, ., = 0, xo = 0 and hence ro = rg**’. After the statement v; = Ap;
we add

1= NkzékTUié V; = U — Ckyl,
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BiCGSTAB: BiCGSTAB in GCR with orthogonalization:
(after k outer iterations)
1. Select xq, tol; 1. Select x,, maxit, tol, rtol;
ro=b — Axg, fop =1¢; ro = b — Axg, Fo = ro;
po=a=wmp=1; po=a=wmo=1
vo=po=0,i=0; vo=po=0,i=0;
2. while |r;|l, > tol do 2. while | r;|, > max(rtol * || rq |2, tol)
and i < maxit
do
i=i+ 1 i=i+1;
pi = (Fo,7i-1); pi = (Fo,7i-1);
B=(p:/p:i-1) /-1 ); B = (pi/ pi- )@= 1);
pi=rioy + B(Pi-1 — 01 0;-1); pi=rio1 4 B(pi-1 — 00—y
v; = Ap;; v; = Api;
y1 =NEC{vs vy = v — Ciyy;
a = pi/(Fo,0:); a = p;/(Fo,vi);
S=Tri-1 — av;; S=Tri-g — Wi,
t = As; t = As;
y2=N2C{t; t =t — Cyya;
w; ={t,5)/(t,1); w; = (1,5)/(5, 1),
X; = X;-1 + ap; + @;S; X; = X;-1 + op; + w;S;
ri=S8— wt; ri =38 — w;t;

Zk+1 = Zk+1 T AY1 + OiYa;

Fig. 5. The BiCGSTAB algorithm. Fig. 6. The BiICGSTAB algorithm in GCR with orthogonalization.

and after t = 4s we add
y2=NZ2Cit; t=t—Cpy,.

Further, at the end of the iteration, we set zx+1 = Zx+1 + ay; + w;y, . From this it is easily verified
that the relation Ax; = ro — r; + C,zi 4, is satisfied at the end of each iteration. If some stopping
criterion is satisfied after step i we set

U1 = X, (48)

outer

C-k+1 =Trog— V=T - ri-“““, cf. (46), (49)

Zues = (zkl“), (50)

and the (outer iteration) relation (38) is again satisfied. In this case we have to compute the residual
update explicitly. By construction the columns of C,,; are orthogonal. So we only have to
compute || G+, 1|2 ! and set

Niwy =diag(lley iz lGen 1571, (51)
div1 = |Grr |2 *Cha i1, (52)

Tev1 = T — A+ 1Ckr 1 - (53)
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After this the relations of Definition 3.1 are again satisfied. Experience with BICGSTAB as inner
iteration indicates that limiting the number of inner iterations and using a large relative tolerance
(with respect to the outer residual norm) gives the optimal interplay between the outer and inner
iteration. An often employed strategy is to have a maximum of 25 inner iterations and a relative
tolerance of 10~ 2. The inner algorithm is given in Fig. 6. Note that we aligned the algorithms in
Figs. 5 and 6 to make the extra steps obvious. The additional work for BICGSTAB in GCRO with
orthogonalization (assuming k outer search vectors) is 2k inner products and 2k + 2 vector updates
and some scalar work.

3.5. Truncation in general

When the number of outer iterations becomes large, the multiplication by A, will be expensive,
and we may run out of memory. Therefore, we consider the truncation of the outer iteration. We
will give only a general description here. For a more detailed discussion see [4, 9]. We choose
a matrix W, e R**!, where [ < k, such that

WIW, =1, (54)

There are now two ways to implement the truncation:
(1) First, we compute the current approximation according to (40): x, = U, Z; 'd,, then we
compute the new matrices U, and C; as follows

C,=CW,=CNW,=C.W, where W,= N, W, (5%)
and

U=UW-= Uka_l w,. (56)
In order to satisfy the relations of Definition 3.1 we set

Xg = Xg, Ftg ="y,

C=C, U,=U, (57)

Z,=1, d,=0, N,=diag(l,...,1),

and we replace relation (39) by r, = ro — C,d,. After this we have to add corrections to x, so that
(40) must be replaced by x, = xo + U, Z; 1d,.

