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Abstract 

Recently the GMRESR method for the solution of linear systems of equations has been introduced by Vuik and Van 
der Vorst (1991). Similar methods have been proposed by Axelsson and Vassilevski (1991) and Saad (1993) (FGMRES1). 
GMRESR involves an outer and an inner method. The outer method is GCR, which is used to compute the optimal 
approximation over a given set of search vectors in the sense that the residual is minimized. The inner method is GM RES, 
which computes a new search vector by approximately solving the residual equation. This search vector is then used by 
the outer algorithm to compute a new approximation. However, the optimality of the approximation over the space of 
search vectors is ignored in the inner GMRES algorithm. This leads to suboptimal corrections to the solution in the outer 
algorithm. Therefore, we propose to preserve the orthogonality relations of GCR in the inner GMRES algorithm. This 
gives optimal corrections to the solution and also leads to solving the residual equation in a smaller subspace and with an 
"improved" operator, which should also lead to faster convergence. However, this involves using Krylov methods with 
a singular, nonsymmetric operator. We will discuss some important properties of this. We will show by experiments that 
in terms of matrix-vector products, this modification (almost) always leads to better convergence. Because we do more 
orthogonalizations, it does not always give an improved performance in time. This depends on the costs of the 
matrix-vector products relative to the costs of the orthogonalizations. Of course, we can also use methods other than 
GMRES as the inner method. Methods with short recurrences like BiCGSTAB seem especially interesting. The 
experimental results indicate that, especially for such methods, it is advantageous to preserve the orthogonality in the 
inner method. 
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1. Introduction 

For the solution of systems of linear equations the so-called Krylov subspace methods are very 
popular. However, for general matrices no Krylov method can satisfy a global optimality requirement 
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logy, IPS-ETHZ, CH-8092 Ziirich, Switzerland. E-mail: sturler@ips.id.ethz.ch. 

1Since FGMRES and GMRESR are very similar, the ideas presented will be relevant for FGMRES as well. 
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and have short recurrences [7]. Therefore, either restarted or truncated versions of optimal 
methods, such as GMRES [14], may be used. Alternatively, one may use methods with short 
recurrences, which do not satisfy a global optimality requirement, such as BiCG [8], BiCGSTAB 
[17], BiCGSTAB(1) [15], CGS [16] or QMR [10], which satisfies some quasi-minimization 
requirement. Recently Vuik and Van der Vorst introduced a new type of method, GMRESR [18], 
which is a nested GMRES method. Among various other nice properties, GMRESR is flexible in 
the sense that a global minimization over some specific part of the Krylov space is done, and the 
dimension of this space and the vectors that span it are controlled by the algorithm. The GMRESR 
algorithm (with GMRES as inner method) is given in Fig. 1. 

The GMRESR algorithm consists of GCR [6], Fig. 2, as the outer algorithm and m steps of 
GMRES as an inner method for the computation of ~ m , k ( A ) r k - 1 -  The inner GMRES method 
computes a new search vector by approximately solving the residual equation, A e k  = rk,  and then 
the outer GCR algorithm minimizes the residual over the new search vector and all previously kept 
search vectors ui. The algorithm can be explained as follows. 

Suppose we are given the system of equations A x  = b,  where A is a real, nonsingular, linear 
operator and b is a given right-hand side. Furthermore, we have the two matrices 

U k  = (Ul u2 . . .  Uk) and C k = A U  k (1) 

with the property that C k r C k  = I. k .  Consider the following minimization problem: 

min [ [b -  A x  112. (2) 
x e r a n g e ( U k )  

The solution of this minimization problem is given by 

x = U k C ~ b ,  (3) 

and r = b - A x  satisfies 

r = b - C k C ~ b ,  r _k range(Ck). (4) 

G M R E S R :  GCR: 

1. Select Xo, m, tol; 1. Select Xo, tol; 
ro = b -  A x o ,  k = 0; ro = b -  A x o ,  k = 0; 

2. while II rk II 2 > to1 do 2. while II rk II 2 > tol do 
k = k + l ;  k = k + l ;  
Uk = ~m.k (A)rk -1 ;  Uk = r k - l ;  

Ck = AUk; Ck = AUk; 
f o r i = l  . . . . .  k - l d o  f o r i = l , k - l d o  

"i = c• ck; ~ = cT ck; 

C k ~ -  C k - -  O~iCi~ C k = C k - -  O~iCi~ 

II k ~ U k - -  O~iUi; U k ~ U k - -  O~iUi; 

Uk = Uk/llekll2; U~ = uk/llekll2; 
Ck = Ck/II Ck 112; C~ = Ck/II C~ 112; 
Xk = Xk-1 + (CTk rk-1)Uk; Xk = Xk-1 + (C~rk-1)Uk; 

rk = rg-1 -- (cTrk-1)Ck; rk = rk-1  -- (CTrk-1)Ck; 

~m.k(A)rk indicates the G M R E S  polynomial  that  is impli- 
citly constructed in m steps of GMRES.  

Fig. 1. The G M R E S R  algorithm. Fig. 2. The G C R  algorithm. 
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We have constructed the inverse of A over the subspace range(Ck). This inverse is given by 

A - '  CkC[ = UkC:. (S) 

This principle underlies the GCR method, shown in Fig. 2, where for the preconditioned case 
A denotes the explicitly preconditioned operator. In GCR the matrices Uk and Ck are constructed 
such that the range(Uk) equals the Krylov space K k (A ,  t o ) =  span{r0, A r o , . . . ,  A k-aro}, where 
ro = b - A x o  and x0 is an initial approximation to the solution. Provided GCR does not break 
down, it is a finite method and at step k it solves the minimization problem (2), with 
range(Uk) = K k ( A ,  ro).  It is obvious from (1)-(2) that in the step Uk+ 1 = rk (in GCR) we can replace 
rk by any other vector and the algorithm still works in the sense that it solves the minimization 
problem (2). In this case range(Uk) = K k ( A ,  ro)  no longer holds. In general the better the choice of 
Uk + 1 the faster the convergence. The optimal choice, of course, is Uk + ~ = ek,  where ek is the error in 
Xk. Therefore, the key idea is to choose a suitable approximation to the error ek. In order to find 
approximations to ek, we use the relation 

A e k  = rk,  (6) 

and a n y  method which gives an approximate solution to this equation can be used to find good 
choices for Uk + 1. We may also vary such methods from one step to the next and we can regard them 
as preconditioners. These observations were made in [18] and lead to the formulation of the 
GMRESR method, shown in Fig. 1, and its variants. 

However, since we already have an optimal Xk e range(Uk) ¢¢, (b - A X k )  A_ r a n g e ( A U k ) ,  we need 
an approximation UR+ ~ to ek, such that CR+ ~ = A U k + I  is also orthogonal to range(Ck). This is done 
explicitly by the orthogonalization loop in the outer (GCR) algorithm. Because this is not taken 
into account in the inner method, the "wrong" minimization problem is solved, since it also 
considers spurious corrections. 

Consider step k + 1 in GMRESR. We have computed the matrices Uk,  Ck and the vectors Xk and 
rk. Then, in the inner GMRES loop (after m iterations) we solve the minimization problem 

min f[ r k - -  A V , . y  112, (7) 
y ~ R  m 

where Vm is an orthogonal matrix such that range(Vm) = K ' ~ ( A ,  rk) (see [14]), and in the outer loop 
we set 

Uk+ 1 = V , . y  - UkCrk A V m y / [ [ ( l -  C k C T ) A V r a Y l I 2 ,  

Ck+ , = ( I  - -  C k C T ) A V , . y / I I  (I - c k  C ~ ) A V m y  II z ,  (8) 

rk + l = rk - -  (rT ck + l )Ck + x . 

