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Speech feature extraction has been a key focus in robust speech recognition research. In this work, we discuss data-driven linear
feature transformations applied to feature vectors in the logarithmic mel-frequency filter bank domain. Transformations are
based on principal component analysis (PCA), independent component analysis (ICA), and linear discriminant analysis (LDA).
Furthermore, this paper introduces a new feature extraction technique that collects the correlation information among phoneme
subspaces and reconstructs feature space for representing phonemic information efficiently. The proposed speech feature vector is
generated by projecting an observed vector onto an integrated phoneme subspace (IPS) based on PCA or ICA. The performance of
the new feature was evaluated for isolated word speech recognition. The proposed method provided higher recognition accuracy
than conventional methods in clean and reverberant environments.
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1. Introduction

In the case of distant (hands-free) speech recognition,
system performance decreases sharply due to the effects of
reverberation. To solve this problem, there have been many
studies carried out on feature extraction, model adaptation,
and decoding. Our proposed method focuses on the feature
extraction domain.

The Mel-Frequency Cepstrum Coefficient (MFCC) is a
widely used speech feature. However, since the feature space
of a MFCC obtained using Discrete Cosine Transform (DCT)
is not directly dependent on speech data, the observed signal
with noise does not show good performance without utiliz-
ing noise suppression methods. There are other methods for
feature extraction: RASTA-PLP [1, 2], normalization [3, 4],
Principal Component Analysis (PCA) [5–7], Independent
Component Analysis (ICA) [8, 9], and Linear Discriminant
Analysis (LDA) [10] based methods.

In [5, 6], the subspace method based on PCA was applied
to speech signals in the time domain for noisy speech
enhancement, and cepstral features from enhanced speech
showed robustness in noisy speech recognition. ICA in [9]
was applied to speech data in the time or time-frequency

domain, and gave good performance in phoneme recogni-
tion tasks. In [10], LDA that was applied to speech data in
the time-frequency domain showed better performance than
combined linear discriminants in the temporal and spectral
domain in continuous digit recognition task. Comparative
experiment results using data-driven methods based on PCA,
ICA, and LDA in phoneme recognition tasks were described
in [11].

The effectiveness of these subspace-based methods has
been confirmed in speech recognition or speech enhance-
ment experiments, but it remains difficult to recognize
observed speech in reverberant environments (e.g., [12–
14]). If the impulse response of a room is longer than the
length of short-time Discrete Fourier Transform (DFT), the
effects of reverberation are both additive and multiplicative
in the power spectrum domain [15]. Consequently, it
becomes difficult to estimate the reverberant effects in the
time or frequency domain. In [7], PCA was applied to
speech signals in the logarithmic mel-frequency filter bank
domain, and this approach showed robustness in distorted
speech recognition. Therefore, we propose a new data-
driven speech feature extraction method that we call the
“Integrated Phoneme Subspace (IPS) method”, which is
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Figure 1: Block diagrams: (a) feature extraction of MFCC and pro-
posed feature, (b) integrated phoneme subspace (IPS) transform.

based on [16] in the logarithmic mel-frequency filter bank
domain.

Our method differs from conventional methods in that
the proposed method attempts to incorporate phonemic
information into the feature space. We apply PCA to estimate
phoneme subspaces that are selected based on the Minimum
Description Length (MDL) principle. Next, PCA or ICA is
applied to integrate these phoneme subspaces. Speech feature
vectors are obtained by transforming features linearly using
a time-invariant transform matrix generated by our method.
To evaluate our method, isolated word speech recogni-
tion experiments were performed. The proposed method
provided higher recognition accuracy than conventional
methods in clean and reverberant environments.

The content of this paper is as follows. In Section 2,
we propose a new feature extraction method based on the
subspace method, MDL-based subspace selection, and ICA.
In Section 3, we describe our speech recognition experiments
using the proposed method and discuss the results. Finally,
conclusions are drawn in Section 4.

2. ProposedMethod

Figure 1(a) is a block diagram that illustrates the speech
feature extraction methods of MFCC and the proposed
speech feature. The proposed feature is obtained by applying
an IPS transform instead of DCT in the logarithmic mel-
frequency filter bank domain. The IPS transform consists of
two transforms: the projection onto phoneme subspaces and
integration of phoneme subspaces, as shown in Figure 1(b).
These two transforms are conducted by multiplying the
feature vector by linear transform matrices.

2.1. Base Feature Extraction. To estimate the IPS transform
matrix, we use logarithmic mel-frequency filter bank (called
LogMFB) coefficients. As shown in Figure 1(b), speech
signals are pre-emphasized by using a first-order FIR filter,
and a stream of speech signals is segmented into a series of
frames, with each frame windowed by a Hamming window.
Next, applying FFT to each frame, the power spectra of time-
series are obtained. The power spectra are filtered using a

mel-frequency filter whose center frequency is spaced in mel
scale and whose coefficients are weighted according to a
triangular shape. Finally, the logarithms of MFB components
are then computed based on the fact that the human auditory
system is sensitive to speech loudness in the logarithmic
scale.