(2) The second method does not require the computation of x; and is therefore more compatible
with the overall algorithm. Instead we use w; to compute an implicit representation of x,:

w, =8 IN;1d, where § = | Ny Ydy|,. (58)

The other vectors of W, can then be chosen freely as long as they satisfy (54). Furthermore, we
compute _C,, U,, N;, Z, and r, according to (55)57). Finally, we set d, = de;, so that the relation
r = b — C,d, is satisfied:

= b— Cldl =bh— CkaW15 =bh-— Cka5_1Nk_1dk5 =bh-— dek =T1;.
Then x; is implicitly represented by x, = U, Z; 'd, (= U,d,).
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3.6. Parallel implementation

Both the GMRESR method and the method just described (GCRO) will run efficiently on (large)
distributed memory computers, if they use a variant of GMRES that reduces the cost of global
communication in the inner products, as described in [3, 2]. Furthermore, GCRO with inner
GMRES has the advantage that it converges in almost the same number of iterations as (full)
GMRES (see Section 4). However, it has fewer inner products, which require expensive global
communication. GCRO with inner GMRES also uses much less memory than GMRES for an
equal number of iterations (matrix—vector products). Because the cost of global communication is
often the bottleneck for fast parallel implementations of GMRES on large distributed memory
computers, and on these computers memory restrictions can be a severe constraint, GCRO with
inner GMRES will perform much better than GMRES for many problems on large distributed
memory computers.

3.7. Convergence check at the end

Since the residual is never explicitly computed from the approximate solution, it is advisable to
check the true residual at the end, when the solution is finally computed. If the norm of the true
residual turns out to be larger than the prescribed tolerance, we first reorthogonalize the true
residual on C, and compute the corresponding approximate solution. Generally this is sufficient to
get the norm of the true residual below the prescribed tolerance. If it is not, then the process can
simply be restarted, while keeping the old C, and U, in order to preserve optimality in these
directions. Only a few inner iterations were needed in our test cases.

4. Numerical experiments

We will discuss the results of three numerical experiments which concern the solution of
two-dimensional convection—diffusion problems on regular grids, discretized by a finite volume
technique, resulting in a pentadiagonal matrix. The systems are preconditioned with either ILU(0)
applied to the scaled system; see [5] and [11], or with Saad’s ILUT preconditioner from the
package SPARSEKIT?2 (in netlib) [12], which uses a drop tolerance and allows higher level
fill-in.

Because we propose the new method (GCRO) to improve the convergence of GMRESR, we use
the first two problems to compare the convergence of the following GMRES-like methods:

« (full) GMRES,

« GMRESR(m): m indicates the number of inner GMRES iterations for each outer iteration,

+ GCRO(m), which is GCR with m GMRES iterations for A¢, as inner method.

The examples illustrate the typical differences of these methods, the stagnation in the inner loop of
GMRESR (m) that slows down the convergence, the optimality of GMRES in matrix—vector
products and its high computational cost, and the near-optimal convergence of GCRO(m) and its
much lower computational cost compared with GMRES. The examples illustrate the potential of
GCRO(m) very well.
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The last problem is used to illustrate that instead of a GMRES-like method in the inner loop we
can also use other methods. Apart from the GMRES-like methods given above, we compare the
following methods based on BiCGSTAB:

» BiCGSTAB,

» GMRESRSTAB: GCR with BiCGSTAB as inner method,

« GCROSTAB: GCR with BiCGSTAB for A, as inner method.

This example also shows that the GCRO approach may improve the convergence of BICGSTAB-
like methods. The example also indicates a problem that may arise in using such methods in the
GMRESR approach.

We will compare the convergence of these methods both with respect to time (on one processor
of a Convex C3840) and with respect to the number of matrix—vector products. This makes sense
since the main trade-off between (full) GMRES, the GCRO variants, and the GMRESR variants is
fewer iterations against less work per iteration. Which method converges faster in time, then, highly
depends on the relative cost of the matrix—vector product and preconditioning.

Problem 1. The first problem is defined by the discretization of
— (Uxx + uyy) + buy + cu, =0
on [0,1] x [0,4], where

200 for 0<y<1,

b(x, y) = —200 for 1<y<2,
200 for 2<y <3,

— 200 for 3<y<4,

and ¢ = 200. The boundary conditions are u =1ony=0,u=00n y=4, 4’ =0 0on x =0 and
u' =0 on x = 1, where u’ denotes the (outward) normal derivative, see Fig. 9. The stepsize in the
x-direction is 1/99 and in the y-direction it is 4/199.

The convergence history for Problem 1 is given in Figs. 7 and 8 for (full) GMRES, GCRO(m) and
GMRESR(m), for m = 5 and m = 10.