It is obvious that for optimality we should have solved the minimization problem 

min [I rk - -  ( I  - -  C k C T ) A V m y  ]1 z, (9) 
y e ~  ~ 

which is equivalent to 
min ]1 ( I  - C k C k  r) [rk - -  A V m y ]  I] 2, (10) 
y ¢ ~  
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since r k ]-range(Ck).  The results of the minimization problems (7) and (10) are equal only if 
range (A Vr,) _1_ range(Ck), which is generally not the case. Also in GMRESR we search in principle 
the entire Krylov space g ( A ,  r k ) = s p a n { r k , A r k , A a r k , . . . }  for an approximation Uk+I ~ e k ,  
whereas 

ek ~ K ( A ,  rk) C~ A - i range(Ck)±, (11) 

and therefore 

rk ~ K ( A ,  Ark) n range(Ck) ±. (12) 

Another disadvantage of GMRESR is that the inner loop is essentially a restarted GMRES with 
the same operator A. It therefore also displays some of the problems of restarted GMRES; most 
notably, it can have the tendency to stagnate in the inner loop (see Section 4). From this we infer 
that it is favourable to preserve the GCR orthogonality relations also in the inner (GMRES) 
method, at least for the speed of convergence, as we show in Theorem 2.2 in the next section. From 
(8), (9), (11) and (12) we come to the idea of using (I - CkCkr)A as the operator in the Krylov 
method in the inner loop. This would generate corrections to the residual Ck+I ~ K(A,b)c~ 
range(Ck) ±. But it will search for updates to the approximation Uk+I ~ {rk,(I  -- C k C ~ ) A r k  . . . .  } c 
range(Ck) l, whereas in general ek(~range(Ck) ±. We should note, however, that corrections to the 
residual Ck+l correspond to corrections to the approximation 

Uk+l = A - l C k + I  ~ K (A, rk) ~ A -1 range(Ck) -, 

which corresponds to (11). This may seem like a problem, since we have introduced the operator 
A-  1. But over the space s p a n { ( / -  CkCkr)Ark, [(I -- Ck C~)A]2rk ,  ... } the inverse of A is known, 
because we know the inverse of A over range(Ck) (5): 

A - ' ( I  - CkC )A = A - 1 A  -- A-1GC A 

= I -- C k C ~ A .  (13) 

In Krylov methods the solution itself is not needed to continue the iteration, only the residual. 
Therefore, we can use a Krylov method for the residual and find the corresponding updates to the 
solution vector using (13). This leads to an extension of the GMRESR method, which has an 
improved performance for many problems. In fact, this leads to a nested method, where the "inner" 
Krylov method computes an approximation to the error in the "outer" Krylov method and the 
information acquired in the "outer" method is used to speed up the convergence in the "inner" 
method. 

In this article we will consider as inner methods GMRES and BiCGSTAB. BiCGSTAB has the 
advantage that its cost per iteration is low, so that we have a relatively cheap method to compute 
approximations to the error. Using GMRES in the inner method has the following attractive 
features. First, at the end of the inner iteration the error is minimized over the space spanned by the 
search vectors of both the outer method and the inner method, as shown in Theorem 2.2. Second, 
using a few parameters and truncation, we can control the sizes of the Krylov subspaces in both the 
inner and the outer iteration and hence optimize the length of recurrences and memory require- 
ments versus convergence speed: see [4, 9]. 
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In the next section we will discuss the implications of the orthogonalizations in the inner method 
more formally. We will prove that it leads to an optimal approximation over the space spanned by 
both the outer and the inner iteration vectors. It also introduces a potential problem: the possibility 
of breakdown in the generation of the Krylov space in the inner iteration, since we iterate with 
a singular operator. We will show, however, that such a breakdown is rare, because it can only 
happen after a specific (generally large) number of iterations. Furthermore, we will also show how 
to remedy such a breakdown. In most of the following discussion we will consider m (not fixed) 
steps of GMRES to be the inner method. The optimality of GMRES and the fact that for 
a nonsingular operator GMRES does not break down permit some statements about optimality. 
These characteristics of GMRES also isolate the breakdown of the Krylov space generated by 
(I - CkCkr)A from the other possibilities of breakdown in various Krylov methods. 

2. Consequences of inner orthogonalization 

This section involves a theoretical discussion of optimality, the possibility of breakdown, and the 
continuation after breakdown. For the practical use of the methods this will in general not be too 
important, and readers interested mainly in using these methods might want to skip this section, 
and proceed to Section 3. 

We will now formally define the elements of our discussion, repeating some of the previous 
section for the sake of clarity. 

Definition 2.1. The matrix A is a nonsingular linear operator and the vector b is the given 
right-hand side of the system of equations A x = b .  We define the Krylov  space 
K(B,  x) = span{x, Bx, B2x  . . . .  } and the Krylov  subspace KS(B, x) = span{x, Bx, B 2 x , . . . ,  B s-  i x}  
for any linear operator B and any vector x. Furthermore, the matrices Uk and Ck satisfy the 
relations 

g k  : ( U l  /'/2 

C k = AUk,  

with the property 

and 

'" uk), (14) 

(15) 

C[  G = Ik, 

ui, ci ~ K (A, b). We also have the vectors Xk and rk satisfying 

xk = arg min IIb - Axl[2 ¢~ 
x ~ r a n g e  (Uk) 

Xk = Uk C[b.  

rk = b - Ck C[ b, 

rk _1_ range(Ck). 

Next, we define the operators 

Pc, = CkC T 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 



20 

and 

E. de Sturler / Journal o f  Computational and Applied Mathematics 67 (1996) 15-41 

Ac, = (I - Pc,)A. (22) 

Because range(Ck) c K(A,  b), K(A,  b)~range(Ck) ± is an invariant subspace of Ac~. We use m (not 
fixed) steps of the G M R E S  algori thm to compute  the opt imal  approximat ion  to rk in the space 

m r span{Ackrk,A~rk, . . . ,Ac~ k} = Km(Ac~,Ac, rk). This leads to the opt imal  approximat ion  to the 
solution over the (global) space 

range(Uk) + A -1 Km(Ac ,  Ackrk) 

as follows. 

Theorem 2.2. Let  A, Uk, Ck, rk, Xk, Ac~ and Pc~ be as in Definition 2.1. Let  {rk, Ack rk, A ~  rk, . .. , A~  rk } 
be independent and {Vl . . . .  , Vm + 1 } be an orthonormal basis for  Km + 1 ( Z c k  ' r k ) ,  with vl = rk/ Ifrk II 2, 
generated by m steps o f  GMRES.  This defines the relation Ac~ V,, = V,,+ 1Hm; see [-14]. Let  y be 
defined by 

y = arg min  [I rk - -  Ack Vm~ II 2 = arg min II rk - -  V m  + 1/-Ira) 7 II 2" (23) 

Then the minimal residual solution of  the (inner) G M R E S  method, A - I A c ,  Vmy, gives the outer 
approximation 

Xk+l = Xk + A-XAc~Vmy, (24) 

which is also the solution to the global minimization problem 

min{ ][ b - A~ II 2 : ~  e range(Uk) @ range(V,,)}. (25) 

Proof. The solution Xopt to the global minimizat ion problem satisfies 

Xopt = a rgmin{  I1 b - Z ~  112:~ e range(Uk) @ range(Vm)} .~  

Xop t = UkZ --[- Vmy  , 

where 

y ,z  = a rgmin{  ]] b - AUkZ - -  A V m y  [[2:Z E l~k,y • R m } .  (26) 

Fur thermore ,  we have by construct ion of G M R E S  that Ac, V,. = V,.+I/-/,, ~ A Vm = 
Pc, A Vm + Vm + ~ Hm, so that  the minimizat ion problem in (26) is equivalent to 

y, z = arg min { [J b - Ck(Z + C~ A Vmy) - Vm + 1/-/,, Y ][ 2 : z • ff~k, y • Rm }. (27) 

Because range(Ck) _1_ range (Vm + 1), the minimizat ion (27) can be solved by two separate minimiz- 
ations for z and y, respectively: 

z + C[AV, , ,y  = C[b  ¢.. z = C~(b - AVmy), (28) 
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and by (19), 

y = arg min [1(I - CkC[)b -- Vm+~Hm,)~][2 <~ 

y = arg min Ilrk - Vm+lHm,)TII2. (29) 
~eR* 

This results in 

Xopt ~--- U k Z  "~ V m y ,  (30) 

where y is given by (29), which is equivalent to (23), and z is given by (28). For Xk + 1 we have, using 
(18), (23) and (24), 

Xk+l = Xk + A - 1 ( 1  -- CkC~)AVmy (23) and (24) 

= U k C T b  + V m y  - -  U k C ~ A V  m y (18) 

= UkC~(b - AV,~y) + Vmy 

= UkZ + Vmy. [] (31) 

It also follows from this theorem that the GCR optimization (in the outer iteration) is given by 
(24), so that the residual computed in the inner GMRES iteration equals the residual of the outer 
GCR iteration: 

rk+ 1 = b - -  A X k + l  = b - -  A X k  - -  AckVmy = rk - -  A c k V m y  = rk - -  Vm+lHmy. (32) 

So the outer method only needs to compute the new Uk+ 1 and Ck+ ~ by 

Ck +1 = (Ac, Vmy) / II Ack Vmy 1[ 2 = ((I - Ck C[) A Vmy)/ [[ (I - Ck C : ) A  Vmy II 2, (33) 

Uk+X = (A-~AckVmy)/[IAc, VmYII2 = Vmy -- UkC}AVmy/I[( I  -- CkgXk)AVmyii2, (34) 

where Ack Vmy and A -  ~ Ac, Vmy = (I - UkCTk A) Vmy have been computed already as the residual 
update and the solution in the inner iteration; see (23) and (24). The outer GCR method 
consequently becomes very simple. We will now consider the possibility of breakdown, generating 
a Krylov space with a singular operator. The following theorem may not be a surprising one, but it 
is given because it captures the essence of the following discussion. 