2.2. Phoneme Subspaces Using PCA. To extract phonemic
information from speech signals, we use the subspace
method with Principal Component Analysis (PCA). PCA
is defined as an orthogonal linear transformation that
transforms data to a new coordinate system. This is also
usually used for dimensionality reduction and decorrelation
of feature coefficients. By applying PCA to each clean
phoneme feature set, as shown in Figure 2, each respective
phoneme subspace is obtained.

PCA is applied to each phoneme data matrix X ∈
RDx×Nx that is a set of Dx-dimensional LogMFB vectors,
xt ∈ RDx (t = 1, . . . ,Nx), and those are randomly sampled
from the frame set for each phoneme. The eigenvectors
φk (k = 1, 2, . . . ,Dx) that make the new coordinate system
are computed by eigenvalue decomposition of the covariance
matrix S as follows:

Sφk = λkφk,

S = 1
Nx

Nx∑

t=1

(xt − x)(xt − x)T .
(1)

Here x and λk are a mean vector and an eigenvalue
corresponding to the φk, respectively.

When an unknown vector x is inputted, by projecting
the x onto the ith phoneme subspace Φi with Qi(< Dx)
eigenvectors corresponding to the Qi largest eigenvalues, a
feature vector yi is defined, ignoring the constant term as
follows:

yi = ΦiTx,

Φi = (φ1,φ2, . . . ,φQi

)
.

(2)

In the next subsection, the method of selecting the optimal
dimension Qi of each phoneme subspace is described.

Finally, the super-vector y is obtained by concatenating
yi as follows:

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yM

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1Tx

Φ2Tx

...

ΦMT
x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= VTx. (3)

Here, M indicates the number of phonemes and V is the
matrix of the whole phoneme subspace defined as V =
[Φ1,Φ2, . . . ,ΦM] (∈ RDx×Dy ). The dimensionality of y, Dy ,
is

Dy =
M∑

i=1

Qi. (4)
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Figure 2: Observation space and phoneme subspaces using PCA
and MDL-based subspace selection.

When a frame x of reverberant speech is inputted, the
clean speech portion is projected onto subspace V. Then
the reverberant portion projected onto Vc, (complementary
space of V) is reduced as in [7]. The phoneme subspace
estimate scheme is represented in Figure 2.

2.3. Optimal Phoneme Subspace Selection Based onMDL. The
determination of the dimension for each phoneme subspace,
Qi, requires the use of a truncation criterion. In [5], the MDL
criterion was applied to the subspace selection problem in
the case of noisy speech enhancement. Assuming that the
redundancy of clean speech is additive white Gaussian in the
logarithmic domain, the MDL criterion could be applied to
clean speech data as follows:

MDL
(
q
) = −ln

⎧
⎨
⎩

∏Dx

k=q+1λ
1/(Dx−q)
k

(1/(Dx − q))
∑Dx

k=q+1λk

⎫
⎬
⎭

(Dx−q)Nx

+ M ·
(

1
2

+ ln
[
γ
])− M

q

q∑

k=1

ln

[
λk

√
2
Nx

]
,

(5)

where q, γ, and M(= qDx−q2/2 +q/2 + 1) are the dimension
parameter, the selectivity of MDL, and the number of free
parameters, respectively. We set γ = 32, then the optimal Qi

is obtained as follows:

Qi = arg min
q

MDL
(
q
)
. (6)

This criterion provides both consistent and automatic
phoneme subspace estimates.

2.4. Integration of Phoneme Subspaces. We made optimal
phoneme subspaces and obtained feature vectors that
enhance phonemic information from input speech signals.
It should be noted that the aforementioned feature vectors
are large dimension vectors (sum of each optimal phoneme
subspace dimension), and some base vectors may correlate. It

Phoneme subspaces

PCA or ICA Integration
matrix/a//i//u/ · · · /o/

Figure 3: Estimation of integration matrix.

is efficient to reduce the dimension of the feature vector and
to decorrelate components for speech recognition. For this
purpose, we apply PCA or ICA to a set of feature y so that the
integration matrix W is obtained, as shown in Figure 3. This
integration matrix is time-invariant and linear under the
assumption that phoneme structures are time-invariant and
are composed linearly of decorrelated components. Using
the integration matrix W ∈ RDs×Dy , our proposed speech
feature vectors s ∈ RDs are generated as follows:

s =Wy =WVTx. (7)

In our experiments, for a Hidden Markov Model (HMM)-
based recognizer, we normalized s to zero mean and added
the time derivatives to those normalized mean values so that
the final dimensionality is 2×Ds.