Fig. 7 shows that (full) GMRES converges fastest (in iterations), which is of course to be expected,
followed by GCRO(5), GCRO(10), GMRESR(10), and GMRESR(5). From Fig. 7 we can see that
GCRO(m) converges much smoother and much faster than GMRESR (m) and follows the conver-
gence of (fulll GMRES quite well. The vertical “steps” of GMRESR(m) are caused by the
optimization in the outer iteration, which does not involve a matrix-vector product. This figure
clearly shows that the GMRESR variants suffer severely from stagnation in the inner iteration,
which makes the convergence very slow. Stagnation in the inner iteration occurs frequently in
GMRESR(m) and often destroys the superlinear convergence behaviour, at least during certain
stages of the convergence history. The reason is probably that the inner iteration of GMRESR (m)
is essentially a restarted GMRES. Fig. 8 gives the convergence with respect to time. GCRO(5) is the
fastest, which is not surprising in view of the fact that it follows the convergence of (full) GMRES
quite closely, but has much lower cost per iteration. GCRO(10) is also faster than (full) GMRES,
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Fig. 9. Problem 1.

which is still faster than GMRESR(10) and GMRESR(5). This shows that, for this example, the
improvement in convergence for the GCRO variants outweighs the extra work in orthogonaliz-
ations compared to the GMRESR variants. In fact, the effects of stagnation are so strong for this
example that the GMRESR variants are even slower than (full) GMRES. Apart from their fast
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convergence in time, the GCRO variants also have the advantage of much lower memory require-
ments than (full) GMRES (less than half in this example); this, of course, also holds for GMRESR.

Problem 2. The second problem is defined by the discretization of
— (Uyx + ttyy) + bu, + cu, =0

on[ — 1,11 x[ — 1,1], where b(x, y) = 400 y(1 — x?) and c(x, y) = — 400x (1 — y*). The boundary
conditionsareu =lonx =landy = — l,anddu/0n =1 —uonx = — land y = 1, where du/on
denotes the outward normal derivative; see Fig. 10. The stepsize is 1/200 in both the x- and
y-direction. For this type of problem ILU(0) is not a good preconditioner. Therefore, we used the
ILUT preconditioner described in [12], with a drop tolerance of 0.0001 and a maximum fill-in of
5 in both the lower- and upper-triangular factor.

The results of Problem 2 are given in Figs. 12 and 13. In this example, the difference between (full)
GMRES and GCRO(5) in convergence against number of matrix—vector products is again very

1 u=0
f=100
K

1
32-1 “= u=1
=

a=100
00 u=1 1

Fig. 11. Problem 3.
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Fig 12. Convergence vs. number of iterations for Problem 2.
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Fig. 13. Convergence vs. time for Problem 2.

small; GCRO(5) converges (almost) exactly like (full) GMRES. This is explained by the “global”
optimization in GCRO(m) over both the inner and the outer search vectors (the latter form some
“best” sample of the entire, previously searched Krylov subspace). In fact, we may view GCRO(m)
as a semi-full GMRES. Fig. 12 shows again the tendency of GMRESR (m) to stagnate in the inner
iteration (especially for m = 10), which causes it to converge much slower than GCRO(m). Fig. 13
shows that GCRO(5) and (full) GMRES are the fastest in CPU time. We also see (as in the previous
example) that GCRO(5) converges faster than GCRO(10). It seems that a good interaction between
the inner and outer iteration is important for good convergence.

Problem 3. The third problem is taken from [17]. We solve the equation
- (aux)x - (auy)y + bux =f

on the unit square, where b is given by b(x, y) = 2e2&*+y) We have Dirichlet boundary conditions,
see Fig. 11. The functions a and f are also given in Fig. 11: f = 0 everywhere, except for the small
square in the centre, where f = 100. The stepsize in both the x- and y-directions is 1/128. An ILU(0)
preconditioner was used (as in [17]). The results of Problem 3 are given in Figs. 14-16.

First, we consider the GMRES variants. Fig. 14 gives the convergence history for (full) GMRES,
GCRO(m) and GMRESR (m). For this problem, we used m = 10 because it was the optimal choice
for both GMRESR(m) and GCRO(m), and we used m = 50 to highlight the difference in conver-
gence behaviour in the inner iteration of GMRESR (m) and GCRO(m). GMRESR(50) stagnates in
the inner GMRES iteration, whereas GCRO(50) displays almost the same convergence behaviour
as GCRO(10) and (full) GMRES.

Next, we consider BICGSTAB as inner method to illustrate that methods other than GMRES
can be used successfully as inner iteration. This also indicates the potential of GCRO to improve
(accelerate) the convergence of methods like BICGSTAB. In Fig. 15 the convergence history is
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Fig. 14. Convergence vs. number of iterations for Problem 3.
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Fig. 15. Convergence for BICGSTAB variants vs. number of iterations for Problem 3.

given for (fulll GMRES (for reference), BICGSTAB, and BiCGSTAB as the inner method
GMRESR (GMRESRSTAB) and in GCRO (GCROSTAB). We use different parameters f
GMRESRSTAB and GCROSTAB, because they behave quite differently, and for both metho
the optimal parameters (within a reasonable region) should be used to make a fair comparison. T
following strategies gave the best results for the respective BICGSTAB variants:

* For GMRESRSTAB the inner iteration was ended after either 20 steps or a relative reduction
the residual norm by a factor 0.01.
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Fig. 16. Convergence vs. time for Problem 3.