Theorem 2.3. Let B be a linear operator such that {y, By, B 2 y , . . . , B m y }  is independent and 
K m + 1 (B, y) is an invariant subspace of  B, so that {y, By, B 2 y , . . . ,  B m+ly} is dependent. Then: 

(1) B is nonsingular over Km+l(B,y)  and therefore has an inverse over this space if and only if  
{By, B2y, . . . ,  B m+ 1 y} is independent. 

(2) Let  Bm+ l y be given by 

Bm+ly = ~ ¢xiBiy, (35) 
i = 0  
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where B ° = I. Then B is nonsingular over span { B Jy, B j + ~y, ..., B "y}, and therefore B has an inverse 
over this space i f  and only i f  in (35) ~j ~ 0 and ~i = O, 0 <<. i <~ j - 1. 

(3) Let  Br"+ l y  be 9iven by (35), and ~j # O, and ~i = O, 0 <~ i <~ j - 1. Then B is singular over 
span{B j -  l y, BJ y . . . .  , B~ y }. More  specifically 

3z 6 span{BJy ... .  ,Bray} such that Bz  = BJy, 

and therefore (B J- l y _ z) E null(B). 

Proof. (1)Assume that B is nonsingular over K " + I ( B , y ) .  Then d i m B K m + l ( B , y ) =  
d i m K " + l ( B , y ) ,  and hence {By, B Z y , . . . , B m + ~ y }  is independent. Conversely, assume that 
{By, B2y  . . . .  , B "  +ly} is independent. Then V x ~ B K  " +I(B, y), x = Z i"= o ~iB i+ l y, where the ~i are 
uniquely determined, and we can construct Y " = Zi=o ~iB~Y, so that BY = x. Because the ~i are 
unique and both { y, B y , . . . ,  B " y }  and {By, B2y,  . . . ,  B "  + ~ y} are independent, this defines a one-to- 
one correspondence and hence B must be nonsingular over K " + I ( B , y ) .  

(2) First assume that in (35) ~ j # 0  and ~ i = 0 ,  0 ~ < i ~ < j - 1 .  Then B " + l y ¢  
span{B j+ l y , . . . ,  Br"y) since {BJy . . . .  , B " y }  is independent. Let '9 = BJY, then {-9, B,9, ..., B"-J,9} is 
independent, K " + ~ -J(B, 9) is an invariant subspace of B and {B,9, B2,9 . . . .  , B " + 1 -J'9 } is indepen- 
dent. By case (1) of this theorem we can conclude that B is nonsingular over 
K "  + 1-J(B,,9) = span {BJy, BJ+ly  . . . .  , B " y } ,  and therefore B has an inverse over this space. 

Second assume that span {BJy, BJ+ay , . . . ,  B " y }  is an invariant subspace of B and B is nonsingu- 
lar over this space. Then obviously B m + l y ~  span{BJy ,  BJ+~y, . . . , B " y }  so that in (35) ~i = 0, 
0 ~< i ~<j - 1. Again let )7 = BJy so that {,9, B-9 . . . . .  B"-J,9} is independent and K r"+~ -J(B,-9) is an 
invariant subspace of B. Then by case (1) of this theorem {B,9,B2,9 . . . .  ,B"+I-J ,9  } = 
{B j+ ~y, B j + 2 y , . . . ,  B m+ l y} is also independent. Therefore Br" + l yCspan { B j + ~y, B j + 2y . . . .  , Br"y} 
so that ~j # 0. 

(3) Since B is nonsingular over span{BJy,  BJ+~y . . . .  , B " y } ,  B has an inverse over 
span{BJy, BJ+ l y , . . . , B m y } ,  so that case (3) of the theorem follows trivially. []  

Now although GMRES is still optimal in the sense that at each iteration it computes the 
minimal residual solution over the generated Krylov subspace, the generation of the Krylov space 
itself, from a singular operator, may break down. The following simple example shows that this 
may happen before the solution is found, even though both the solution and the right-hand side are 
in the range of the given (singular) operator. Define the matrix A: 

A - ~  (e 2 e 3 e4 0), 

where ei denotes the ith Cartesian basis vector. Note that A = (I - el e~) (e2 e3 e4 el), which is the 
same type of operator as Ac~, an orthogonal projection times a nonsingular operator. Now 
consider the system of equations A x  -- e3. Then GMRES (or any other Krylov method) will search 
for a solution in the space 

s p a n { e 3 , A e 3 , A  2 e3, ... } = span {e3, e4, 0, 0 . . . .  }, 

so we have a breakdown of the Krylov space and the solution is not contained in it, even though the 
solution exists and is an element of the range of A (Ae2 = e3), and the right-hand side is in the 
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or thogonal  complement  of null(A). So the singular nonsymmetr ic  case is quite different from the 
symmetric  one. We will now define b reakdown of the Krylov space for the inner G M R E S  iteration. 

Definition 2.4. Let A, Uk, Ck, Ac~ and r k be as in Definition 2.1. Let { r k , A c ~ r k ,  . . .  ,Am-lrk}C~ be 
independent  and {vl ,v2, . . . ,v , ,}  be an o r thonormal  basis for K~(Ac~,rk) with Vl = rk/l[rk[12, 
generated by m -  1 steps of GMRES.  We say we have a breakdown of the Krylov subspace if 
Ac~vm ~ range(V,,), since this implies we can no longer expand the Krylov subspace. We call it 
a lucky breakdown ifv~ e range (Ac~ V,,), because we then have found the solut ion (the inverse of A is 
known  over the space range (Ac, Vm)). We call it a true breakdown if v l ~range (Ac, Vr,), because then 
the solut ion is not  contained in the Krylov subspace. 

The following theorem relates true b reakdown to the invariance of the sequence of subspaces in 
the inner me thod  for the operator  Ac~. Case (3) indicates that  it is always known  whether  
a b reakdown is true or lucky. 

Theorem 2.5. Let A, Uk, Ck, Ac~ and r k be as in Definition 2.1. Let {rk,Ac~rk, .. A m- • , ck lrk} be 
independent and {v l , v2 , . . . , v i }  be an orthonormal basis for Ki(Ac~,rk), for i =  1 , . . . ,m ,  with 
Vl ~ rk/I] rk ][ 2, generated by m - 1 steps of GMRES.  Then at step m: 

(1) A true breakdown occurs if and only if range(Ac~ V,,_ 1) is an invariant subspace of Ac,. 
(2) A true breakdown occurs if and only if Ac~vm ~ range(Ac~ Vm-1). 
(3) A breakdown occurs if and only if we can define Hm by Ac~ V,, = V,,H,, .  Furthermore, it is 

a true breakdown if and only if H,, is singular. 

Proof. (1) Assume that  a true b reakdown occurs. By assumption,  {rk, A " - 1  • .., c~ rk} i s independen t  
and b reakdown implies that  Km(Ac~,rk) is an invariant  subspace of Ac~. So vl¢range(Ac~V,,) 
implies that  Ac~ is singular over K"(Ac, ,  rk). By Theorem 2.3 {Ackrk,... ,A'~rk} is dependent ,  and 
therefore A ~  rk ~ span {Ac~rk, A " -  1 • .. ,  ck rk} = range(Ack V,,_ 1), and range(Ack V,,_ 1) is an invariant 
subspace of Ac,. 

Conversely assume that  range(Ack V,,_ 1) = span {Ace rk, . . . ,  A r"-lrkcA } is an invariant subspace of 
Ac~. Then  span{rk, A " -1  . . . .  ck rk} is an invariant subspace of Ac~, so a b reakdown will occur. 

m m r A m - i t  I Fur thermore ,  range(Ac~V,.)= span{Ac, rk, ... ,Ac, rk}, and since Ac, k e span{Ac~rk, . . . ,  c, k~ 
by assumption,  we have range(Ac~ V,,) = range(Ac~ V,,_ ~). Because {rk, . . . ,  A'~- 1 rk} is indepen- 
dent  by assumption,  rk q~ range(Ac~ Vm), so that  a true b reakdown occurs. 

(2) Assume a true b reakdown occurs. Then by case (1) of this proof  range(Ac, V,,_~) is an 
invariant subspace and hence range(Ac~ Vm) = range(Ac~ V,,_ a), so that  Ac~v,, e range(Ac, V,,_ ~). 

Assume, on the other hand,  that  Ac~v,,erange(Ac~Vm-1). Then  Ac~v, ,espan{Ac~rk, . . . ,  
A'~,- 1 rk} c range(V,,), so that  a b reakdown occurs. Fur the rmore  Ac~ v,, ~ range(Ac, V,,_ 1 ) implies 
range(AckVm) = range(Ac~ V,,_ l). Because {rk, . . . ,Ac~-lrk} is independent  by assumption,  
rk(~range(Ac~ Vm-1) = range(Ac~ V,,). Consequent ly  a true b reakdown occurs. 