2.4.1. Integration Using PCA. As stated previously, PCA is
able to reduce dimension and to decorrelate the components.
Using eigenvalue decomposition of a covariance matrix of
the data matrix Y ∈ RDy×Ny , eigenvalues and eigenvectors
are obtained, nd by utilizing eigenvectors corresponding
to the largest eigenvalues, we are able to construct an
integration matrix W = ΦT .

2.4.2. Integration Using ICA. Independent component anal-
ysis is a method for separating mutually independent source
signals from mixed signals. In [9], ICA was used for speech
feature extraction and phoneme recognition resulting in
good recognition performance, and it is shown that the filter
obtained by applying ICA to a speech data set in the time
domain from a single microphone worked like a band-pass
filter. Here, we use ICA for integrating phoneme subspaces.

A generative model of ICA is linear, x = As, where x, A,
and s are the observed data vector, mixing matrix, and source
vector, respectively. By assuming that only the components
of the source vector are mutually independent, an unmixing
matrix W (ideally A−1) and independent components s are
estimated as follows s = Wx. The unmixing matrix W
is estimated by maximizing the statistical independence of
the estimated components. The statistical independence is
usually represented by negentropy or kurtosis that is fourth-
order cumulant, and maximization of statistical indepen-
dence is implemented in a gradient algorithm or fixed-point
algorithm.

In this paper, we used FastICA [8] which is based on
a fixed-point iteration scheme that maximizes negentropy.
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Table 1: Reverberant conditions.

T60 (ms) Room

380 Echo room (cylinder)

600 Tatami-floored room (L)

The FastICA algorithm for finding one w that derives one
independent component is as follows.

(1) Center the data to make its mean zero.

(2) Whiten the data to give z.

(3) Choose an initial (e.g., random) vector w of unit
norm.

(4) Let w ← E{zg(wTz)} − E{g′(wTz)}w, where g is the
function that gives approximations of negentropy.

(5) Let w ← w/‖w‖.

(6) If it is not converged, go back to step (4).

To estimate more independent components, different kinds
of decorrelation schemes should be used; please refer to [8]
for more information.

Applying ICA to the data matrix Y, the independent
components among phonemes are extracted and the dimen-
sionality is compressed. The obtained unmixing matrix W is
used for the integration matrix. The PCA integration matrix
decorrelates the components, and the ICA integration matrix
makes the components mutually independent.

3. Experiments

3.1. Experimental Conditions. In order to confirm the effi-
ciency of the proposed method, the speech data were
extracted from the A-set of the ATR Japanese database
and the room impulse response was extracted from the
RWCP sound scene database [17]. The total number of
speakers was 10 (5 males and 5 females). The training data
was composed of 2,620 utterances per speaker, and 1,000
clean or reverberant utterances made by convolving impulse
responses [17] were used for testing each speaker. Table 1
shows the reverberant conditions.

Speech signals were digitized into 16 bits at a sampling
frequency of 12 kHz. For spectral analysis, an ST-DFT was
performed on 32-ms windowed and 8-ms shifted frames.
Next, a 24-channel mel-frequency filter bank (MFB) analysis
was performed on the aforementioned components. The
logarithms of MFB components were then computed.

The experiments were conducted to compare 6 features,
MFCC, PCA, ICA, LDA, IPS1, and IPS2, as follows.

(i) MFCC: DCT to LogMFB vector x.

(ii) PCA: apply PCA to a phoneme balanced set of
LogMFB vectors.

(iii) ICA: apply ICA to a phoneme balanced set of
LogMFB vectors.

(iv) LDA: apply LDA to a set of phoneme data matrices
concurrently.
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Figure 4: Results of isolated word speech recognition with IPS1
feature (average for 10 speakers).

(v) IPS1: apply PCA to a each phoneme data matrix X
and apply PCA to the data matrix Y.

(vi) IPS2: apply PCA to a each phoneme data matrix X
and apply ICA to the data matrix Y.

Each phoneme data matrix X consisted of LogMFB vectors
that were randomly selected and were less than 100 frames
per speaker. In the case of PCA and ICA, the LogMFB vector
set consisted of 5,072 frames that were equally extracted
from the above phoneme data matrices. For IPS1 and IPS2,
the sample size of Y (Ny) was decided to be 5,336. The
dimensions of the aforementioned features (Ds) were set to
12 from 24 (Dx) for a fair comparison. The super-vector
dimension (Dy) is described in the next subsection.

As an acoustic model, the common HMMs of 54 (M)
context-independent phonemes were trained by using 10 sets
of 2,620 clean words spoken by 10 speakers, respectively.
Each HMM is left-right and has three states and three self-
loops. Each state has 20 Gaussian mixture components. The
LogMFB analysis, training phoneme HMMs, and testing
were realized by using HTK toolkits [18].