« For GCROSTAB the inner iteration was ended after 25 steps or a relative reduction of the
residual norm by a factor of 0.01.

The convergence behaviour of GMRESRSTAB for this example is somewhat typical for GMRES-
RSTAB in general (albeit very bad in this particular case). A reason for this erratic behaviour may
be that the convergence of BICGSTAB depends on the (implicit) (bi-)orthogonality to some basis.
This relation is destroyed after each outer iteration. Now if the inner iteration does not yield a good
approximation, the outer iteration will not give much improvement either and the method becomes
“trapped”. At the start, the same seems to hold for GCROSTAB. However, after a few outer GCR
iterations the “improved” operator A¢, somehow yields a better convergence than BICGSTAB by
itself. We have also observed this for other tests, although it may also happen that GCROSTAB
converges worse than BICGSTAB.

In Fig. 16 the convergence versus CPU time is given for the methods with the best performance
(in time), GCROSTAB, BiCGSTAB, GCRO(10) and GMRESR(10). GCROSTAB gives the best
convergence in time. It is approximately 20% faster than BICGSTAB, notwithstanding the extra
work in orthogonalizations. Although GCRO(10) converges in fewer iterations than
GMRESR(10), in time GMRESR(10) is faster. So in this case the decrease in iterations does not
outweigh the extra work in orthogonalizations. For completeness we mention that GMRES-
RSTAB took almost 15 s to converge, whereas (full) GMRES took about 20 s.

5. Conclusions

From the GMRESR methods we have derived a modified set of methods, which preserve the
optimality of the outer method in the inner iteration. This optimality is lost in the inner iteration of
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GMRESR since it essentially uses “restarted” (inner) iterations which cannot take advantage of the
“convergence history”. Therefore, GMRESR () may converge very slowly and lose the superlinear
convergence behaviour of (full) GMRES, due to poor convergence of the inner, restarted GMRES,
and this might repeat itself at each inner iteration.

In contrast, the GCRO variants exploit the “convergence history” to generate a search space in
the inner iteration that does not interfere with the previous minimization of the error over the space
of outer search vectors. If then GMRES is used as the inner method (GCRO(m)), we do a global
minimization of the error over both the inner search space and the outer search space. The set
of outer search vectors is a sample of the entire, previously searched Krylov subspace. From this
point of view, we may say that GCRO(m) is a semi-full GMRES. This probably accounts for the
smooth convergence, the preservation of superlinear convergence (if GMRES converges super-
linearly), and the absence of stagnation, which may occur in the inner method of GMRESR. In
many practical problems, the convergence behaviour in iterations of GCRO(m) is almost the same
as that of (full) GMRES. Apparently the subset of Krylov subspace vectors that is maintained
approximates the entire Krylov subspace that has been generated sufficiently well. Because
GCRO(m) requires fewer inner products and needs less storage than (full) GMRES for the same
number of iterations, it is better suited for implementation on large, distributed memory, parallel
computers.

Although there is the possibility of breakdown in the inner method for GCRO, this seems to
occur rarely, as is indicated by Theorem 2.7; indeed, it has never happened in any of our
experiments. Moreover, in case the generation of the Krylov subspace does break down, we have
suggested two ways to continue.

With respect to the performance of the discussed methods, we see that GCRO(m) (almost) always
converges in fewer iterations than GMRESR(m). Because GCRO(m) is on the average more
expensive per iteration, this does not always lead to faster convergence in time. This depends on the
costs of the matrix—vector product and preconditioner compared to the costs of the orthogonaliz-
ations. Our experiments, with a relatively inexpensive matrix—vector product and preconditioner,
show that even in this case the GCRO variants are very competitive with other solvers. However,
especially when the matrix—vector product and preconditioner are expensive or when not enough
memory is available for (full) GMRES, GCRO(m) is very attractive. For both GMRESR (m) and
GCRO(m) it appears that a small number of inner iterations works best.

GCRO with BiCGSTAB also seems to be a good method, especially when a large number of
iterations is necessary, or when the available memory is small relative to the problem size.
GMRESR with BICGSTAB does not seem to work well. This may be caused by the fact that after
one outer iteration the restarted BICGSTAB has lost the (implicit) bi-orthogonality relations
constructed in the previous iteration(s).
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