(3) Assume first that  a b reakdown occurs. Then  by Definit ion 2.4, Ac~ v,, ~ range(V.,), G M R E S  
defines the relation Ace V,._~ = V,,H, ,_I  and therefore we can define an H,, e R,.×m such that  
Ac~ Vm = V m H m .  

Second, assume that  an Hm exists that  satisfies Ac, V,, = V,,, H,n. Then Ac, v,, ~ range(V,,), so that  
a b reakdown occurs. Assume that  a true b reakdown occurs. Let H,, be nonsingular.  Then 3 x such 
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that H,,x  = el,  where el denotes the first Cartesian basis vector, so that 

vl = VmHmx = Ac~ V,~x =~ Vl~ range(Ac~ Vm). 

This contradicts our  assumptions, which implies that H,, must be a singular. 
Assume that H~, is singular. Then dim VmHm=dimAc~Vm < m ,  which implies that 

{Ac~rk, . . . ,A~rk} is dependent. This in turn leads to range(Ac, Vr , )=span{Ac~rk, . . . ,  
A'~-1 rk } = range(Ac~ Vm-1), so that a true breakdown occurs (see above or Theorem 2.3). []  

From the previous theorem and its proof one can already conclude that a true breakdown occurs 
if and only if Ack is singular over K m (Ac,, rk). From Definition 2.1 we know null(Ac,) = range(Uk). 
We will make this more explicit in the following theorem, which relates true breakdown to the 
intersection of the inner search space and the outer search space. 

Theorem 2.6. Let A, Uk, Ck, Ac, and r k be as in Definition 2.1. Let {rk, Ac,  rk, ...,Am-lrk}C, be 
independent and {Vl,V2,. . . ,vi} be an orthonormal basis for Ki(Ac~,rk) for i =  1 , . . . ,m,  with 
Vl = rk/ [] rk [[ 2, generated by m - 1 steps of G M RES. A true breakdown occurs at step m if and only if 

3u ~ 0, u e range(Vm) such that u ~ range(Uk). 

Proof. Let u ¢ 0, u E range(Vm), and u e range(Uk). By Definition 2.1, Acku = 0; consequently 
dim (range (Ac, Vm)) < m ~ {Ac~rk, ... ,A~rk}  is dependent. This implies (see the proof of The- 
orem 2.5 or Theorem 2.3) that range(Ac~Vm-~) is an invariant subspace of Ac~, so that a true 
breakdown occurs. 

Assume that a true breakdown occurs. Then by Theorem 2.5, range(Ac~ Vm-i)  is an invariant 
subspace of Ac~, which implies that {Ac, rk, . . . ,  Ac~ rk} is dependent. Therefore, 

3 u ~ 0, u ~ span{rk . . . .  ,A '~- lrk}  ----- range(Vm): Ac~u = O. 

Hence 

u e null(Ac,) =~ u e range(Uk). []  

The following theorem indicates that breakdown cannot occur in the inner GMRES method 
before the total number of iterations exceeds the dimension of the Krylov space K(A,b). This 
means that, in practice, a breakdown will be rare. 

Theorem 2.7. Let A, Uk, C,,  Ack and rk be as in Definition 2.1. Let m = dim(K(A,b)); that is, 
m = max{s: {b, Ab . . . .  ,AS-~b} is independent}. Define Ps(A)b = y~=o ~iAib, with ~ ~ 0, and let 

u i= Pl , - l (A)b,  i = l , . . . , k ,  

1= max l i < m .  
/ =  1 , . . . , k  

Then r, = (I - Pck)b = Pl(A)b. We call 1 the total number of iterations. I f  

j < m - - l  
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then 

{rk, Ac~ rk, ... , AJckrk } is independent, 

and therefore no breakdown occurs in the first j steps o f  G M R E S .  

Proof. By definition, ci = Aui ~ c i e s p a n { A b , . . . , A l b } .  Further ,  rk = Pl(A)b ~ Ac, rk = 
(1 -- Pc~)P~+ 1 (A)b = Pt+ l(A)b and analogously we find A~rk  = Pz+~(A)b for i = 1 . . . .  ,j. Thus  we 
have 

{rk,Ac~rk, . . . ,  AJc~rk} = {P,(A)b,  P,+ l ( A ) b , . . . ,  P ,+j (A)b}  

is independent  by definition of m. Therefore no b reakdown can occur. []  

We will now show how a true b reakdown can be overcome. There are basically two ways to 
continue. 

In the inner iteration: by finding a suitable vector to expand the Krylov subspace. 
In the outer iteration: by comput ing  the solution of the inner iteration just  before b reakdown 

and cont inuing by making  one LSQR step (see below) in the outer  iteration. 

2.1. Continuation in the inner iteration 

The following theorem indicates how we can find a suitable vector to expand the Krylov 
subspace. 

Theorem 2.8. Let  A, Uk, Ck, Ac~ and rk be as in Definition 2.1, let {rk,Ac~rk,... A m - 1  , rk} be 

independent and {Vl ,V2 , . . . , v i }  be an orthonormal basis for  Ki(Ac, ,rk) ,  for  i =  1 , . . . ,m ,  with 
Vl = rk/L[ rk [12, 9enerated by m - 1 steps o f  G M R E S .  I f  a true breakdown occurs then 

3c s range(Ck) such that Ac~ c q~ range(Ac~ Vm-1), 

which implies 

3 ci ~ {c 1,. .- ,  Ck } such that Ac~ci 6 range (Ac, V,,_ 1 ). 

Proof. By Theorem 2.5 we have Ack v,, ~ range (Ack V,,_ 1 ). Now assume that  we would stop after 
the last regular G M R E S  step, step (m - 1), and compute  rk÷ 1 using (32) and Ck+l using (33). Then 
from rk+l = r k - A c k V , , - l Y  = N r k ] ] Z V l -  V m H m - l Y ,  we have rk+l e range(V,.) and therefore 
Ac, rk+ l ~ range(Ac~ V,,_ 1). Because A is a nonsingular  operator  rk+ 1 ~ span{Ark÷ 1, . . . ,  APr,+ I }, 
for some p ~ rk + 1 = ~P= 1 ~ j A  j r  k + 1 ~ rk + 1 = (I - Pc,)rk + 1 = Z~'= 1 ~ j ( I  - -  Pc~)A Jr k + 1 and since 
rk+ 1 # O, rk+ 1 I range(Ck) and rk+ 1 A_ range(Ac, V,._ 1): 

3j such that  (I - Pc~)AJr,+l ~ 0 and (I - Pck)AJrk+lCrange(Ac,  V, , -x) .  

We also have A c k r k +  1 ~ range(Ac~ V,,_ 1). Now let s be such that  

(I - Pck)ASrk+ 1 ¢ range(Ac, V,,_ 1) 
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and 

Vj,  1 <~j < s: (I - Pc,)AJrk+x • r a n g e ( A c ~ V , . - 1 ) .  

Then 

(I - Pc,)A~rk+ x = (I -- Pc , )A ( I  - P c , ) W -  1 rk+ l + (I -- Pc~)APc, W -  1 rk+ 1, 

where by assumption (I - Pc,) A ~ - 1 rk + 1 e range(Ac, V,._ 1 ) ~ (I - Pc,) A (I - Pc~) A ~- 1 rk + 1 • 
range(Ac~V, . -1) .  This implies that ( I - P c k ) A P c ,  W - l r k + l C r a n g e ( A c ~ V , . _ l )  and since 
Pc, W - l r k +  1 e range(Ck), we have 

3 c • range(Ck) such that Ac,cCrange(Ac~ V. ,_ 1 ), 

which in turn implies 

3C i • {Cl, . . .  ,Ok} such that Ac~ciCrange(Ac,  V, , -1) .  [] 

Not any c • range(Ck) will do, as is shown by the following example. Let u~ = b. Then 

Ac~rk = Ac~(b -- CkC[b)  = - Ac~ CkC~b. 

Therefore, we must try the ci until one of them works. 

2.2. Continuation in the outer iteration 

Another way to continue after a true breakdown in the inner GMRES iteration is to compute the 
inner iteration solution just before the breakdown and apply an LSQR switch (see below) in the 
outer GCR iteration. The following theorem states the reason why the LSQR switch must be 
applied. 