3.2. Results and Discussions

3.2.1. MDL-Based Phoneme Subspace Selection. Table 2
shows the results of the MDL-based phoneme subspace selec-
tion. LogMFB vectors are projected onto each of the optimal
phoneme subspaces. It is confirmed that the dimensions of
vowels are larger than those of consonants. In particular,
vowel /o/ has the largest (10) dimension and consonant /p/
the smallest (2) dimension. This trend means that phoneme
subspaces have correlated information between each other.
In order to improve efficiency, this correlation should be
reduced.
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Table 2: Phonemes and optimal subspace dimensions.

Phoneme 1–18 N Q a a− aN aa ai ao b by ch d e eN ee ei f g

Dimension 8 4 7 8 9 7 9 8 6 8 4 6 8 8 9 8 6 8

Phoneme 19–36 gy h hy i i+ iN ii j k ky m my n ny o o− oN oo

Dimension 8 5 4 7 6 9 6 5 6 5 8 7 8 9 10 8 10 10

Phoneme 37–54 ou p r ry s sh t ts u u+ u− ue ui uu w y z pau

Dimension 9 2 8 8 3 4 3 3 8 8 8 9 8 8 9 6 5 2

MFCC 95.4 69.6 46.4 

PCA 96.9 77.6 49.7 

ICA 96.2 76.7 49.8 

LDA 96.3 75.1 49.4 
IPS1 96.9 77.9 51.6 
IPS2 96 77.7 51.2 

Clean 380 ms 600 ms
0

10

20

30

40

50

60

70

80

90

100

R
ec

og
n

it
io

n
ac

cu
ra

cy
(%

)

Figure 5: Results of isolated word speech recognition (average for
10 speakers).

Figure 4 shows isolated word speech recognition results
with IPS1. This experiment compares manual phoneme sub-
space selection to MDL-based selection. Manual phoneme
subspace selection means that all phoneme subspaces have
the same dimension (Qi) by selecting the eigenvectors
corresponding 8, 10, 12, or 14 largest eigenvalues. However,
in the case of MDL-based selection, Qi is decided inde-
pendently of each phoneme. The dimension of y, Dy , was
373 based on the MDL principle. While the best manual
selection varies according to the conditions, the MDL-based
subspace selection provided the best performance in all
conditions, except for the case of 10 dimensions in the 380
ms reverberant condition. From this result, it is shown that
MDL-based subspace selection provides good performance
without adjusting subspace dimension manually.

3.2.2. Isolated Word Speech Recognition. Figure 5 shows the
obtained recognition accuracy. The speaker independent
HMMs are trained by clean speech data. The recognition
accuracy is the average of the 10 speakers. The ICA-
based features (ICA, IPS2) refer to the average of three

experimental results for the different initial values of W.
The standard deviations were 0.25 (clean), 0.67 (380 ms),
and 1.01 (600 ms) in the case of ICA, and 0.2, 0.9, and 3.0
in the case of IPS2, respectively. As the reverberation time
lengthens, the standard deviation increases.

MFCC shows the worst performance in all conditions.
The PCA-based methods (PCA, IPS1) show the highest
recognition accuracy (96.9%) under clean conditions. In
reverberant conditions, the recognition accuracy decreases
markedly. However, the proposed methods (IPS1 and IPS2)
show better results than conventional methods.

ICA-based methods overall show a lower performance
than PCA-based methods, especially under clean conditions.
In this paper, we used a Gaussian mixture model (GMM)
on each state of HMM. However, this acoustic model
is not exactly advisable to exploit the independence of
ICA components, because each distribution of independent
component obtained by ICA is non-Gaussian [8]. Changing
this acoustic model for the independent components may
achieve an increase in recognition accuracy, as described in
[19], which proposed a method using Factor Analysis (FA)
for both feature extraction and acoustic modeling.

Although we used a FastICA algorithm to integrate
phoneme subspaces, we believe that the results do not differ
in comparison to the use of other ICA algorithms such as the
joint approximate diagonalization of eigenmatrices (JADEs)
algorithm or Infomax algorithm [20].

4. Conclusions

We proposed the new speech feature extraction method
which emphasizes the phonemic information from observed
speech using PCA, the MDL principle, and ICA. The
proposed feature is obtained by transform matrices that are
linear and time-invariant. The MDL-based phoneme sub-
space selection experiment confirmed that optimal subspace
dimensions differ. The experiment results in isolated word
recognition under clean and reverberant conditions showed
that the proposed method outperforms conventional MFCC.
The proposed method can be combined with other methods,
such as speech signal processing or model adaptation, to
improve the recognition accuracy in real-life environments.
Further research is needed to find appropriate acoustic
modeling methods for the independent components, to
confirm the effectiveness of the proposed method in other
noisy environments, and to adapt nonlinear transformation
methods.
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