Theorem 2.9. Let  A, Uk, Ck, Ac~ and rk be as in Definition 2.1, let { r k , A c r k , . . . , A c ~ - t r k }  be 
independent and {vl,v2 .. . .  ,vi} be an orthonormal basis for  Ki(Ack,rk),  for  i =  1, . . . ,m,  with 
vl = rk/]lrkl]2, generated by m - 1 steps o f  G M R E S .  Let  a true breakdown occur at step m, and 
assume that we compute the solution at the previous G M R E S  step, switch to the outer method, and 
make one G C R  step (24), (32), (33) and (34). So we compute rk+l = r k - - V m t q m - l y  and 
Ck + 1 ~ Ack V m -  I Y~ [[ Ac, Vm-  1Y []- Then we will have stagnation in the next  inner G M R E S  iterations; 
that is, 

rk+l -[- span{Ack+~rk+ A 2 1, Ck+t rk+l , ' ' "  }- 

Proof. We have C k + l • r a n g e ( A c ~ V m - l ) .  Furthermore, r k + l • r a n g e ( V m )  and Ackrk+l• 
range(Ack V,,_ l)  by Theorem 2.5. Ac~÷, = ( I -  Ck+lC[+l)Ac~ and from this and Theorem 2.5 it 
follows that range(Ack Vm- 1 ) is also an invariant subspace of Ac,~, and 
Ac,+,rk+l • r a n g e ( A c ,  V, . -1) .  [] 

The reason for the stagnation is that the new residual rk+ 1 remains in the same Krylov space 
K (Ac,, rk), which contains a nonzero u • range(Uk). So we have to "leave" this Krylov space. We 
can do this using the so-called LSQR switch, which was introduced in [18] to remedy stagnation in 
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the inner method. As in the GMRESR method, stagnation in the inner method will result in 
a breakdown in the outer GCR method, because the residual cannot be updated. The following 
theorem indicates that the LSQR switch always works. 

Theorem 2.10. I f  stagnation occurs in the inner G M R E S  method, that is 

min Ilrk+l -- Ac~Vm-I)I I2  = Ilrk+l lie, 

then we can continue (LSQR switch) by setting 

and 

Ck+2 = 7(I - Ck+IC~+I)AATrk+I  

Uk+ 2 = y A -  1(1 -- Ck+ 1Ckr+ 1) AArrk+ 1, 

where y is a normalization constant. This leads to 

rk + 2 = rk +1 -- (rkT+x Ck + 2)Ck + 2 

and 

Xk+ 2 = Xk+ 1 + (r~+lCk+2)Uk+2, 

which always gives an improved approximation. Therefore, these vectors can also be used as the start 
vectors for a new Krylov subspace in the inner G M R E S  method if  desired. 

Proof. (Following the proof in [18]). 

CTk+ 2rk+ 1 = vr~+ 1 A A  Trk+ 1, 

because rk+ 1 A_ range(Ck+ :), and so 

C~+2rk+: = 711ATrk+l[I 2 ¢ O. 

So, this step will always give an improvement to the residual. This also proves that 
(I - Ck + 1 CVk+ 1 ) A A  T rk + X C range(Ac, V,,_ 1 ), because rk + 1 _1_ range(Ac~ V,,_ 1), so that we may also 
use this vector to build a Krylov subspace in the inner iteration after a true breakdown in the 
previous inner iteration. [] 

3. Implementation 

A straightforward implementation of the GCR method and an orthogonalizing inner method 
will obviously result in a large number of vector updates, inner products and vector scalings. We 
will therefore describe an implementation which greatly reduces this work. This implementation is 
mainly due to Fokkema I-9]. First we will consider the outer GCR method, next the inner GMRES 
method, and finally the implementation of BiCGSTAB as the inner algorithm. 
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Instead of the matrices U k and C k (see Definition 2.1) we will use in the actual implementation the 
matrices Ok, Ck, Nk,  Zk and dk which are defined below. 

Definition 3.1. Let  A,  U, ,  CR, b and rk be as in Definition 2.1. Then Uk, Ck, Nk,  Zk and d, are defined 
as follows: 

C k = C k N k ,  (36) 

where 

Nk = diag( II ~1 [P ~- 1 II ~2 II ~- 1, . . . ,  IICk I] 2 1 ), (37) 

A U k  = CkZk,  (38) 

where Zk is assumed to be upper-triangular. Finally dk is defined by the relation 

rk = b - Ckdk. (39) 

From this the approximate solution Xk, corresponding to rk, is implicitly represented as 

Xk = O k Z [  1 dk. (40) 

Using this relation, Xk can be computed at the end of the complete iteration or before truncation 
(see the end of this section). This implicit representation of Uk saves all the intermediate updates of 
previous Uk to a new Uk+x, which saves about 50% of the computational costs in the outer GCR 
iteration. 

3.1. Initialization and restart 

If the method is started with an initial guess Xo # 0, instead ofxo = 0 as defined in Definition 2.1, 
we must compute ro = b - A x o  and change the updates to 

rk = ro -- Ckd k and Xk = Xo + Ok Zk- l dk . 

The rest of the algorithm remains the same. Also after a restart (see Section 3.7) we compute a new 
result by adding a correction to the previously computed Xk. 

3.2. G M R E S  as inner iteration 

Assume we have made k outer iterations, so that Ok, C k and r k are given. Then, in the inner 
GMRES iteration, the orthogonal matrix Vm+ 1 is constructed such that (7~ V,,+ 1 = O and 

AVm = CkB,n -k- Vm+ lI~m, (41) 

Bm = N~ C T A Vm. (42) 

This algorithm is equivalent to the usual GMRES algorithm, except that the vectors Avi are first 
orthogonalized on Ck. From (41) and (42) it is obvious that A V m  - CkBm = Ac,  V,, = Vm+l tq~ ,  cf. 
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Theorem 2.2. Next, we compute  y according to (23), and we set (cf. (33) wi thout  normalization) 

Ck÷ 1 = V,,+ 1/-/,,y, (43) 

fig + 1 = V,, y. (44) 

This gives Afik+l = A Vm y = Ck Bmy  + V, ,+ I H m y  = Ck B , , y  + Ck + l ,  SO if we set 

("7') 
then the relation A Uk + 1 = Ck + 1Zk + 1 is again satisfied. It follows from Theorem 2.2 that  the new 

i nne r  and is residual of the outer  i teration equals the final residual of the inner iteration, rk + 1 = rm , 

given by 

rk + 1 = rk -- Ck + 1, (45) 

SO that  dk + 1 = 1. Obviously the residual no rm only needs to be computed  once. If we replace the 
new residual of the outer  i teration rk + x by the residual of the inner iteration rmi"ner, then we get from 
(45) an impor tan t  relation that  holds more  generally, 

inner (46) 
C k + l  ~ r k  - -  r m  • 

This relation is important ,  since in general (when other Krylov methods  are used for the inner 
iteration) ?k+ 1 or Ck+ 1 cannot  be computed  from Uk+ 1, because Uk+ 1 is not  compu ted  explicitly, nor  
does a relation like (43) exist. However,  the (inner) residual is always known,  because it is needed for 
the inner iteration itself. See also the part  on BiCGSTAB. Therefore in our current implementa t ion  
(45) is replaced by 

i nne r  
rk + 1 --- r.,  = rk Vm+ l l qmy ,  (47) 

and (43) by (46). Finally, we need to compute  the new coefficient of NR +1, II ~k +1h1~-1 in order  to 
satisfy the relations in Definit ion 3.1. The outer i teration then consists only of (45) or (47), dk + 1 = 1, 

the computa t ion  of II Ck+l LI2 -1 and (40) at the end. 

3.3. A l g o r i t h m s  f o r  ne s t ed  G M R E S  wi th  inner  or thogona l i za t ion  

In Figs. 3 and 4 we give an outline of the inner G M R E S  algori thm for Ack and two versions of the 
outer  G C R  algorithm: G C R O  (because of the implicit inner orthogonalizat ion) and one generic 
version with an arbitrary inner method,  with only the requirement  that  on output  the relation 
Aak+ 1 = rk --  r inner + CkZ1 . . k , k+ 1 holds. The former version explicitly uses the relations that  hold 
after an inner i teration of (m steps of) G M R E S  to make  a few more  optimizations. However,  for 
some problems (with G M R E S  for Ac ,  as the inner method)  the generic version turns out  to be 
slightly more  stable and is then to be preferred. For  the experiments discussed later, we used the 
generic version, even with an inner G M R E S  for Ac~. 

3.4. B i C G S T A B  as inner  i terat ion 

For  the sake of simplicity we will only consider nonprecondi t ioned  BiCGSTAB here (or 
explicitly preconditioned).  The algori thm as given in [17] is listed in Fig. 5. The algori thm contains 
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G M R E S  with Ac~ (m steps): 
(after k ou te r  i terat ions) 
1. Select tol; 

va = rk/llrkll2; 
2. for j =  1 . . . . .  r e d o  

Vj+ 1 -~ Avj; 
for i = 1 , . . . , k  do 

bi,j = cTVj+l; 

Vj+ 1 = Vj+ 1 -- bi,jci; 
for i = 1 . . . . .  j do 

hi ,  j -~- v T v j +  1 ; 

Vj+ ! = Vj+ l -- hi,jvi; 

hj+Lj---  IIvj+x112; 
vj + 1 = h f+11. j vj + 1 ; 

Y,. = a r g m i n r  II [Irk[Izel --/Tmyll2; 
uk+l = Vmy. ;  
r i n n e r  = rk -- Vm+ 1 nraYm; 

Z 1 . . k , k +  l = Bmy,n; 

Fig. 3. The  inner  G M R E S  a lgor i thm with Ac~. 

GCRO,  generic version: 
1. Select Xo, tol; 

ro = b -  A x o ,  k = 0; 
2. while Iirk1[2 > to1 do 

call inner( 
output: 

/~k+ 1, 
r inner, 

Z1. .k ,k+l) ;  
Ck+l  ~ rk  - -  rinner~ 

(Nk+I)R+J = II~k+l II~l; 
Z k + l , k +  I "~- 1; 
dk + 1 = (6~+ 1 rk)" (Nt, + 1 )2+ 1 ; 
r k +  1 : r k - -  d k + l C k + l ;  

k = k + l ;  

Xk = XO + O k Z k l d k ;  

GCRO,  with G M R E S :  
1. Select Xo, tol; 

ro = b -  A x o ,  k = 0; 
2. while 1[ rk II 2 > tol do 

call gmres(  
output: 

Uk+l, 
r inner, 

II r i  . . . .  112, 
Z1. .~,k+l) ;  

Ck+l  ~ rk  - -  rinner~ 

(Nk+1)k+ 1 = ( l i t  k[[2 _ [[r i . . . .  112) -U2;  

Z k + l , k +  1 = l ;  

dk+l = 1; 
rk  + I ~ r inner; 

k = k + l ;  

Xk = XO + O k Z k l d k ;  

Fig. 4. G C R O :  a generic  vers ion and  a special vers ion for inner  G M R E S  with Ac, .  

two matr ix-vector  products  with A, which must be replaced by Ack. The coefficients of the 
orthogonalizations must be saved to satisfy relation (38) at the end of the iteration. This avoids the 
explicit correction of xi, which will become t~k + 1 in the outer iteration. The implementation is as 
follows. On initialization we set Zk + 1 = 0, Xo = 0 and hence ro = r~ uter. After the statement vi = Apt 
we add 

yl=N~CTvi; Vi=Vi--Ckyl, 
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B i C G S T A B :  

1. Select Xo, tol; 
ro = b -  A x o ,  ro = ro; 
p o  = ~ = O-~o = 1; 

Vo = Po = 0, i = 0; 
2. while r~ll2>toldo 

i =  + 1 ;  

Pi = ( t ~ o , r i -  1);  

= (p , /p i_ , ) (~ /~_~);  

Pi = r i - 1  + f l ( P i - 1  - -  O J i - l l ) i - 1 ) ;  

Vi = A p i ;  

= pdffo,  v3; 
S = r i _ l  - -  0~l)i 

t = As; 

o ~  = ( t ,  s ) / ( t ,  t); 
x~ = x i -  i + ~P~ + co~s; 

ri = s -- oJit; 

B i C G S T A B  in G C R  wi th  orthogonal izat ion:  

(after k ou te r  i terations) 
1. Select xo, maxit ,  tol, rtol; 

ro = b - A x o ,  /~o = ro; 
P o = C t = O ~ o = l ;  
Vo = Po = 0, i = 0; 

2. while hLrill2 > m a x ( r t o l ,  IIrollz, tol) 
and i < maxi t  

do 
i = i + 1 ;  
Pi = ( r o , r i -  l ) ;  

fl = (pi/ p~- ~)(~/~-,); 
Pi = r i - 1  + f l ( P i - 1  - - O ) i -  1 / ) i - 1 ) ;  

vi = Api; 
2 - - T  . 

Yl  = Nk  Ck Vl, vi = vi -- CkYl ;  

:~ = pdffo,  v3; 
S = r i _ l  - -  OWi; 

t = As; 

Y2 = N Z C [ t ;  t = t -  Ckyz ;  
~o, = ( t ,  s ) / ( t ,  t); 
Xi = X i -  1 + ~Pi + ~ i S ;  

r i = S - -  ~Oit; 

Z k +  1 = Zk+ 1 + O~yl + oJ iy2;  

Fig. 5. The B i C G S T A B  algori thm. Fig. 6. The B i C G S T A B  algor i thm in G C R  with or thogonal iza t ion .  

and after t = A s  we add 

yE = N Z  C ~  t; t = t - -  C k Y 2 .  

Further,  at the end of the iteration, we set Zk+ ~ = Zk+ i + O~Ya + o ) iY2 .  From this it is easily verified 
that the relation A x i  = ro - ri + CkZk+ t is satisfied at the end of each iteration. If some stopping 
criterion is satisfied after step i we set 

b ] k +  1 = X i ,  (48) 

Ck + 1 ~ r o  ri r ~  u t e r  i n n e r  - - -  - r i  , cf. (46), (49) 

Z k +  1 ~ 

and the (outer iteration) relation (38) is again satisfied. In this case we have to compute the residual 
update explicitly. By construction the columns of Ck÷ x are orthogonal.  So we only have to 
c o m p u t e  1[ Ck + 1 II 21  and  set 

N k + I  = diag([[ ~a 112 -1, . . . ,  1] Ck+ 1112- 1), 

dk+l = I]~Sk+l [ 1 2 2 C T + l r k ,  

r k +  1 = r k - -  d k + l C k +  1 . 

(51) 

(52) 

(53) 
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After this the relations of Definition 3.1 are again satisfied. Experience with BiCGSTAB as inner 
iteration indicates that limiting the number of inner iterations and using a large relative tolerance 
(with respect to the outer residual norm) gives the optimal interplay between the outer and inner 
iteration. An often employed strategy is to have a maximum of 25 inner iterations and a relative 
tolerance of 10-2. The inner algorithm is given in Fig. 6. Note that we aligned the algorithms in 
Figs. 5 and 6 to make the extra steps obvious. The additional work for BiCGSTAB in GCRO with 
orthogonalization (assuming k outer search vectors) is 2k inner products and 2k + 2 vector updates 
and some scalar work. 

3.5. Truncation in general 

When the number of outer iterations becomes large, the multiplication by Ac, will be expensive, 
and we may run out of memory. Therefore, we consider the truncation of the outer iteration. We 
will give only a general description here. For a more detailed discussion see [4, 9-]. We choose 
a matrix IV/~ Nk × 1, where 1 < k, such that 

W ?  Wl -= I i .  (54) 

There are now two ways to implement the truncation: 
(1) First, we compute the current approximation according to (40): Xk = U k Z k l d k ,  then we 

compute the new matrices UI and C1 as follows 

C l = C k W 1 = C k N  k ~ = C k W l where l~ /  = N k  W I ,  

and 

Ul = Uk Wt = Ok Z ;  1 

In order to satisfy the relations of Definition 3.1 we set 

X 0 ~ X k ,  r o  ~ rk ,  

CI=G, UI=UI, 

and 

(55) 

(56) 

(57) 

Z1=11, d l = 0 ,  N l = d i a g ( 1  ... .  ,1), 

we replace relation (39) by rl = ro - C ld l .  After this we have to add corrections to Xo so that 
(40) must be replaced by xz = Xo + UlZt-  l dl. 

(2) The second method does not require the computat ion of x k and is therefore more compatible 
with the overall algorithm. Instead we use wl to compute an implicit representation of Xk: 

W 1 = 3 - 1N~- 1 dk where 6 = l[ Nk- i dk [I 2. (58) 

The other vectors of WI can then be chosen freely as long as they satisfy (54). Furthermore, we 
- -  A 

compute C1, UI, Nt,  ZI and rt according to (55)-(57). Finally, we set dl = 6e~, so that the relation 
rl = b - Cldl is satisfied: 

rt = b - C l d  I = b - C k N k W  1 t~ = b - C k N k ~ - l  N k l d  k3 = b - C k d  k = r k . 

Then xt is implicitly represented by xl = 01Zfmdl  ( = Uldt). 
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3.6. Parallel implementation 

Both the GMRESR method and the method just described (GCRO) will run efficiently on (large) 
distributed memory computers, if they use a variant of GMRES that reduces the cost of global 
communication in the inner products, as described in [3, 2]. Furthermore, GCRO with inner 
GMRES has the advantage that it converges in almost the same number of iterations as (full) 
GMRES (see Section 4). However, it has fewer inner products, which require expensive global 
communication. GCRO with inner GMRES also uses much less memory than GMRES for an 
equal number of iterations (matrix-vector products). Because the cost of global communication is 
often the bottleneck for fast parallel implementations of GMRES on large distributed memory 
computers, and on these computers memory restrictions can be a severe constraint, GCRO with 
inner GMRES will perform much better than GMRES for many problems on large distributed 
memory computers. 

3.7. Convergence check at the end 

Since the residual is never explicitly computed from the approximate solution, it is advisable to 
check the true residual at the end, when the solution is finally computed. If the norm of the true 
residual turns out to be larger than the prescribed tolerance, we first reorthogonalize the true 
residual on Ck and compute the corresponding approximate solution. Generally this is sufficient to 
get the norm of the true residual below the prescribed tolerance. If it is not, then the process can 
simply be restarted, while keeping the old Ck and Ok in order to preserve optimality in these 
directions. Only a few inner iterations were needed in our test cases. 

4. Numerical experiments 

We will discuss the results of three numerical experiments which concern the solution of 
two-dimensional convection-diffusion problems on regular grids, discretized by a finite volume 
technique, resulting in a pentadiagonal matrix. The systems are preconditioned with either ILU(0) 
applied to the scaled system; see [5] and [11], or with Saad's ILUT preconditioner from the 
package SPARSEKIT2 (in netlib) [12], which uses a drop tolerance and allows higher level 
fill-in. 

Because we propose the new method (GCRO) to improve the convergence of GMRESR, we use 
the first two problems to compare the convergence of the following GMRES-like methods: 
• (full) GMRES, 
• GMRESR(m): m indicates the number of inner GMRES iterations for each outer iteration, 
• GCRO(m), which is GCR with m GMRES iterations for Ack as inner method. 
The examples illustrate the typical differences of these methods, the stagnation in the inner loop of 
GMRESR(m) that slows down the convergence, the optimality of GMRES in matrix-vector 
products and its high computational cost, and the near-optimal convergence of GCRO(m) and its 
much lower computational cost compared with GMRES. The examples illustrate the potential of 
GCRO(m) very well. 
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The last problem is used to illustrate that instead of a GMRES-Iike method in the inner loop we 
can also use other methods. Apart from the GMRES-like methods given above, we compare the 
following methods based on BiCGSTAB: 
• BiCGSTAB, 
• GMRESRSTAB: GCR with BiCGSTAB as inner method, 
• GCROSTAB: GCR with BiCGSTAB for Ack as inner method. 
This example also shows that the GCRO approach may improve the convergence of BiCGSTAB- 
like methods. The example also indicates a problem that may arise in using such methods in the 
GMRESR approach. 

We will compare the convergence of these methods both with respect to time (on one processor 
of a Convex C3840) and with respect to the number of matrix-vector products. This makes sense 
since the main trade-off between (full) GMRES, the GCRO variants, and the GMRESR variants is 
fewer iterations against less work per iteration. Which method converges faster in time, then, highly 
depends on the relative cost of the matrix-vector product and preconditioning. 

Problem 1. The first problem is defined by the discretization of 

- (uxx + urr) + bux + cu r = 0 

on [0, 1] x [0, 4], where 

200 

- 200 
b(x, y) = 200 

200 

~ r 0 ~ y ~ l ,  

~ r l < y ~ 2 ,  

~ r 2 < y ~ 3 ,  

~ r 3 < y ~ 4 ,  

and c = 200. The boundary conditions are u = 1 on y = 0, u = 0 on y = 4, u' = 0 on x = 0 and 
u' = 0 on x = 1, where u' denotes the (outward) normal derivative, see Fig. 9. The stepsize in the 
x-direction is 1/99 and in the y-direction it is 4/199. 

The convergence history for Problem 1 is given in Figs. 7 and 8 for (full) GMRES, GCRO(m) and 
GMRESR(m), for m = 5 and m = 10. 

Fig. 7 shows that (full) GMRES converges fastest (in iterations), which is of course to be expected, 
followed by GCRO(5), GCRO(10), GMRESR(10), and GMRESR(5). From Fig. 7 we can see that 
GCRO(m) converges much smoother and much faster than GMRESR(m) and follows the conver- 
gence of (full) GMRES quite well. The vertical "steps" of GMRESR(m) are caused by the 
optimization in the outer iteration, which does not involve a matrix-vector product. This figure 
clearly shows that the GMRESR variants suffer severely from stagnation in the inner iteration, 
which makes the convergence very slow. Stagnation in the inner iteration occurs frequently in 
GMRESR(m) and often destroys the superlinear convergence behaviour, at least during certain 
stages of the convergence history. The reason is probably that the inner iteration of GMRESR (m) 
is essentially a restarted GMRES. Fig. 8 gives the convergence with respect to time. GCRO(5) is the 
fastest, which is not surprising in view of the fact that it follows the convergence of (full) GMRES 
quite closely, but has much lower cost per iteration. GCRO(10) is also faster than (full) GMRES, 
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Fig. 9. Problem 1. 

which is still faster than GMRESR(10) and GMRESR(5). This shows that, for this example, the 
improvement in convergence for the GCRO variants outweighs the extra work in orthogonaliz- 
ations compared to the GMRESR variants. In fact, the effects of stagnation are so strong for this 
example that the GMRESR variants are even slower than (full) GMRES. Apart from their fast 
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convergence in time, the GCRO variants also have the advantage of much lower memory require- 
ments than (full) GMRES (less than half in this example); this, of course, also holds for GMRESR. 

Problem 2. The second problem is defined by the discretization of 

- (uxx + uyy) + bux + cu r = 0 

on [ - 1, 1] × [ - 1, 1], where b ( x , y )  = 400y(1 - x 2) and c ( x , y )  = - 400x (1 - y2). The boundary  
conditions are u = 1 on x = 1 and y = - 1, and Bu/dn = 1 - u on x = - 1 and y = 1, where du/~n 

denotes the outward normal derivative; see Fig. 10. The stepsize is 1/200 in both the x- and 
y-direction. For  this type of problem ILU(0) is not  a good preconditioner. Therefore, we used the 
ILUT preconditioner described in [12], with a drop tolerance of 0.0001 and a maximum fill-in of 
5 in both the lower- and upper-triangular factor. 

The results of Problem 2 are given in Figs. 12 and 13. In this example, the difference between (full) 
GMRES and GCRO(5) in convergence against number of matr ix-vector  products is again very 

~u 
- b ~ - = l - u  

I ; ;  ................. 
Irlt ltt ' l  . . . . . . . . .  ' ~ I I  

[ I f ~ l ,  . . . . . . .  
l f f f  . . . . . . . . .  , 

au 1 ' . . . . . . . . .  = I l l t l ,  . . . .  ' I 

1 1 1 1 1 ~  . . . . . . .  r 
. . .  . t l  

~ l l l l ~ ,  . . . . . . . . . .  , # 1 1  I 
l l l k t ~ •  . . . .  i i I I  

. . . . . .  , ,  I 1  r i l i n g , , . . .  I I 

(-1,-1) u = 1 

Fig. 10. Problem 2. 
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small; GCRO(5) converges (almost) exactly like (full) GMRES. This is explained by the "global" 
optimization in GCRO(m) over both the inner and the outer search vectors (the latter form some 
"best" sample of the entire, previously searched Krylov subspace). In fact, we may view GCRO(m) 
as a semi-full GMRES. Fig. 12 shows again the tendency of GMRESR(m) to stagnate in the inner 
iteration (especially for m = 10), which causes it to converge much slower than GCRO(m). Fig. 13 
shows that GCRO(5) and (full) GMRES are the fastest in CPU time. We also see (as in the previous 
example) that GCRO(5) converges faster than GCRO(10). It seems that a good interaction between 
the inner and outer iteration is important for good convergence. 

Problem 3. The third problem is taken from [17]. We solve the equation 

- (aux)x - (auy)y + bux = f  

on the unit square, where b is given by b(x,  y) = 2e 2 (x~+ r2). We have Dirichlet boundary conditions, 
see Fig. 11. The functions a and f a r e  also given in Fig. l l : f =  0 everywhere, except for the small 
square in the centre, wheref  = 100. The stepsize in both the x- and y-directions is 1/128. An ILU(0) 
preconditioner was used (as in [-17]). The results of Problem 3 are given in Figs. 14-16. 

First, we consider the GMRES variants. Fig. 14 gives the convergence history for (full) GMRES, 
GCRO(m) and GMRESR(m). For this problem, we used m = 10 because it was the optimal choice 
for both GMRESR(m) and GCRO(m), and we used m = 50 to highlight the difference in conver- 
gence behaviour in the inner iteration of GMRESR(m) and GCRO(m). GMRESR(50) stagnates in 
the inner GMRES iteration, whereas GCRO(50) displays almost the same convergence behaviour 
as GCRO(10) and (full) GMRES. 

Next, we consider BiCGSTAB as inner method to illustrate that methods other than GMRES 
can be used successfully as inner iteration. This also indicates the potential of GCRO to improve 
(accelerate) the convergence of methods like BiCGSTAB. In Fig. 15 the convergence history is 
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given for (full) GMRES (for reference), BiCGSTAB, and BiCGSTAB as the inner method 
GMRESR (GMRESRSTAB) and in G C R O  (GCROSTAB). We use different parameters t 
GMRESRSTAB and GCROSTAB, because they behave quite differently, and for both metho 
the optimal parameters (within a reasonable region) should be used to make a fair comparison. T 
following strategies gave the best results for the respective BiCGSTAB variants: 
• For  GMRESRSTAB the inner iteration was ended after either 20 steps or a relative reduction 
the residual norm by a factor 0.01. 
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• For GCROSTAB the inner iteration was ended after 25 steps or a relative reduction of the 
residual norm by a factor of 0.01. 
The convergence behaviour of GMRESRSTAB for this example is somewhat typical for GMRES- 
RSTAB in general (albeit very bad in this particular case). A reason for this erratic behaviour may 
be that the convergence of BiCGSTAB depends on the (implicit) (bi-)orthogonality to some basis. 
This relation is destroyed after each outer iteration. Now if the inner iteration does not yield a good 
approximation, the outer iteration will not give much improvement either and the method becomes 
"trapped". At the start, the same seems to hold for GCROSTAB. However, after a few outer GCR 
iterations the "improved" operator Ack somehow yields a better convergence than BiCGSTAB by 
itself. We have also observed this for other tests, although it may also happen that GCROSTAB 
converges worse than BiCGSTAB. 

In Fig. 16 the convergence versus CPU  time is given for the methods with the best performance 
(in time), GCROSTAB, BiCGSTAB, GCRO(10) and GMRESR(10). GCROSTAB gives the best 
convergence in time. It is approximately 20% faster than BiCGSTAB, notwithstanding the extra 
work in orthogonalizations. Although GCRO(10) converges in fewer iterations than 
GMRESR(10), in time GMRESR(10) is faster. So in this case the decrease in iterations does not 
outweigh the extra work in orthogonalizations. For completeness we mention that GMRES- 
RSTAB took almost 15 s to converge, whereas (full) GMRES took about 20 s. 

5. Conclusions  

From the GMRESR methods we have derived a modified set of methods, which preserve the 
optimality of the outer method in the inner iteration. This optimality is lost in the inner iteration of 
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GMRESR since it essentially uses "restarted" (inner) iterations which cannot take advantage of the 
"convergence history". Therefore, GMRESR(m) may converge very slowly and lose the superlinear 
convergence behaviour of (full) GMRES, due to poor convergence of the inner, restarted GMRES, 
and this might repeat itself at each inner iteration. 

In contrast, the GCRO variants exploit the "convergence history" to generate a search space in 
the inner iteration that does not interfere with the previous minimization of the error over the space 
of outer search vectors. If then GMRES is used as the inner method (GCRO(m)), we do a global 
minimization of the error over both the inner search space and the outer search space. The set 
of outer search vectors is a sample of the entire, previously searched Krylov subspace. From this 
point of view, we may say that GCRO(m) is a semi-full GMRES. This probably accounts for the 
smooth convergence, the preservation of superlinear convergence (if GMRES converges super- 
linearly), and the absence of stagnation, which may occur in the inner method of GMRESR. In 
many practical problems, the convergence behaviour in iterations of GCRO(m) is almost the same 
as that of (full) GMRES. Apparently the subset of Krylov subspace vectors that is maintained 
approximates the entire Krylov subspace that has been generated sufficiently well. Because 
GCRO(m) requires fewer inner products and needs less storage than (full) GMRES for the same 
number of iterations, it is better suited for implementation on large, distributed memory, parallel 
computers. 

Although there is the possibility of breakdown in the inner method for GCRO, this seems to 
occur rarely, as is indicated by Theorem 2.7; indeed, it has never happened in any of our 
experiments. Moreover, in case the generation of the Krylov subspace does break down, we have 
suggested two ways to continue. 

With respect to the performance of the discussed methods, we see that GCRO(m) (almost) always 
converges in fewer iterations than GMRESR(m). Because GCRO(m) is on the average more 
expensive per iteration, this does not always lead to faster convergence in time. This depends on the 
costs of the matrix-vector product and preconditioner compared to the costs of the orthogonaliz- 
ations. Our experiments, with a relatively inexpensive matrix-vector product and preconditioner, 
show that even in this case the GCRO variants are very competitive with other solvers. However, 
especially when the matrix-vector product and preconditioner are expensive or when not enough 
memory is available for (full) GMRES, GCRO(m) is very attractive. For both GMRESR(m) and 
GCRO(m) it appears that a small number of inner iterations works best. 

GCRO with BiCGSTAB also seems to be a good method, especially when a large number of 
iterations is necessary, or when the available memory is small relative to the problem size. 
GMRESR with BiCGSTAB does not seem to work well. This may be caused by the fact that after 
one outer iteration the restarted BiCGSTAB has lost the (implicit) bi-orthogonality relations 
constructed in the previous iteration(s). 

Acknowledgements 

The author wishes to acknowledge Shell Research B.V. and STIPT for the financial support of 
his research. Furthermore, the author wishes to acknowledge the anonymous referees for their help 
in the presentation of this article. 



E. de Sturler / Journal of Computational and Applied Mathematics 67 (1996) 15-41 41 

References 

[1] O. Axelsson and P.S. Vassilevski, A black box generalized conjugate gradient solver with inner iterations and 
variable-step preconditioning, SlAM J. Matrix Anal. Appl. 12 (1991) 625-644. 

[2] E. De Sturler, A parallel restructured version of GMRES(m), Technical Report 91-85, Faculty of Technical 
Mathematics and Informatics, Delft University of Technology, Delft, Netherlands, 1991. 

[3] E. De Sturler, A parallel variant of GMRES(m), in: J.J.H. Miller and R. Vichnevetsky, Eds., Proc. 13th IMACS 
World Congr. on Computation and Applied Mathematics, Dublin, Ireland (Criterion Press, Dublin, 1991) 682-683. 

[4] E. De Sturler and D.R. Fokkema, Nested Krylov methods and preserving the orthogonality, in: N. Duane Melson, 
T.A. Manteuffel and S.F. McCormick, Eds., 6th Copper Mountain Conf. on Multigrid Methods, NASA Conf. 
Publication 3224, Part 1, Hampton, VA (NASA Langley Research Center, 1993) 111-125. 

[5] J.J. Dongarra, I.S. Duff, D.C. Sorensen and H.A. Van der Vorst, Solving Linear Systems on Vector and Shared 
Memory Computers (SIAM, Philadelphia, PA, 1991). 

[6] S.C. Eisenstat, H.C. Elman and M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear 
equations, SIAM J. Numer. Anal. 20 (1983) 345-357. 

[7] V. Faber and T. Manteuffel, Necessary and sufficient conditions for the existence of a conjugate gradient method, 
SlAM J. Numer. Anal. 21 (1984) 352-362. 

[8] R. Fletcher, Conjugate gradient methods for indefinite systems, in: G.A. Watson, Ed., Numerical Analysis Dundee 
1975, Lecture Notes in Math., Vol. 506 (Springer, Berlin, 1976) 73-89. 

[9] D.R. Fokkema, Hybrid methods based on the GCR principle, to appear. 
[10] R.W. Freund and N.M. Nachtigal, QMR: a quasi minimal residual method for non-Hermitian linear systems, 

Numer. Math. 60 (1991) 315-339. 
[11] J.A. Meijerink and H.A. Van der Vorst, An iterative solution method for linear equations systems of which the 

coefficient matrix is a symmetric M-matrix, Math. Comp. 31 (1977) 148-162. 
[12] Y. Saad, ILUT: a dual threshold incomplete ILU factorization, Technical Report 92-38, Minnesota Supercomputer 

Institute, University of Minnesota, Minneapolis, 1992; Linear Algebra Appl., to appear. 
[13] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SlAM J. Sci. Statist. Comput. 14 (1993) 

461469, 
[14] Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear 

systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856-869. 
[15] G.L.G. Sleijpen and D.R. Fokkema, BiCGstab(1) for linear equations involving matrices with complex spectrum, 

Elec. Trans. Numer. Anal. (ETNA) 1 (1993) 11-32. 
[16] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10 

(1989) 36-52. 
[17] H.A. Van der Vorst, BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of 

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631-644. 
[18] H.A. Van der Vorst and C. Vuik, GMRESR: a family of nested GMRES methods, Technical Report 91-80, Faculty 

of Technical Mathematics and Informatics, Delft University of Technology, Delft, Netherlands, 1991. 


